, Influencer Marketing. Butterworth-Heinemann, 2008.

A. Arora, S. Galhotra, and S. Ranu, Debunking the myths of influence maximization: An in-depth benchmarking study, SIGMOD. ACM, 2017.

N. Barbieri, F. Bonchi, and G. Manco, Topic-aware social influence propagation models, Knowl. Inf. Syst, vol.37, issue.3, pp.555-584, 2013.

N. Barbieri, F. Bonchi, and G. Manco, Efficient methods for influence-based network-oblivious community detection, vol.8, 2017.

D. Berend and A. Kontorovich, On the concentration of the missing mass, Electronic Communications in Probability, pp.1-7, 2013.

S. Boucheron, G. Lugosi, P. Massart, and M. Ledoux, Concentration inequalities : a nonasymptotic theory of independence, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794821

D. Brown and S. Fiorella, Influence Marketing: How to Create, Manage, and Measure Brand Influencers in Social Media Marketing. Always learning. Que, 2013.

S. Bubeck and N. Cesa-bianchi, Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations & Trends in ML, 2012.

S. Bubeck, D. Ernst, and A. Garivier, Optimal discovery with probabilistic expert advice: finite time analysis and macroscopic optimality, Journal of Machine Learning Research, vol.14, issue.1, pp.601-623, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00811860

W. Chen, T. Lin, Z. Tan, M. Zhao, and X. Zhou, Robust influence maximization, SIGKDD, pp.795-804, 2016.

W. Chen, Y. Wang, Y. Yuan, and Q. Wang, Combinatorial multi-armed bandit and its extension to probabilistically triggered arms, JMLR, vol.17, issue.1, 2016.

N. Du, L. Song, H. Woo, and H. Zha, Uncover topic-sensitive information diffusion networks, AISTATS, pp.229-237, 2013.

D. Easley and J. Kleinberg, Networks, Crowds, and Markets-Reasoning About a Highly Connected World, 2010.

P. Gillin, The New Influencers: A Marketer's Guide to the New Social Media, ACM Trans. Knowl. Discov. Data, vol.13, issue.1, p.22, 2007.

P. Lagrée,

M. Gomez-rodriguez, D. Balduzzi, and B. Schölkopf, Uncovering the temporal dynamics of diffusion networks, ICML, pp.561-568, 2011.

M. Gomez-rodriguez, J. Leskovec, and A. Krause, Inferring networks of diffusion and influence, ACM Trans. Knowl. Discov. Data, vol.5, issue.4, 2012.

M. Gomez-rodriguez, J. Leskovec, and B. Schölkopf, Structure and dynamics of information pathways in online media, WSDM, pp.23-32, 2013.

I. J. Good, The population frequencies of species and the estimation of population parameters, Biometrika, vol.40, issue.3-4, p.237, 1953.

A. Goyal, F. Bonchi, and L. Lakshmanan, Learning influence probabilities in social networks, WSDM, pp.241-250, 2010.

P. Grabowicz, N. Ganguly, and K. Gummadi, Distinguishing between topical and non-topical information diffusion mechanisms in social media, ICWSM, pp.151-160, 2016.

X. He and D. Kempe, Robust influence maximization, SIGKDD, pp.885-894, 2016.
DOI : 10.1145/2939672.2939760

URL : http://dl.acm.org/ft_gateway.cfm?id=2939760&type=pdf

D. Kempe, J. Kleinberg, and É. Tardos, Maximizing the spread of influence through a social network, SIGKDD, pp.137-146, 2003.

P. Lagrée, O. Cappé, B. Cautis, and S. Maniu, Effective large-scale online influence maximization, ICDM, 2017.

K. Lee, Influencer marketing 2.0: Key trends in 2017, 2017.

S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart, Online influence maximization, SIGKDD, 2015.

N. Levine, K. Crammer, and S. Mannor, Rotting bandits, NIPS, 2017.

J. Louëdec, L. Rossi, M. Chevalier, A. Garivier, and J. Mothe, Algorithme de bandit et obsolescence : un modèle pour la recommandation, 2016.

D. Mcallester and L. Ortiz, Concentration inequalities for the missing mass and for histogram rule error, JMLR, vol.4, pp.895-911, 2003.

D. Mcallester and R. Schapire, On the convergence rate of good-turing estimators, COLT, pp.1-6, 2000.

Q. Mei, J. Guo, and D. Radev, Divrank: The interplay of prestige and diversity in information networks, SIGKDD, 2010.

H. T. Nguyen, M. T. Thai, and T. N. Dinh, Stop-and-stare: Optimal sampling algorithms for viral marketing in billion-scale networks, SIGMOD, 2016.

N. Ohsaka, T. Akiba, Y. Yoshida, and K. Kawarabayashi, Fast and accurate influence maximization on large networks with pruned monte-carlo simulations, AAAI, 2014.

D. Romero, B. Meeder, and J. Kleinberg, Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter, WWW, pp.695-704, 2011.

Y. Rong, Q. Zhu, and H. Cheng, A model-free approach to infer the diffusion network from event cascade, CIKM, 2016.

K. Saito, R. Nakano, and M. Kimura, Prediction of information diffusion probabilities for independent cascade model, KES, pp.67-75, 2008.

C. Sletten, How to prepare brands for influencer fatigue, 2017.

Y. Tang, Y. Shi, and X. Xiao, Influence maximization in near-linear time: A martingale approach, SIGMOD, pp.1539-1554, 2015.

Y. Tang, X. Xiao, and Y. Shi, Influence maximization: Near-optimal time complexity meets practical efficiency, SIGMOD, pp.75-86, 2014.
DOI : 10.1145/3110025.3110041

S. Vaswani, B. Kveton, Z. Wen, M. Ghavamzadeh, L. Lakshmanan et al., Diffusion independent semi-bandit influence maximization, 2017.

S. Wang, X. Hu, P. Yu, and Z. Li, Mmrate: inferring multi-aspect diffusion networks with multi-pattern cascades, SIGKDD, pp.1246-1255, 2014.

D. Watts, Six Degrees: The Science of a Connected Age, 2003.

D. Watts and P. Dodds, Influentials, networks, and public opinion formation, Journal of Consumer Research, vol.34, issue.4, pp.441-458, 2007.

Z. Wen, B. Kveton, M. Valko, and S. Vaswani, Online influence maximization under independent cascade model with semi-bandit feedback, NIPS, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01643976