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Abstract—We present fully abstract encodings of the call-by-
name λ-calculus into HOcore, a minimal higher-order process
calculus with no name restriction. We consider several equiva-
lences on the λ-calculus side—normal-form bisimilarity, applica-
tive bisimilarity, and contextual equivalence—that we internalize
into abstract machines in order to prove full abstraction.

I. INTRODUCTION

HOcore is a minimal process calculus with higher-order
communication, meaning that messages are executable pro-
cesses. It is a subcalculus of HOπ [20] with no construct
to generate names or to restrict the scope of communication
channels. Even with such a limited syntax, HOcore is Turing
complete [15]. However, as a higher-order calculus, it is less
expressive than the name passing π-calculus: polyadic mes-
sage sending cannot be compositionally encoded in monadic
message sending in HOπ [14], while it can be done in π [22].

Although HOcore is Turing complete, we initially thought
a fully abstract encoding of the λ-calculus into HOcore was
impossible. Indeed, a λ-term potentially has an unbounded
number of redexes. A straightforward encoding would use
communication to emulate β-reduction, but since HOcore does
not provide means to restrict the scope of communication, one
would need as many distinct names as there are redexes to
avoid interference. Moreover, as new redexes may be created
by β-reduction, we also need a way to generate new names
on which to communicate. To circumvent these problems and
illustrate the expressiveness of HOcore, we consider encodings
where the reduction strategy is fixed, thus for which at most
one redex is enabled at any time. In this setting, β-reduction
can be emulated using communication on a single, shared,
name. A first contribution of this paper is a novel encoding
of the call-by-name λ-calculus, or more precisely the Krivine
Abstract Machine (KAM) [13], into HOcore.

A faithful encoding not only reflects the operational se-
mantics of a calculus, it should also reflect its equivalences.
Ideally, an encoding is fully abstract: two source terms are
behaviorally equivalent iff their translations are equivalent.
On the HOcore side, we use barbed equivalence with hidden
names [15], where a fixed number of names used for the
translation cannot be observed. On the λ-calculus side, we
consider three equivalences. First, we look at normal-form
bisimilarity [16, 17], where normal forms are decomposed into
subterms that must be bisimilar. Next, we turn to applicative
bisimilarity [1], where normal forms must behave similarly
when applied to identical arguments. And finally, we consider
contextual equivalence, where terms must behave identically

when put into arbitrary contexts. Our second contribution is
an internalization of these equivalences into extended abstract
machines: these machines expand the KAM, which performs
the evaluation of a term, with additional transitions with flags
interpreting the equivalences. By doing so, we can express
these different equivalences on terms by a simpler bisimilarity
on these flags-generating machines, which can be seen as
labeled transition systems. Finally, and as third contribution,
we translate these extended machines into HOcore and prove
full abstraction for all three equivalences. Altogether, this work
shows that a minimal process calculus with no name restriction
can faithfully encode the call-by-name λ-calculus.

The chosen equivalences: One may wonder why we study
normal-form and applicative bisimilarities, as faithfully encod-
ing contextual equivalence is enough to get full abstraction.
Our motivation is twofold. First, we start with normal-form
bisimilarity because it is the simplest to translate. Indeed,
there is no need to inject terms from the environment to
establish the equivalence. We next show how we can inject
terms for applicative bisimilarity, and we then extend this
approach to contexts for contextual equivalence. Second, the
study of quite different equivalences illustrate the robustness
of the internalization technique.

Related work: Since Milner’s seminal work [19], other
translations of the λ-calculus or one of its variants into
π-calculus have been proposed, e.g., to study connections
with logic [2, 5, 23], termination [9, 4, 25], sequential-
ity [6], control [9, 12, 24], or Continuation-Passing Style
(CPS) transforms [21, 22, 10]. These works use the more
expressive first-order π-calculus, except for [21, 22], discussed
below; full abstraction is proved w.r.t. contextual equivalence
in [6, 25, 12], normal-form bisimilarity in [24], and normal-
form and applicative bisimilarities in [22]. The definitions
of the encodings and the equivalences of [6, 25, 12] are
driven by types, and therefore cannot be compared to our
untyped setting. In [24], van Bakel et al. establish a full
abstraction result between the λµ-calculus with normal-form
bisimilarity and the π-calculus. Their encoding relies on an
unbounded number of restricted names to evaluate several
translations of λ-terms in parallel, while we rely on flags
and on barbed equivalence to know which translated λ-term is
being evaluated. We explain the differences between the two
approaches in Section IV-B.

Sangiorgi translates the λ-calculus into a higher-order calcu-
lus as an intermediary step in [21, 22], but it is an abstraction-
passing calculus, which is strictly more expressive than a
process-passing calculus [14]. Like in our work, Sangiorgi
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fixes the evaluation strategy in the λ-calculus, except that
he uses CPS translations rather than abstract machines. In
the light of Danvy et al.’s functional correspondence [3],
the two approaches appear closely related, however it is
difficult to compare our encoding with Sangiorgi’s, since we
use different target calculi, and we internalize the normal-
form and applicative bisimilarities in the abstract machines.
Still, name restriction plays an important role in Sangiorgi’s
encodings, since a local channel is used for each application
in a λ-term. Full abstraction w.r.t. normal-form bisimilarity
(called “applicative open bisimilarity”) is established in [22,
Chapter 18]. In [22, Chapter 17], the encoding is proved to
be sound but not complete w.r.t. applicative bisimilarity: there
exist applicative bisimilar λ-terms whose translations are not
bisimilar in π-calculus. It is then argued that completeness can
be achieved for this encoding only by extending the λ-calculus
with non-confluent constructs. We explain the discrepancy
with our results in Remark 24.

Outline: Section II presents the syntax and semantics
of HOcore. Section III shows how to encode the KAM; the
machine and its encoding are then modified to get full abstrac-
tion with relation to normal-form bisimilarity (Section IV) and
applicative bisimilarity (Section V). Section VI concludes this
paper, and the appendix contains the main proofs.

II. THE CALCULUS HOCORE

Syntax and semantics: HOcore [15] is a simpler version
of HOπ [20] where name restriction is removed. We let a,
b, etc. range over channel names, and x, y, etc. range over
process variables. The syntax of HOcore processes is:
P,Q ∶∶= a(x).P ∣ a⟨P ⟩ ∣ P ∥ Q ∣ x ∣ 0.
The process a(x).P is waiting for a message on a which,

when received, is substituted for the variable x in P . If x does
not occur in P , then we write a( ).P . The process a⟨P ⟩ is
sending a message on a. Note that communication is higher
order—processes are sent—and asynchronous—there is no
continuation after a message output. The parallel composition
of processes is written P ∥ Q, and the process 0 cannot
perform any action. Input has a higher precedence than parallel
composition, e.g., we write a(x).P ∥ Q for (a(x).P ) ∥ Q.
We implicitly consider that parallel composition is associative,
commutative, and has 0 as a neutral element. In an input
a(x).P , the variable x is bound in P . We write fn(P ) for
the channel names of P .

Informally, when an output a⟨P ⟩ is in parallel with an
input a(x).Q, a communication on a takes place, producing
[P / x]Q, the capture avoiding substitution of x by P in Q.
We define in Figure 1 the semantics of HOcore as a labeled
transition system (LTS), omitting the rules symmetric to PAR
and TAU. The labels (ranged over by l) are either τ for internal
communication, a⟨P ⟩ for message output, or a(P ) for process
input. We use label a for an input where the received process
does not matter (e.g., a( ).P ).

Weak transitions allow for internal actions before and after
a visible one. We write

τÔÔ⇒ for the reflexive and transitive
closure

τÐÐÐ→
∗

, and
lÔÔ⇒ for

τÔÔ⇒ lÐÐÐ→ τÔÔ⇒ when l ≠ τ .

OUT

a⟨P ⟩
a⟨P ⟩
ÐÐÐ→ 0

INP

a(x).Q
a(P )
ÐÐÐ→ [P / x]Q

PAR

P
lÐÐÐ→ P ′

P ∥ Q lÐÐÐ→ P ′ ∥ Q

TAU

P
a⟨R⟩
ÐÐÐ→ P ′ Q

a(R)
ÐÐÐ→ Q′

P ∥ Q τÐÐÐ→ P ′ ∥ Q′

Fig. 1: HOcore LTS

Barbed equivalence: We let γ range over names a and
conames a; we define observable actions as follows.

Definition 1. The process P has a strong observable action

on a (resp. a), written P ↓a (resp. P ↓a), if P
a(Q)
ÐÐÐ→ R

(resp. P
a⟨Q⟩
ÐÐÐ→ R) for some Q, R. A process P has a weak

observable action on γ, written P ⇓γ , if P
τÔÔ⇒ P ′ ↓γ for

some P ′. We write WkObs(P ) for the set of weak observable
actions of P .

Our definition of barbed equivalence depends on a set H
of hidden names, which allows some observable actions to
be ignored. Instead of adding top-level name restrictions on
these names, as in [15], we prefer to preserve the semantics of
the calculus and simply hide some names in the equivalence.
Hidden names are not a computational construct and are not
required for the encoding of the KAM, but they are necessary
to protect the encoding from an arbitrary environment when
proving full abstraction. We emphasize that we do not need
the full power of name restriction: the set of hidden names is
finite and static—there is no way to create new hidden names.

Definition 2. A symmetric relation R is a barbed bisimulation
w.r.t. H if P R Q implies

● P ↓γ and γ ∉ H implies Q ⇓γ;
● for all R such that fn(R) ∩ H = ∅, we have
P∥R R Q∥R;

● if P
τÐÐÐ→ P ′, then there exists Q′ such that Q

τÔÔ⇒ Q′

and P ′ R Q′.
Barbed equivalence w.r.t. H, noted ≈HHO, is the largest barbed
bisimulation w.r.t. H.

A strong barbed equivalence can be defined by replacing
⇓γ with ↓γ in the first item, and

τÔÔ⇒ with
τÐÐÐ→ in the

third. From [15], we know that strong barbed equivalence is
decidable when H = ∅, but undecidable when H is of cardinal
at least 4. We lower this bound to 2 in Theorem 4.

III. ENCODING THE KRIVINE ABSTRACT MACHINE

We show in this section that HOcore may faithfully encode
a call-by-name λ-calculus through an operationally equivalent
encoding of the KAM.

A. Definition of the KAM

The KAM [13] is a machine for call-by-name evaluation
of closed λ-calculus terms. We present a substitution-based
variant of the KAM for simplicity, and to reuse the substitution
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of HOcore in the translation. A configuration C of the machine
is composed of the term t being evaluated, and a stack π of
λ-terms. Their syntax and the transitions are as follows.

C ∶∶= t ⋆ π (configurations)

t, s ∶∶= x ∣ t t ∣ λx.t (terms)

π ∶∶= t ∶∶ π ∣ [] (stacks)

t s ⋆ π ↦ t ⋆ s ∶∶ π (PUSH)

λx.t ⋆ s ∶∶ π ↦ [s / x]t ⋆ π (GRAB)
A λ-abstraction λx.t binds x in t; a term is closed if it does
not contain any free variables. We use [] to denote the empty
stack. In PUSH, the argument s of an application is stored on
the stack while the term t in function position is evaluated.
If we get a λ-abstraction λx.t, then an argument s is fetched
from the stack (transition GRAB), and the evaluation continues
with [s/x]t. If a configuration of the form λx.t⋆[] is reached,
then the evaluation is finished, and the result is λx.t. Because
we evaluate closed terms only, it is not possible to obtain a
configuration of the form x ⋆ π.

B. Translation into HOcore

The translation of the KAM depends essentially on how
we push and grab terms on the stack. We represent the stack
by two messages, one on name hdc for its head, and one on
name c (for continuation) for its tail (henceforth, a stack n
is always encoded as a message on hdn for its head and one
on n for its tail). The empty stack can be represented by an
arbitrary, non-diverging, deterministic process, e.g., 0; here we
use a third name to signal that the computation is finished with
b⟨0⟩. As an example, the stack 1 ∶∶ 2 ∶∶ 3 ∶∶ 4 ∶∶ [] is represented

by hdc⟨1⟩ ∥ c⟨hdc⟨2⟩ ∥ c⟨hdc⟨3⟩ ∥ c⟨hdc⟨4⟩ ∥ c⟨b⟨0⟩⟩⟩⟩⟩.

With this representation, pushing an element e on a stack p
is done by creating the process hdc⟨e⟩ ∥ c⟨p⟩, while grabbing
the head of the stack corresponds to receiving on hdc. With
this idea in mind, we define the translations for the stacks,
terms, and configurations as follows, where we assume the
variable p does not occur in the translated entities.

vt ⋆ πw
▵= vtw ∥ c⟨vπw⟩

v[]w ▵= b⟨0⟩
vt ∶∶ πw

▵= hdc⟨vtw⟩ ∥ c⟨vπw⟩
vt sw

▵= c(p).(vtw ∥ c⟨hdc⟨vsw⟩ ∥ c⟨p⟩⟩)
vλx.tw

▵= c(p).(hdc(x). vtw ∥ p)
vxw

▵= x
In the translation of a configuration t ⋆ π, the stack is in a
message on c, meaning that before pushing on π or grabbing
the head of π, we have to get vπw by receiving on c. For
instance, in the application case vt sw, we start by receiving
the current stack p on c, and we then run vtw in parallel with the
translation of the new stack hdc⟨vsw⟩ ∥ c⟨p⟩. Similarly, in the
λ-abstraction case vλx.tw, we get the current stack p on c, that
we run in parallel with hdc(x). vtw. If p is not empty, then it is
a process of the form hdc⟨vsw⟩ ∥ c⟨vπw⟩, and a communication

on hdc is possible, realizing the substitution of x by s in t; the
execution then continues with v[s / x]tw ∥ c⟨vπw⟩. Otherwise, p
is b⟨0⟩, and the computation terminates.

Formally, the operational correspondence between the KAM
and its translation is as follows.

Theorem 3. In the forward direction, if C ↦∗ C ′, then
vCw

τÔÔ⇒ vC ′w. In the backward direction, if vCw
τÔÔ⇒ P ,

then there exists a C ′ such that C ↦∗ C ′ and either
● P = vC ′w,
● or there exists P ′ such that P

τÐÐÐ→ P ′ = vC ′w,
● or C ′ = λx.t ⋆ [] and P = hdc(x). vtw ∥ b⟨0⟩.

Sketch. The proof is straightforward in the forward direction.
In the backward direction, we show that the translation is
deterministic (if vCw

τÔÔ⇒ P
τÐÐÐ→ Q1 and vCw

τÔÔ⇒
P

τÐÐÐ→ Q2, then Q1 = Q2) and we rely on the fact that
the translation of a PUSH step uses one communication, while
we use two communications for a GRAB step.

We can then improve over the result of [15] about undecid-
ability of strong barbed equivalence by hiding hdc and c.

Theorem 4. Strong barbed equivalence is undecidable in
HOcore with 2 hidden names.

Proof. Assume we can decide strong barbed congruence
with two hidden names, and let t be a closed λ-term. We
can thus decide if vt ⋆ []w is strong barbed-congruent to
c(x).( x ∥ c⟨x⟩ ) ∥ c⟨c(x).(x ∥ c⟨x⟩)⟩ when hdc and c are
hidden. As the second term loops with no barbs, deciding
congruence is equivalent to deciding whether the reduction
of t converges, hence a contradiction.

IV. NORMAL-FORM BISIMILARITY

Our first full abstraction result is for normal-form bisim-
ilarity [16]. We show how to internalize this equivalence in
an extension of the KAM such that it may be captured by
a simple barbed bisimilarity. We then translate this extended
KAM into HOcore, and we finally prove full abstraction.

A. Normal-Form Bisimilarity

Normal-form bisimilarity compares terms by reducing them
to weak head normal forms, if they converge, and then decom-
poses these normal forms into subterms that must be bisimilar.
Unlike the KAM, normal-form bisimilarity is defined on open
terms, thus we distinguish free variables, ranged over by α,
from bound variables, ranged over by x. The grammars of
terms (t, s) and values (v) become as follows.

t ∶∶= α ∣ x ∣ λx.t ∣ t t v ∶∶= α ∣ λx.t
Henceforth, we assume that λ-terms are well formed, i.e.,

all variables ranged over by x are bound: x is not a valid term
but α is. We write fv(t) for the set of free variables of t. A
variable α is said fresh if it does not occur in any entities
under consideration.

When evaluating an open term, we can obtain either a λ-
abstraction, or a free variable in a stack. We inductively extend
a relation R on λ-terms to stacks by writing π R π′ if π =
π′ = [], or if π1 = t ∶∶ π′1, π2 = s ∶∶ π′2, tR s, and π′1 R π′2.
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Definition 5. A symmetric relation R is a normal-form
bisimulation if tR s implies:

● if t⋆[]↦∗ λx.t′⋆[], then there exists s′ such that s⋆[]↦∗

λx.s′ ⋆ [] and [α / x]t′ R [α / x]s′ for a fresh α;
● if t⋆ []↦∗ α⋆π, then there exists π′ such that s⋆ []↦∗

α ⋆ π′ and π R π′.
Normal-form bisimilarity ≈nf is the largest normal-form bisim-
ulation.

Normal-form bisimilarity is not complete w.r.t. contextual
equivalence in λ-calculus, but it characterizes Lévy-Longo tree
equivalence [16].

B. Abstract Machine

We now describe how to extend the KAM so that it provides
additional steps, identified by labeled transitions, that capture
normal-form bisimilarity. These extended machines feature
flagged transitions, terminating transitions, and a restricted
form of non-determinism. Flagged transitions are usual tran-
sitions of the machine with some additional information to
convey to the environment that a particular event is taking
place. Machine bisimilarity, defined below, ensures that bisim-
ilar machines have matching flags. Transitions without flags
use a τ label. Terminating transitions are flagged transitions
that indicate the computation has stopped. They are needed for
bisimilarity: as machine bisimilarity ignores τ labels, we use
terminating transitions to distinguish between terminated and
divergent machine runs. Finally, we allow non-determinism
in machines, i.e., a given configuration may take two different
transitions, only if the transitions are flagged and have different
flags. In other words, the non-deterministic choice is made
explicit to the environment.

We define the NFB machine in Figure 2. When computation
stops with a λ-abstraction and an empty stack, we have to
restart the machine to evaluate the body of the abstraction
with a freshly generated free variable (rule LAMBDA). To do
so, we consider free variables as natural numbers, and we
keep a counter n in the machine which is incremented each
time a fresh variable is needed. For a configuration α ⋆ π,
normal-form bisimilarity evaluates each of the ti in the stack
(rule VAR). To internalize this step, we could launch several
machines in parallel, as in [24], where the translated ti are
run in parallel. This approach has two drawbacks: first, it
is a further extension of abstract machines (a machine no
longer steps to a single machine state but to a multiset of
states). Second, when translating such extended machines into
HOcore, we want to prevent them from interacting with each
other, but we cannot rely on name restriction, as in [24], to en-
capsulate an unbounded number of translations. Alternatively,
one could evaluate the elements of the stack sequentially, but
this approach fails if one of the elements of the stack diverges,
as the later elements will never be evaluated. We thus consider
a third approach, built upon flagged non-determinism: the
machine chooses arbitrarily an element of the stack to evaluate,
and signals this choice using flags (rules ENTER, SKIP, and
DONE). The burden of evaluating every element of the stack
is thus relegated to the definition of machine bisimilarity: as

⟨t s, π, n⟩ev
τ
ÞÐ→ ⟨t, s ∶∶ π,n⟩ev (PUSH)

⟨λx.t, s ∶∶ π,n⟩ev
τ
ÞÐ→ ⟨[s / x]t, π, n⟩ev (GRAB)

⟨λx.t, [], n⟩ev
⊚
ÞÐ→ ⟨[n / x]t, [], n + 1⟩ev (LAMBDA)

⟨α,π,n⟩ev
α
ÞÐ→ ⟨π,n⟩ct (VAR)

⟨[], n⟩ct
☆
ÞÐ→ (DONE)

⟨t ∶∶ π,n⟩ct
▼
ÞÐ→ ⟨t, [], n⟩ev (ENTER)

⟨t ∶∶ π,n⟩ct
▶
ÞÐ→ ⟨π,n⟩ct (SKIP)

Fig. 2: NFB Machine

every flagged execution must be matched by an execution with
the same flags, every possible choice is explored.

As before, we use C to range over configurations, which are
now of two kinds. In evaluation mode, ⟨t, π, n⟩ev is reducing t
within stack π and with counter n. The transitions PUSH and
GRAB are as in the KAM, except for the extra parameter.
If we reach a λ-abstraction in the empty context (transition
LAMBDA), then the machine flags ⊚ and then restarts to
evaluate the body, replacing the bound variable by a fresh
free variable, i.e., the current value n of the counter. If we
reach a free variable α, i.e., a number, then we flag the value
of α before entering the next mode (transition VAR).

In continuation mode ⟨π,n⟩ct, the transition DONE simply
finishes the execution if π = [], using the flag ☆. Otherwise,
π = t ∶∶ π′, and the machine either evaluates t with flag ▼
(and forgets about π′), or skips t with a flag ▶ to eventually
evaluate a term in π′. The machine may skip the evaluation of
all the terms in π, but it would still provide some information,
as it would generate m ▶ messages (followed by ☆), telling
us that π has m elements. Note that the counter n is stored
in continuation mode just to be passed to the evaluation mode
when one of the ti is chosen with transition ENTER.

Example 6. To illustrate how the machine works, we show the
transitions starting from the term (λx.x) (λy.y 0 Ω), where
Ω

▵= (λx.x x) (λx.x x). The term is executed in the empty
context, and with a counter initialized to a value greater than
its free variables.

⟨(λx.x) (λy.y 0 Ω), [],1⟩ev
τ
ÞÐ→ ⟨λx.x, λy.y 0 Ω ∶∶ [],1⟩ev (PUSH)
τ
ÞÐ→ ⟨λy.y 0 Ω, [],1⟩ev (GRAB)
⊚
ÞÐ→ ⟨1 0 Ω, [],2⟩ev (LAMBDA)
τ
ÞÐ→ ⟨1 0,Ω ∶∶ [],2⟩ev

τ
ÞÐ→ ⟨1,0 ∶∶ Ω ∶∶ [],2⟩ev (PUSH - PUSH)

1
ÞÐ→ ⟨0 ∶∶ Ω ∶∶ [],2⟩ct (VAR)

We then have three possibilities. First, we reduce the top of
the stack, with the sequence ⟨0 ∶∶ Ω ∶∶ [],2⟩ct

▼
ÞÐ→ ⟨0, [],2⟩ev

0
ÞÐ→

⟨[],2⟩ct
☆
ÞÐ→. Second, we evaluate Ω with the sequence ⟨0 ∶∶ Ω ∶∶

[],2⟩ct
▶
ÞÐ→ ⟨Ω ∶∶ [],2⟩ct

▼
ÞÐ→ ⟨Ω, [],2⟩ev, and then the machine

loops without generating any flag. Third, we skip both terms
with ⟨0 ∶∶ Ω ∶∶ [],2⟩ct

▶
ÞÐ→ ⟨Ω ∶∶ [],2⟩ct

▶
ÞÐ→ ⟨[],2⟩ct

☆
ÞÐ→ . Note that

the three options generate different traces of flags.
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Because the rules GRAB and PUSH are the same between
the KAM and the NFB machine, there is a direct correspon-
dence between the two.

Lemma 7. For all t, t′, π, π′, n, t⋆π ↦ t′⋆π′ iff ⟨t, π, n⟩ev
τ
ÞÐ→

⟨t′, π′, n⟩ev.

We finally show that a notion of bisimilarity between config-
urations of an NFB machine captures normal-form bisimilarity.
To this end, we first define machine bisimilarity, where we
denote the flags of the machine by f .

Definition 8. A symmetric relation R is a machine bisimula-
tion if C1 R C2 implies:

● if C1
τ
ÞÐ→

∗ f
ÞÐ→ C ′

1, then there exists C ′
2 such that C2

τ
ÞÐ→

∗ f
ÞÐ→

C ′
2 and C ′

1 R C ′
2;

● if C1
τ
ÞÐ→

∗ f
ÞÐ→, then C2

τ
ÞÐ→

∗ f
ÞÐ→.

Machine bisimilarity ≈m is the largest machine bisimulation.

Intuitively, machine bisimilarity ensures that every flag
emitted by a machine is matched by an identical flag from the
other machine, up to internal reductions. Note that a machine
that diverges with τ labels can be related to any other diverging
machine or any machine stuck without a flag. We make sure
the latter case cannot occur in our machines by only having
terminating transitions, which are flagged, as stuck transitions.
We can now state that normal-form bisimilarity coincides with
machine bisimilarity of NFB machines.

Theorem 9. We have t ≈nf s iff there exists n >
max (fv(t) ∪ fv(s)) such that ⟨t, [], n⟩ev ≈m ⟨s, [], n⟩ev.

Sketch. Machine bisimilarity implies ≈nf because
{(t, s) ∣ ⟨t, [], n⟩ev ≈m ⟨s, [], n⟩ev, n > max (fv(t) ∪ fv(s))}

is a normal-form bisimulation, and the other direction is by
showing that

{(⟨t, [], n⟩ev, ⟨s, [], n⟩ev) ∣ t ≈nf s, n > max (fv(t), fv(s))}
∪{(⟨π,n⟩ct, ⟨π′, n⟩ct) ∣ π ≈nf π′, n > max (fv(π), fv(π′))}

is a machine bisimulation.

C. Translation into HOcore

In Figure 3, we present the translation of the NFB machine
into HOcore, where we consider flags as channel names.
Configurations now contain a counter n, which is represented
by a message on k containing the value of n encoded as
a process. We use v.wInt to translate a natural number n
into a process suc( ). . . . suc( )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

.z( ).init⟨0⟩; the role of

the final output on init is explained later. Free variables α
are also numbers, since we cannot generate new names in
HOcore, and we use the same translation for them. We also
use non-deterministic internal choice, encoded as follows:
P +Q ▵= ch⟨P ⟩ ∥ ch⟨Q⟩ ∥ ch(x).ch( ).x: both messages are
consumed, and only one process is executed. This encoding
supposes that at most one choice is active at a given time, as
we use only one name ch to encode all the choices. We also
use n-ary choices for n > 2 in Section V-C, which can be
encoded in the same way.

vt sw
▵= c(p).(vtw ∥ c⟨hdc⟨vsw⟩ ∥ c⟨p⟩⟩)

vλx.tw
▵= c(p).(p ∥ b⟨Restart⟩ ∥ hdc(x).b( ). vtw)

vxw
▵= x

vαw
▵= vαwInt

Restart
▵= ⊚( ).k(x).

⎛
⎝
hdc⟨x⟩ ∥ k⟨suc( ).x⟩ ∥
c⟨v[]w⟩ ∥ b⟨0⟩

⎞
⎠

Rec
▵= init( ).rec(x).(x ∥ rec⟨x⟩ ∥ Cont)

Cont
▵= c(p).(p ∥ b⟨☆( ).0⟩ ∥ hdc(x).b( ).Chce(x))

Chce(Pt)
▵=▼( ).c( ).(Pt ∥ c⟨v[]w⟩) +▶( ).init⟨0⟩

v[]w ▵= b(x).x
vt ∶∶ πw

▵= hdc⟨vtw⟩ ∥ c⟨vπw⟩
v0wInt

▵= z( ).init⟨0⟩
vn + 1wInt

▵= suc( ). vnwInt

v⟨t, π, n⟩evw
▵= vtw ∥ c⟨vπw⟩ ∥ k⟨vnwInt⟩ ∥ Rec ∥ rec⟨Rec⟩

v⟨π,n⟩ctw
▵= c⟨vπw⟩ ∥ k⟨vnwInt⟩ ∥ Cont ∥ Rec ∥ rec⟨Rec⟩

Fig. 3: Translation of the NFB machine into HOcore

A stack is represented as in the KAM, by messages on hdc
and c, and the translation of an application vt sw is exactly the
same as for the KAM. The encoding of the empty context []
is different, however, because contexts are used to distinguish
between execution paths at two points in the machine: when
evaluating a function λx.t in evaluation mode, and when
deciding whether the execution is finished in continuation
mode. The empty context is thus encoded as b(x).x, waiting
to receive the process to execute in the empty case. For the
non-empty case, this input on b is absent and there are instead
messages on hdc and c. Thus the generic way to choose a
branch is as follows:
b⟨do this if empty⟩ ∥ hdc(x).c(y).b( ).do this if non-empty.
In the non-empty case, the input on b discards the message
for the empty behavior that was not used.

For λ-abstractions, the behavior for the empty case is
described in the process Restart. More precisely, vλx.tw
receives the current stack vπw on c to run it in parallel
with b⟨Restart⟩ ∥ hdc(x).b( ). vtw. If vπw is of the form
hdc⟨vt′w⟩ ∥ c⟨vπ′w⟩, then we have the same behavior as with
the KAM, with an extra communication on b to garbage collect
the Restart process. Otherwise, vπw = b(x).x and we obtain
the following sequence of transitions.

b(x).x ∥ b⟨Restart⟩ ∥ hdc(x).b( ). vtw ∥ k⟨vnwInt⟩
τÐÐÐ→ ⊚( ).k(x).(hdc⟨x⟩ ∥ k⟨suc( ).x⟩ ∥ c⟨v[]w⟩ ∥ b⟨0⟩)

∥ hdc(x).b( ). vtw ∥ k⟨vnwInt⟩
⊚ÔÔ⇒ hdc⟨vnwInt⟩ ∥ k⟨suc( ). vnwInt⟩ ∥ c⟨v[]w⟩ ∥ b⟨0⟩

∥ hdc(x).b( ). vtw
τÐÐÐ→ k⟨suc( ). vnwInt⟩ ∥ c⟨v[]w⟩ ∥ b⟨0⟩ ∥ b( ). v[n / x]tw
τÐÐÐ→ k⟨vn + 1wInt⟩ ∥ c⟨v[]w⟩ ∥ v[n / x]tw
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In the end, we have effectively restarted the machine to
evaluate [n / x]t, as wished.

In continuation mode, the branching is done by the process
Cont, which is executed after applying the transition VAR.
More precisely, a free variable α is translated using v.wInt,
which signals first the value of α (with the names suc and z),
and then sends a message on init to enter the continuation
mode. The way the NFB machine chooses which ti to evaluate
in a stack t1 ∶∶ . . . ∶∶ tm ∶∶ [] is a recursive mechanism, and
recursion can be encoded in a higher-order calculus: Rec ∥
rec⟨Rec⟩ reduces to Cont ∥ Rec ∥ rec⟨Rec⟩ when it receives
a message on init. The process Cont is doing a case analysis
on vπw when it is executed in parallel with c⟨vπw⟩: if π = [],
then vπw = b(x).x receives the message on b which flags ☆
and the machine stops. Otherwise, vπw = hdc⟨vtw⟩ ∥ c⟨vπ′w⟩,
and we have the following reductions:

Cont ∥ c⟨vπw⟩ τÐÐÐ→ hdc⟨vtw⟩ ∥ c⟨vπ′w⟩ ∥ b⟨☆( ).0⟩
∥ hdc(x).b( ).Chce(x)

τÐÐÐ→
2

c⟨vπ′w⟩ ∥ Chce(vtw)
At this point, Chce(vtw) either evaluates t with flag ▼, or
flags ▶ and continues exploring π′. In the former case, the
current stack π′ is replaced by an empty stack, and in the
latter, a message on init is issued to produce Cont ∥ c⟨vπ′w⟩
after some reduction steps.

D. Operational Correspondence and Full Abstraction

Establishing full abstraction requires first to state the cor-
respondence between the NFB machine and its translation. In
what follows, we let f range over the flags ⊚, ▼, ▶, ☆, and α,
where α is used as a shorthand for the succession of α suc
flags followed by a z flag. We let f̂ range over flags and τ .

Definition 10. A process P is a machine process if there exists
a configuration C of the machine such that vCw

τÔÔ⇒ P .

To establish the correspondence between the machine and
its translation, we first define a predicate next(f̂ , P ) such that,
if Q ∈ next(f̂ , P ), then there is a weak reduction with a step f̂
from P to Q, Q is the translation of a machine, and there is
no machine translation in between. Intuitively, it is the first
translation reachable after a step f̂ .

Definition 11. We write Q ∈ next(f̂ , P ) if P
τÔÔ⇒ f̂ÐÐÐ→ τÔÔ⇒

Q, Q = vC ′w for some C ′, and for any P ′ such that P ′ ≠ P ,

P ′ ≠ Q, and P
f̂

ÔÔ⇒ P ′ τÔÔ⇒ Q or P
τÔÔ⇒ P ′

f̂
ÔÔ⇒ Q, we

have P ′ ≠ vCw for any C.

A machine process is either a translation of a configuration,
or an intermediary state between two translations; next(f̂ , P )
gives the set of next processes which are translations. We
now prove that, with a single exception, the translation is
deterministic. The exception to determinism corresponds to
the choice made in continuation mode, which is also not
deterministic (but flagged) in the machine. We call choice
process a process about to make that choice; such processes are
of the form Chce(Pt, Pπ, Pn)

▵= Chce(Pt) ∥ c⟨Pπ⟩ ∥ k⟨Pn⟩ ∥
Rec ∥ rec⟨Rec⟩.

Lemma 12. Let P be a machine process which is not a choice

process. If P
f̂ÐÐÐ→ P ′ and P

f̂ÐÐÐ→ P ′′, then P ′ = P ′′.
Let P be a choice process. If P

τÐÐÐ→ P ′, P
τÐÐÐ→ P ′′, and

WkObs(P ′) =WkObs(P ′′), then P ′ = P ′′.

The choice process Chce(Pt, Pπ, Pn) may only reduce to
the translation of a configuration after a flag ▶ or ▼. Thus
next(τ,Chce(Pt, Pπ, Pn)) is empty, and Lemma 12 implies
that next(f̂ , P ) is a singleton if it is not empty. In the
following, we write next(f̂ , P ) to assert that it is not empty
and to directly denote the corresponding unique machine
translation.

We can now state the correspondence between the NFB
machine and its translation.

Lemma 13. The following assertions hold:

● C
f̂
ÞÐ→ C ′ iff vCw

f̂
ÔÔ⇒ vC ′w and next(f̂ , vCw) = vC ′w.

● C
☆
ÞÐ→ iff vCw

τÔÔ⇒ ☆ÐÐÐ→ P and P ≈HO 0.

With this result, we can relate the bisimilarities of each
calculus. Henceforth, we write ≈HO for ≈HHO where H contains
the names of the translation that are not flags. Given a flag
f ≠ α, we write f for the process f⟨0⟩. We also write α for
the process complementing α, defined as n + 1

▵= suc⟨0⟩ ∥ n
and 0

▵= z⟨0⟩.

Theorem 14. C ≈m C ′ iff vCw ≈HO vC ′w.

Sketch. To prove that barbed equivalence implies machine
equivalence, we show that R ▵= {(C,C ′) ∣ vCw ≈HO vC ′w}
is a machine bisimulation. Let C1 R C ′

1, so that C1
τ
ÞÐ→

∗

C2
f
ÞÐ→ C3; then vC1w ∥ f τÔÔ⇒ vC2w ∥ f τÔÔ⇒ vC3w by

Lemma 13, which in turn implies that there exists P such
that vC ′

1w ∥ f τÔÔ⇒ P and vC3w ≈HO P . In particular, we
have WkObs(vC3w) = WkObs(P ), meaning that ¬(P ↓f).

Consequently, there exists P ′ such that vC ′
1w

τÔÔ⇒ P ′ and
P ′ ↓f . We can prove that P ≈HO next(f,P ′), but by definition
of next, there exists C ′

3 so that next(f,P ′) = vC ′
3w. As a

result, we have vC3w ≈HO P ≈HO vC ′
3w, i.e., C3 R C ′

3, and

vC ′
1w

f
ÔÔ⇒ vC ′

3w, which implies C ′
1

τ
ÞÐ→

∗ f
ÞÐ→ C ′

3, as wished.
The case C1

τ
ÞÐ→

∗

C2
☆
ÞÐ→ is similar.

For the reverse implication, we prove that

R ▵=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(PC ∥ R,PC′ ∥ R) ∣ C ≈m C ′,

WkObs(PC) =WkObs(PC′)

PC
τÔÔ⇒ vCw , PC′

τÔÔ⇒ vC ′
w or

vCw
τÔÔ⇒ PC , vC

′
w

τÔÔ⇒ PC′ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
∪ {(P ∥ R,P ′ ∥ R) ∣ P ≈HO 0 ≈HO P ′}

is a barbed bisimulation. The difficult part is to check that
PC ∥ R

τÐÐÐ→ P ′ with a communication on a flag f is
matched by PC′ ∥ R. We have PC ↓f , which implies that PC
cannot reduce: a machine process is either reducing or has an
observable action. We are therefore in the case vCw

τÔÔ⇒ PC ,

and R ↓f . Suppose f ≠ ☆; then PC
fÐÐÐ→ PC2

τÔÔ⇒ vC2w

for some PC2 and with vC2w = next(f,PC). Because a
machine process is deterministic (Lemma 12), then in fact
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P ′ = PC2 ∥ R′ for some R′. We have vCw
f

ÔÔ⇒ vC2w,

so C
τ
ÞÐ→

∗ f
ÞÐ→ C2 holds by Lemma 13. Because C ≈m C ′,

there exists C ′
2 such that C ′ τ

ÞÐ→
∗ f
ÞÐ→ C ′

2 and C2 ≈m C ′
2. By

Lemma 13, this implies vC ′w
f

ÔÔ⇒ vC ′
2w; in particular, there

exists PC′2 such that vC ′w
τÔÔ⇒ fÐÐÐ→ PC′2

τÔÔ⇒ vC ′
2w. By

Lemma 12, we have PC′
τÔÔ⇒ fÐÐÐ→ PC′2 , therefore we have

PC′ ∥ R
τÔÔ⇒ PC′2 ∥ R

′, with PC2 ∥ R′ R PC′2 ∥ R
′, as

wished. In the case f =☆, we show that we obtain processes
in the second set of R.

As a result, we can deduce full abstraction between HOcore
and the λ-calculus with normal-form bisimilarity.

Corollary 15. We have t ≈nf s iff there exists n >
max (fv(t) ∪ fv(s)) such that v⟨t, [], n⟩evw ≈HO v⟨s, [], n⟩evw.

Proof. By Theorems 9 and 14.

V. APPLICATIVE BISIMILARITY

Proving full abstraction w.r.t. normal-form bisimilarity
requires minimal interactions—synchronizations on flags—
between a machine process and the outside. Achieving full
abstraction w.r.t. applicative bisimilarity is intuitively more
difficult, since this bisimilarity tests λ-abstractions by applying
them to an arbitrary argument. Internalizing such bisimilarity
is simple using higher-order flags: one may think of the
following transition to test the result of a computation:

λx.t ⋆ [] s
ÞÐ→ [s / x]t ⋆ []

Although HOcore has higher-order communications, we can-
not use them to obtain a fully abstract encoding of such a
machine for two reasons. First, allowing interactions where
the environment provides a term may allow arbitrary processes
to be received, including processes that are not in the image
of the translation, thus potentially breaking invariants of the
translation. Second, the translation of the KAM has to hide the
names it uses for the translation to be fully abstract; it is thus
impossible for the context to use such names and to provide
translated λ-terms to be tested.

We thus propose in this section to internalize applicative
bisimilarity using ordinary flags: when the abstract machine
reaches a value, it switches to a different mode where it non-
deterministically builds a test term step by step, using flags to
indicate its choices so as to ensure that a bisimilar machine
builds the same term. The translation of such a machine into
HOcore is then similar to the translation of the NFB machine.

Using simple flags to generate terms step by step implies
we need to deal with binders. In particular, and anticipating
on the HOcore translation, we no longer can rely on the
definition of binding and substitution from HOcore, as we
cannot write a process that inputs a translation of t and outputs
a translation of λx.t using an HOcore binding for x. We
thus switch to a pure data description of bindings, using de
Bruijn indices. As such terms still need to be executed, we
first recall the definition of the KAM with de Bruijn indices
and the definitions of contextual equivalence and applicative
bisimilarity for λ-terms with de Bruijn indices. We then
present the machine internalizing applicative bisimilarity, its

translation into HOcore, and show they are fully abstract.
We finally conclude this section by showing how contextual
equivalence is internalized in an abstract machine, generating
contexts instead of terms.

A. The KAM and Behavioral Equivalences

In the λ-calculus with de Bruijn indices, a variable is a
natural number, which indicates which encompassing λ is
its binder. For example, λx.x is written λ.0 and λxy.x y
is written λ.λ.1 0. The syntax of terms (t, s), closures (η),
environments (e, d), and values (v) is as follows.
t ∶∶= n ∣ t s ∣ λ.t η ∶∶= (t, e) e ∶∶= η ∶∶ e ∣ ε v ∶∶= (λ.t, e)

A closure η is a pair (t, e) where e is an environment mapping
the free variables of t to closures; environments are used in
lieu of substitutions. A term t is closed if fv(t) = ∅, and a
closure (t, e) is closed if the number of elements of e is bigger
than the highest free variable of t.

The semantics is given by the original, environment-based
KAM, where a configuration C is now composed of the closed
closure (t, e) being evaluated, and a stack π of closures. The
transitions rules are as follows.
C ∶∶= ⟨t, e, π⟩ev (configurations) π ∶∶= η ∶∶ π ∣ [] (stacks)

⟨t s, e, π⟩ev
τ

ÞÐÐ→ ⟨t, e, (s, e) ∶∶ π⟩ev (PUSH)

⟨0, (t, e) ∶∶ d, π⟩ev
τ

ÞÐÐ→ ⟨t, e, π⟩ev (ZERO)

⟨n + 1, (t, e) ∶∶ d, π⟩ev
τ

ÞÐÐ→ ⟨n, d, π⟩ev (ENV)

⟨λ.t, e, η ∶∶ π⟩ev
τ

ÞÐÐ→ ⟨t, η ∶∶ e, π⟩ev (GRAB)
In PUSH, the argument s of an application is stored on the
stack with its environment e while the term t in function
position is evaluated. If we get a λ-abstraction λ.t (transition
GRAB), then an argument η is moved from the stack to the top
of the environment to remember that η corresponds to the de
Bruijn index 0, and the evaluation continues with t. Looking
up the closure corresponding to a de Bruijn index in the
environment is done with the rules ENV and ZERO. Because
we evaluate closed closures only, it is not possible to obtain
a configuration of the form ⟨n + 1, ε, π⟩ev. If a configuration
of the form ⟨λ.t, e, []⟩ev is reached, then the evaluation is
finished, and the result is (λ.t, e).

Behavioral equivalences: Contextual equivalence com-
pares closed terms by testing them within all contexts. A
context C is a term with a hole ◻ at a variable position;
plugging a term t in C is written C[t]. A context is closed if
fv(C) = ∅. Contextual equivalence is then defined as follows.

Definition 16. Two closed terms t and s are contextually
equivalent, written t ≈ctx s, if for all closed contexts C,
⟨C[t], ε, []⟩ev

τ
ÞÐÐ→

∗

⟨λ.t′, e′, []⟩ev for some t′ and e′ iff
⟨C[s], ε, []⟩ev

τ
ÞÐÐ→

∗

⟨λ.s′, d′, []⟩ev for some s′ and d′.

Contextual equivalence is characterized by applicative
bisimilarity [1], which reduces closed terms to values that are
then applied to an arbitrary argument.

Definition 17. A symmetric relationR on closed closures is an
applicative bisimulation if (t, e)R (s, d) and ⟨t, e, []⟩ev

τ
ÞÐÐ→

∗

⟨λ.t′, e′, []⟩ev implies that there exist s′ and d′ such that
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⟨λ.t, e, []⟩ev
⊚

ÞÐÐ→ ⟨0,1,⊙, (t, e)⟩ind (ARG)

⟨n,κ, ρ, η⟩ind
⊞

ÞÐÐ→ ⟨n + 1, κ + 1, ρ, η⟩ind (SUC)

⟨n,κ, ρ, η⟩ind
⊡

ÞÐÐ→ ⟨n,κ, ρ, η⟩tm (VAR)

⟨t, κ + 1, ρ, η⟩tm
λ

ÞÐÐ→ ⟨λ.t, κ, ρ, η⟩tm (LAMBDA)

⟨t,0, ρ, η⟩tm
λ

ÞÐÐ→ ⟨λ.t,0, ρ, η⟩tm (LAMBDA0)

⟨t, κ, ρ, η⟩tm
ê

ÞÐÐ→ ⟨0,1, (t, κ) ∶∶ ρ, η⟩ind (APPFUN)

⟨s, κ1, (t, κ2) ∶∶ ρ, η⟩tm
@

ÞÐÐ→ ⟨t s,max(κ1, κ2), ρ, η⟩tm (APP)

⟨t,0,⊙, (s, e)⟩tm
☆

ÞÐÐ→ ⟨s, (t, ε) ∶∶ e, []⟩ev (RESTART)

Fig. 4: AB machine: argument generation

⟨s, d, []⟩ev
τ

ÞÐÐ→
∗

⟨λ.s′, d′, []⟩ev, and for all closed t′′, we have
(t, (t′′, ε) ∶∶ e)R (s, (t′′, ε) ∶∶ d).

Applicative bisimilarity ≈app is the largest applicative bisim-
ulation.

We can prove full abstraction between HOcore and the
λ-calculus by either internalizing contextual equivalence or
applicative bisimilarity. We choose the latter, as it is closer
to normal-form bisimilarity, and we show in Section V-D the
machine for contextual equivalence.

B. Argument Generation for the Applicative Bisimilarity

After evaluating a term thanks to the KAM, we want to
produce a closed argument to pass it to the resulting value,
and then restart the evaluation process. If we represent a λ-
term as a syntax tree, then de Bruijn indices are at the leaves,
and applications and λ-abstractions at the nodes. We start
generating from the leftmost de Bruijn index, and we then
go left to right, meaning that in an application, we create the
term in function position before the argument. These choices
are completely arbitrary, as doing the opposite—starting from
the rightmost index and go right to left—is also possible. To be
sure that we produce a valid, closed, λ-term, we have to check
that each de Bruijn index n has at least n + 1 λ-abstractions
enclosing it, and that each application node has two children.

To do so, we consider machine states with four components:
the term t being constructed, a counter κ giving the minimal
number of λ-abstractions required to close the term, a stack ρ
used to build applications, whose syntax is

ρ ∶∶= (t, κ) ∶∶ ρ ∣ ⊙
and which is explained in more detail later, and finally the
closure η for which the argument is being built. This last
element is never modified by the building process, and is
just used to restart the machine in evaluation mode when the
argument is finished. We distinguish two kinds of states: the
index state ⟨n,κ, ρ, η⟩ind, where only de Bruijn indices can be
built, and the term state ⟨t, κ, ρ, η⟩tm, where any term can be
produced. The transitions for these states are given in Figure 4.

The transition ARG starts the building process when we
reach a λ-abstraction in evaluation mode with the empty
continuation []. We begin with the index 0, which requires

at least 1 λ-abstraction above it, and with the empty stack ⊙.
The value of the index can then be increased with the transition
SUC, which accordingly also increases the value of κ. When
we reach the needed value for the index, the transition VAR
switches to the term mode; we use two modes to prevent a
SUC transition on a term which is not an index.

In term mode, we can add λ-abstractions to the term,
decreasing κ if κ > 0 with transition LAMBDA, or leaving κ
at 0 with transition LAMBDA0; the abstractions we introduce
when κ = 0 do not bind any variable. Once we are done
building a term t in function position of an application, we
use transition APPFUN to build the argument s. We start again
in index mode, but we store on top of ρ the term t with its
counter κ2. When we finish s with a counter κ1, we build the
application with transition APP, which takes the maximum
of κ1 and κ2 as the new minimal number of λ-abstractions
needed above t s. Note that the APP transition is allowed
only if ρ is not empty, meaning that at least one APPFUN has
been done before. Finally, we can conclude the term building
process with transition RESTART only if κ = 0, meaning that
all the variables of the term are bound, and if ρ is empty,
meaning that there is no application waiting to be finished.

Example 18. Figure 5 presents how we generate the term
λ.λ.(λ.0) (1 λ.0); we start with the underlined 0.

Any closed term t can be generated with the AB machine,
and it is possible to define the sequence of flags Seq(t) that
will be raised in the process. We write () for the empty
sequence, and (f1, . . . , fn, (f ′1, . . . , f ′m), fn+1, . . . , fl) for the
sequence (f1, . . . , fn, f ′1, . . . , f ′m, fn+1, . . . , fl).

Definition 19. Given a term t, we define Seq(t) as

Seq(t) ▵= (SeqTm(t),☆)
SeqTm(t s) ▵= (SeqTm(t),ê,SeqTm(s),@)
SeqTm(λ.t) ▵= (Seq(t), λ)
SeqTm(n) ▵= (SeqInd(n),⊡)
SeqInd(0) ▵= ()

SeqInd(n + 1) ▵= (SeqInd(n),⊞)

We write C
Seq(t)
ÞÐÐ→ C ′ for C

f1
ÞÐÐ→ . . .

fm
ÞÐÐ→ C ′ where Seq(t) =

(f1, . . . , fm).

Lemma 20. If t′ is closed, then ⟨0,1,⊙, (t, e)⟩ind
Seq(t′)
ÞÐÐ→

⟨t, (t′, ε) ∶∶ e, []⟩ev.

This lemma allows us to prove the correspondence between
the AB machine and applicative bisimilarity.

Theorem 21. (t, e) ≈app (s, d) iff ⟨t, e, []⟩ev ≈m ⟨s, d, []⟩ev.

Sketch. To prove that machine bisimilarity implies applicative
bisimilarity, we show that

{((t, e), (s, d)) ∣ ⟨t, e, []⟩ev ≈m ⟨s, d, []⟩ev}
is an applicative bisimulation. Roughly, (t, e) evaluat-
ing to (λ.t′, e′) means that (s, d) evaluates to (λ.s′, d′)
thanks to ⊚. Then for all closed t′′, the sequence

⟨0,1,⊙, (t′, e′)⟩ind
Seq(t′′)
ÞÐÐ→ ⟨t′, (t′′, ε) ∶∶ e′, []⟩ev can only be



9

⟨0,1,⊙, η⟩ind
⊡

ÞÐÐ→⟨0,1,⊙, η⟩tm 0

λ
ÞÐÐ→⟨λ.0,0,⊙, η⟩tm

λ

0

ê
ÞÐÐ→⟨0,1, (λ.0,0) ∶∶ ⊙, η⟩ind 0

λ

0

⊞
ÞÐÐ→ ⊡

ÞÐÐ→⟨1,2, (λ.0,0) ∶∶ ⊙, η⟩tm 1

λ

0

ê
ÞÐÐ→⟨0,1, (1,2) ∶∶ (λ.0,0) ∶∶ ⊙, η⟩ind 01

λ

0

⊡
ÞÐÐ→ λ

ÞÐÐ→⟨λ.0,0, (1,2) ∶∶ (λ.0,0) ∶∶ ⊙, η⟩tm

λ

0

1

λ

0

@
ÞÐÐ→⟨1 λ.0,2, (λ.0,0) ∶∶ ⊙, η⟩tm

@

λ

0

1

λ

0

@
ÞÐÐ→⟨(λ.0) (1 λ.0),2,⊙, η⟩tm

@

@

λ

0

1

λ

0

λ
ÞÐÐ→⟨λ.(λ.0) (1 λ.0),1,⊙, η⟩tm

λ

@

@

λ

0

1

λ

0

λ
ÞÐÐ→⟨λ.λ.(λ.0) (1 λ.0),0,⊙, η⟩tm

λ

λ

@

@

λ

0

1

λ

0

☆
ÞÐÐ→

Fig. 5: Example of argument generation

matched by ⟨0,1,⊙, (s′, d′)⟩ind
Seq(t′′)
ÞÐÐ→ ⟨s′, (t′′, ε) ∶∶ d′, []⟩ev, so

we can conclude.
For the reverse implication, we show that

R ▵= {(⟨t, e, []⟩ev, ⟨s, d, []⟩ev) ∣ (t, e) ≈app (s, d)}
∪ {(⟨n,κ, ρ, (t, e)⟩ind), ⟨n,κ, ρ, (s, d)⟩ind) ∣

(λ.t, e) ≈app (λ.s, d)}
∪ {(⟨t′, κ, ρ, (t, e)⟩tm), ⟨t′, κ, ρ, (s, d)⟩tm) ∣

(λ.t, e) ≈app (λ.s, d)}
is a machine bisimulation, which is easy to check.

C. Translation into HOcore

Figure 6 gives the translation of the AB machine in HOcore.
We detail each component, starting with the evaluation mode,
i.e., the KAM. We follow the same principles as in Section III:
a non-empty stack π or environment e is represented by a pair
of messages, respectively on hdc and c, and hde and env. A
closure is represented by two messages, one containing the
term on η1 and one containing the environment on η2. The
process representing the empty environment ε should never be
executed, because all the closures we manipulate are closed;
as a result, we can choose any process to represent it, e.g., 0.
The empty stack v[]w and the process Prec are used to generate
an argument and are explained later.

The encoding of t s simulates the rule PUSH: we receive
the current stack and environment e to create the new
stack with (s, e) on top. Because we receive the current
environment to put it on the stack, we have to recreate it on
env, unchanged. In the encoding of λ.t, we capture the stack
and environment, and if the stack is non-empty, we fetch its
head η to create a new environment with η on top. Finally, a
de Bruijn index n > 0 go through the current environment,
until we reach the correct closure (case n = 0). In that case,
we receive the head η and tail of the environment, discard
the tail as it is no longer useful, and we restore the term and
environment stored in η.

If λ.t is run in the environment e and the empty stack [],
then we obtain v[]w ∥ hdc(z).(vtw ∥ env⟨hde⟨z⟩ ∥ env⟨vew⟩⟩),
so v[]w has to start the argument generating process, and the
result has then to be sent on hdc for the evaluation to restart.
We write Stuck((t, e)) for the process in parallel with v[]w,
which remains stuck during the whole generation process. We
now explain how ⟨n,κ, ρ, η⟩ind and ⟨t, κ, ρ, η⟩tm are encoded,
starting with κ and ρ.

The machine distinguishes cases based on whether κ is 0
or not, to know if we should apply the transition LAMBDA or
LAMBDA0. In the encoding of these rules (see the definition
of Lambda), we send on name zero the expected behavior if
κ = 0, and on succ what to do otherwise. The translation of the
counter receives both messages, executes the corresponding
one (e.g., the one on zero for the encoding of 0), and discards
the other. Apart from that, κ is translated as a natural number.
Similarly, the translation of ρ combines the regular encodings
of pairs and stacks, but also indicates whether ρ is empty or
not, to know if we can apply the transitions APP and RESTART.
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1) Evaluation mode
v⟨t, e, π⟩evw

▵= vtw ∥ env⟨vew⟩ ∥ c⟨vπw⟩ ∥ Prec v(t, e)w
▵= η1⟨vtw⟩ ∥ η2⟨vew⟩

v[]w ▵= ⊚( ).(ind⟨v0w⟩ ∥ k⟨v1wc⟩ ∥ r⟨v⊙w⟩ ∥ initInd⟨0⟩) vεw
▵= 0

vη ∶∶ πw
▵= hdc⟨vηw⟩ ∥ c⟨vπw⟩ vη ∶∶ ew ▵= hde⟨vηw⟩ ∥ env⟨vew⟩

vt sw
▵= Appeval(vtw , vsw) Appeval(Pt, Ps)

▵= c(x).env(y).(Pt ∥ c⟨hdc⟨v1⟨Ps⟩ ∥ v2⟨y⟩⟩ ∥ x⟩)

vλ.tw
▵= Lameval(vtw) Lameval(Pt)

▵= c(x).(x ∥ hdc(y).env(z).(Pt ∥ env⟨hde⟨y⟩ ∥ env⟨z⟩⟩))
vn + 1w

▵= Indeval(vnw) Indeval(Pn)
▵= env(q).x(x ∥ hde( ).Pn)

v0w
▵= env(x).(x ∥ hde(y).env( ).(y ∥ η1(y1).η2(y2).(y1 ∥ env⟨y2⟩)))

Prec
▵= RecInd ∥ recint⟨RecInd⟩ ∥ RecTm ∥ rectm⟨RecTm⟩ ∥ RecMax ∥ recmax⟨RecMax⟩

2) Counter κ, stack ρ, and stuck process Stuck(η)
v0wc

▵= zero(x).succ( ).x v⊙w
▵=mt(x).cons( ).x

vκ + 1wc
▵= Suk(vκwc) v(t, κ) ∶∶ ρw

▵= ConsR(v(t, κ)w , vρw)
Suk(Pκ)

▵= suk⟨Pκ⟩ ∥ zero( ).succ(x).x ConsR(Phd, Pρ)
▵= hdr⟨Phd⟩ ∥ r⟨Pρ⟩ ∥mt( ).cons(x).x

Stuck((t, e)) ▵= hdc(z).(vtw ∥ env⟨hde⟨z⟩ ∥ env⟨vew⟩⟩) v(t, κ)w
▵= w1⟨vtw⟩ ∥ w2⟨vκwc⟩

3) Creation of indices
v⟨n,κ, ρ, η⟩indw

▵= ind⟨vnw⟩ ∥ k⟨vκwc⟩ ∥ r⟨vρw⟩ ∥ Prec ∥ initInd⟨0⟩ ∥ Stuck(η)
RecInd

▵= initInd( ).recind(x).(x ∥ recind⟨x⟩ ∥ Succ +Var)
Succ

▵= ⊞( ).ind(x).k(y).(ind⟨Indeval(x)⟩ ∥ k⟨Suk(y)⟩ ∥ initInd⟨0⟩)
Var

▵= ⊡( ).ind(x).(tm⟨x⟩ ∥ initTm⟨0⟩)

4) Creation of terms
v⟨t, κ, ρ, η⟩tmw

▵= tm⟨vtw⟩ ∥ k⟨vκwc⟩ ∥ r⟨vρw⟩ ∥ Prec ∥ initTm⟨0⟩ ∥ Stuck(η)

Lambda(Pκ)
▵= λ( ).tm(x).

⎛
⎝
tm⟨Lameval(x)⟩ ∥ Pκ ∥ zero⟨k⟨Pκ⟩ ∥ initTm⟨0⟩⟩

∥ succ⟨suk(y).(k⟨y⟩ ∥ initTm⟨0⟩)⟩
⎞
⎠

AppFun(Pκ, Pρ) =ê ( ).tm(x).(r⟨ConsR(hdr⟨w1⟨x⟩ ∥ w2⟨Pκ⟩⟩, Pρ)⟩ ∥ ind⟨v0w⟩ ∥ k⟨v1wc⟩ ∥ initInd⟨0⟩)

Done
▵=☆( ).tm(x).(hdc⟨η1⟨x⟩ ∥ η2⟨vεw⟩⟩ ∥ c⟨v[]w⟩)

App(Pκ, Phd, Pρ)
▵= @( ).tm(x2).(Phd ∥ w2(y).w1(x1).(

max1⟨y⟩ ∥max2⟨Pκ⟩ ∥ init1⟨y⟩ ∥ init2⟨Pκ⟩ ∥
resu(z).(tm⟨Appeval(x1, x2)⟩ ∥ Pρ ∥ k⟨z⟩ ∥ initTm⟨0⟩)

))

RecMax
▵= init1(x1).init2(x2).recmax(y).(y ∥ recmax⟨y⟩ ∥Max(x1, x2))

Max(P1, P2)
▵= P1 ∥ zero⟨max2(x).resu⟨x⟩⟩ ∥ succ ⟨suk(x1).

⎛
⎝
P2 ∥ zero⟨max1(x).resu⟨x⟩⟩
∥ succ⟨suk(x2).(init1⟨x1⟩ ∥ init2⟨x2⟩)⟩

⎞
⎠
⟩

RecTm
▵= initTm( ).rectm(x).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x ∥ rectm⟨x⟩ ∥ r(y).y ∥ cons ⟨
k(z).hdr(y1).r(y2).
(Lambda(z) ∥ y) +AppFun(z, y) +App(z, y1, y2)

⟩

∥mt ⟨k(z).

⎛
⎜⎜⎜⎜⎜
⎝

z ∥ zero ⟨
(Lambda(z) ∥ v⊙w)

+AppFun(z, v⊙w) +Done
⟩

∥ succ ⟨suk( ).
(Lambda(z) ∥ v⊙w)

+AppFun(z, v⊙w)
⟩

⎞
⎟⎟⎟⎟⎟
⎠

⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Fig. 6: Translation of the AB machine
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After flagging ⊚, the process v[]w starts the argument
generation process in index mode: the index being built is
sent on ind (here, initialized with v0w), the counter on k, and
the stack on r. The message on initInd triggers the recursive
process RecInd, which non-deterministically chooses between
Succ and Var. Executing Succ flags ⊞, increases the values of
the index (thanks to Indeval) and the counter (with Suk), and
relaunches the RecInd process with a message on initInt.
Executing Var flags ⊡, moves the index from ind to tm, and
initiates the term mode by sending a message on initTm,
which triggers the process RecTm.

The goal of RecTm is to non-deterministically choose
between the four transitions available in term mode, namely
λ

ÞÐÐ→,
ê

ÞÐÐ→,
@

ÞÐÐ→, and
☆

ÞÐÐ→. However, some of these transitions
have requirements:

@
ÞÐÐ→ needs ρ ≠ ⊙ and

☆
ÞÐÐ→ needs ρ = ⊙ and

κ = 0. The process RecTm is therefore doing a case analysis to
check these conditions. First, it captures vρw on r: if ρ ≠ ⊙, it
executes the message on cons, which makes a choice between
λ, ê, and @, which are represented by respectively Lambda,
AppFun, and App. If ρ = ⊙, then we do a case analysis on κ.
If κ = 0, then we can do either λ, ê, or ☆ (represented by
Done), otherwise, only λ or ê are possible.

The process Lambda adds a λ-abstraction to the term in tm,
updating κ (represented by Pκ) accordingly: if κ = 0, then it
is restored unchanged on k, otherwise, it is decreased by 1
by releasing the message in suk. The process AppFun pushes
on the stack Pρ the current term t1 on tm and its counter κ1
(represented by Pκ), which is the term in function position
of an application. It then relaunches the index mode to build
the argument t2 with its counter κ2. The process App can
then build the application itself, by computing the maximum
between κ1 and κ2 with the processes RecMax and Max.

We compute the maximum between κ1 and κ2 by removing
the layers of successors common to κ1 and κ2, until we reach 0
for one of them. If we reach 0 for κ1 first, then κ2 is the max,
otherwise it is κ1. We store the initial values of κ1 and κ2 in
respectively max1 and max2, and the decomposition occurs
in Max, where init1 is initialized with κ1 and init2 with κ2.
If P1 = vκ1wc = v0wc, then we send κ2 (stored in max2) on
resu. Otherwise, P1 = suk⟨P ′

1⟩, and we do a case analysis
on the process P2 = vκ2wc. If P2 = v0wc, then we send κ1
on resu, otherwise P2 = suk⟨P ′

2⟩, and we restart RecMax by
sending P ′

1 and P ′
2 on init1 and init2, respectively. Once the

max is known on resu, then App builds the application t1 t2
and relaunches RecTm.

Finally, the process Done ends the argument generation
phase, and restarts the computation by restoring the empty
continuation and by passing the term in tm to Stuck(η). The
process Prec contains all the processes necessary to encode the
different recursive mechanisms.

Full abstraction: We use the notions of Section IV-D
to prove the correspondence between the AB machine and
its translation. The definition of next carries over to the
translation of the AB machine, and Lemmas 12 and 13 still
hold (but without terminating transitions). Recall that ≈HO
stands for ≈HHO, where H contains the names of the translation

⟨n,κ, ρ⟩ind
⊞

ÞÐÐ→ ⟨n + 1, κ + 1, ρ⟩ind (SUC)

⟨n,κ, ρ⟩ind
⊡

ÞÐÐ→ ⟨n,κ, ρ⟩tm (VAR)

⟨t, κ + 1, ρ⟩tm
λ

ÞÐÐ→ ⟨λ.t, κ, ρ⟩tm (LAMBDA)

⟨t,0, ρ⟩tm
λ

ÞÐÐ→ ⟨λ.t,0, ρ⟩tm (LAMBDA0)

⟨t, κ, ρ⟩tm
ê

ÞÐÐ→ ⟨0,1, (t, κ) ∶∶ ρ⟩ind (APPPUSH)

⟨t, κ1, (s, κ2) ∶∶ ρ⟩tm
←Ð
@

ÞÐÐ→ ⟨t s,max(κ1, κ2), ρ⟩tm (←ÐÐAPP)

⟨t, κ1, (s, κ2) ∶∶ ρ⟩tm
Ð→
@

ÞÐÐ→ ⟨s t,max(κ1, κ2), ρ⟩tm (ÐÐ→APP)

⟨t,0,⊙⟩tm
⍟

ÞÐÐ→ ⟨t, ε, []⟩ev (START)

⟨λ.t, e, []⟩ev
☆

ÞÐÐ→ (DONE)

Fig. 7: Contextual equivalence machine

that are not flags. The proof of the following theorem is then
the same as for Theorem 14.

Theorem 22. C ≈m C ′ iff vCw ≈HO vC ′w.

We then deduce a full abstraction result between λ-calculus
with applicative bisimilarity and HOcore.

Corollary 23. If (t, e) and (s, d) are closed closures, then
(t, e) ≈app (s, d) iff v⟨t, e, []⟩evw ≈HO v⟨s, d, []⟩evw.

Remark 24. As explained in the introduction, the encoding
of [22] is not complete w.r.t. applicative bisimilarity, while
ours is. The difference is that our translation is tailored
to protect itself from bad behaviors of the environment, by
limiting its interactions with the outside to synchronizations
on flags. A translated λ-abstraction in [22] is waiting for a
channel name which gives access to the argument, but the
environment may use this name to give access to a process
which is not an encoded λ-term, thus breaking the encoding.

D. Internalizing Contextual Equivalence

Corollary 23 is enough to deduce full abstraction w.r.t.
contextual equivalence, since t ≈ctx s ⇐⇒ (t, ε) ≈app (s, ε).
However, it is possible to prove this result directly, by inter-
nalizing contextual equivalence in an abstract machine.

Figure 7 gives the transitions of this machine, except for
the

τ
ÞÐÐ→ transitions, which are the same as in Section V-A.

In contrast with the AB machine, the contextual equivalence
machine produces a context first, and then reduces the resulting
term; consequently, the starting point is a state ⟨t,0,⊙⟩tm,
where t is the closed term we want to plug in the context.
When the context is finished, the transition

⍟
ÞÐÐ→ switches to

the evaluation mode. Also, the evaluation part of the machine
is not executed several times, since ≈ctx is not coinductive.
We flag ☆ when the evaluation terminates, to distinguish a
terminating term from a diverging one.

Creating a context C is almost the same as generating an
argument in the AB machine, except that we want to plug a
closed term t inside. We build C[t] by starting the generation
process from t; t can be anywhere in C[t], not necessarily at
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the leftmost position, so we cannot do the generation process
going left to right in an application, as with the AB machine
(Section V-B). Instead, after producing a term t and with a
term s on the stack, we can do either the transition APPLEFT
to build t s, or APPRIGHT to build s t.

Example 25. We show how to generate the context
λ.(0 0) (◻ 0) around t.

⟨t,0,⊙⟩tm
ê

ÞÐÐ→ ⊡
ÞÐÐ→ ⟨0,1, (t,0) ∶∶ ⊙⟩tm

Ð→
@

ÞÐÐ→ ⟨t 0,1,⊙⟩tm
ê

ÞÐÐ→ ⊡
ÞÐÐ→ ⟨0,1, (t 0,1) ∶∶ ⊙⟩tm

ê
ÞÐÐ→ ⊡

ÞÐÐ→ ⟨0,1, (0,1) ∶∶ (t 0,1) ∶∶ ⊙⟩tm
Ð→
@

ÞÐÐ→ ⟨0 0,1, (t 0,1) ∶∶ ⊙⟩tm
←Ð
@

ÞÐÐ→ ⟨(0 0) (t 0),1,⊙⟩tm
λ

ÞÐÐ→ ⟨λ.(0 0) (t 0),0,⊙⟩tm
The translation of the contextual equivalence machine into

HOcore and the full abstraction proofs are then the same as
with the AB machine.

Theorem 26. If t and s are closed terms, then t ≈ctx s iff
v⟨t,0,⊙⟩tmw ≈HO v⟨s,0,⊙⟩tmw.

VI. CONCLUSION AND FUTURE WORK

We propose encodings of the call-by-name λ-calculus into
HOcore, fully abstract w.r.t. different equivalences of the λ-
calculus, namely normal-form and applicative bisimilarities,
and contextual equivalence. This shows that a minimal higher-
order calculus with a fixed number of hidden names, which is
much less expressive than the name-passing π-calculus, still
has enough expressive power to faithfully encode the call-by-
name λ-calculus. Note that our encodings can immediately be
ported to HOπ by adding a few top-level restrictions. Our full-
abstraction results then hold with the usual barbed equivalence
of HOπ, no longer requiring hidden names. This, however,
gives no intuition on the expressiveness of HOcore.

We use abstract machines not only to fix the reduction
strategy, but also as an intermediary step between the equiv-
alences of the λ-calculus and HOcore. We turn the equiva-
lences of the λ-calculus, and their potentially complex testing
conditions, into a bisimilarity over a labeled transition system
(a flags-generating machine), which is closer to the HOcore
equivalence. We believe this internalization technique can be
applied to other languages for which an abstract machine has
been defined, like, e.g., the call-by-value calculus and its CK
machine [11] (see Appendix C), or a calculus with control
operators [7]. Even though the bisimilarities for these calculi
can be quite intricate (see, e.g., [8]), it should be always
possible to generate a context as in Section V-D to internalize
contextual equivalence. We also think we can internalize more
complex equivalences, like environmental bisimilarities, using
Madiot’s framework [18], which expresses these bisimilarities
as a labeled transition system.

Finally, the encodings of the extended abstract machines
into HOcore rely on the same principles, e.g., to represent

stacks, non-deterministic choice, case analyses on terms,
etc. We believe it is possible to automatically derive the
encoding from an abstract machine, so that the generated
translation is deterministic (up to flags for choice processes,
as in Lemma 12) and with an operational correspondence
result similar to Lemma 13. As these two ingredients are
almost sufficient to get full abstraction between machines and
HOcore, it would give us Theorem 14 or Theorem 22 for free.
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APPENDIX

A. Proofs for Normal-Form Bisimilarity

Theorem 9. We have t ≈nf s iff there exists n >
max (fv(t) ∪ fv(s)) such that ⟨t, [], n⟩ev ≈m ⟨s, [], n⟩ev.

Proof. To prove that machine bisimilarity implies normal-form
bisimilarity, we show that R ▵= {(t, s) ∣ ⟨t, [], n⟩ev ≈m
⟨s, [], n⟩ev, n > max (fv(t) ∪ fv(s))} is a normal-form bisimu-
lation. If t⋆[]↦∗ λx.t′⋆[], then ⟨t, [], n⟩ev

τ
ÞÐ→

∗

⟨λx.t′, [], n⟩ev
by Lemma 7, and then ⟨λx.t′, [], n⟩ev

⊚
ÞÐ→ ⟨[n/x]t′, [], n+1⟩ev.

Since ⟨t, [], n⟩ev ≈m ⟨s, [], n⟩ev, there exists C ′ such that
⟨s, [], n⟩ev

τ
ÞÐ→

∗ ⊚
ÞÐ→ C ′ and ⟨[n /x]t′, [], n+ 1⟩ev ≈m C ′. The

τ
ÞÐ→

transitions cannot change the value of n, and the
⊚
ÞÐ→ transition

tells us that ⟨s, [], n⟩ev
τ
ÞÐ→

∗

⟨λx.s′, [], n⟩ev
⊚
ÞÐ→ ⟨[n/x]s′, [], n+

1⟩ev for some s′. Consequently, we have s⋆[]↦∗ λx.s′⋆[] (by
Lemma 7) with ⟨[n /x]t′, [], n+1⟩ev R ⟨[n /x]s′, [], n+1⟩ev,
as wished.

Suppose t ⋆ [] ↦∗ α ⋆ π with π = t1 ∶∶ . . . ∶∶ tm ∶∶ [].
Then ⟨t, [], n⟩ev

τ
ÞÐ→

∗

⟨α,π,n⟩ev by Lemma 7, and then

⟨α,π,n⟩ev
α
ÞÐ→ ▶

ÞÐ→
m

☆
ÞÐ→. Since ⟨t, [], n⟩ev ≈m ⟨s, [], n⟩ev, we

have ⟨s, [], n⟩ev
τ
ÞÐ→

∗ α
ÞÐ→ ▶

ÞÐ→
m

☆
ÞÐ→ as well, which is possible only

if ⟨s, [], n⟩ev
τ
ÞÐ→

∗

⟨α,π′, n⟩ev, where π′ = s1 ∶∶ . . . ∶∶ sm ∶∶ [].
Let 1 ≤ i ≤ m; then ⟨α,π,n⟩ev

α
ÞÐ→ ▶

ÞÐ→
i−1

▼
ÞÐ→ ⟨ti, [], n⟩ev,

which can only be matched with ⟨α,π′, n⟩ev
α
ÞÐ→ ▶

ÞÐ→
i−1

▼
ÞÐ→

⟨si, [], n⟩ev, therefore we have ⟨ti, [], n⟩ev ≈m ⟨si, [], n⟩ev. We
have s ⋆ []↦∗ α ⋆ π′ (by Lemma 7) and π R π′, as required.

For the reverse implication, we show that
R = {(⟨t, [], n⟩ev, ⟨s, [], n⟩ev) ∣ t ≈nf s, n > max (fv(t) ∪ fv(s))}
∪ {(⟨π,n⟩ct, ⟨π′, n⟩ct) ∣ π ≈nf π′, n > max (fv(π) ∪ fv(π′))}

is a machine bisimulation. If ⟨t, [], n⟩ev
τ
ÞÐ→

∗ ⊚
ÞÐ→ ⟨[n/x]t′, [], n+

1⟩ev, then t ⋆ [] ↦∗ λx.t′ ⋆ [] by Lemma 7, so there exists s′

such that s⋆ []↦∗ λx.s′ ⋆ [] and [n /x]t′ ≈nf [n /x]s′. Hence
we have ⟨s, [], n⟩ev

τ
ÞÐ→

∗ ⊚
ÞÐ→ ⟨[n /x]s′, [], n+1⟩ev by Lemma 7,

with ⟨[n /x]t′, [], n+1⟩ev R ⟨[n /x]s′, [], n+1⟩ev, as wished.
If ⟨t, [], n⟩ev

τ
ÞÐ→

∗ α
ÞÐ→ ⟨π,n⟩ct, then t⋆[]↦∗ α⋆π by Lemma 7,

so there exists π′ such that s ⋆ [] ↦∗ α ⋆ π′ and π ≈nf π′.
Hence we have ⟨s, [], n⟩ev

τ
ÞÐ→

∗ α
ÞÐ→ ⟨π′, n⟩ct by Lemma 7, with

⟨π,n⟩ct R ⟨π′, n⟩ct, as wished.
If ⟨π,n⟩ct

☆
ÞÐ→, then π = [], which implies π′ = [], which

gives ⟨π′, n⟩ct
☆
ÞÐ→. If ⟨π,n⟩ct

▶
ÞÐ→ ⟨π2, n⟩ct or ⟨π,n⟩ct

▼
ÞÐ→

⟨t, [], n⟩ev, then π = t ∶∶ π2, so π′ = s ∶∶ π′2 with
t ≈nf s and π2 ≈nf π′2. Hence ⟨π′, n⟩ct

▶
ÞÐ→ ⟨π′2, n⟩ct

with ⟨π2, n⟩ct R ⟨π′2, n⟩ct or ⟨π,n⟩ct
▼
ÞÐ→ ⟨t, [], n⟩ev with

⟨t, [], n⟩ev R ⟨s, [], n⟩ev, as wished.

Lemma 12. Let P be a machine process which is not a choice

process. If P
f̂ÐÐÐ→ P ′ and P

f̂ÐÐÐ→ P ′′, then P ′ = P ′′.
Let P be a choice process. If P

τÐÐÐ→ P ′, P
τÐÐÐ→ P ′′, and

WkObs(P ′) =WkObs(P ′′), then P ′ = P ′′.

Proof. A machine process which is not a choice process has at
most one possible communication. For choice processes, the
flags tell us which branch has been selected.

Lemma 13. The following assertions hold:

● C
f̂
ÞÐ→ C ′ iff vCw

f̂
ÔÔ⇒ vC ′w and next(f̂ , vCw) = vC ′w.

● C
☆
ÞÐ→ iff vCw

τÔÔ⇒ ☆ÐÐÐ→ P and P ≈HO 0.

Proof. By case analyses on C
τ
ÞÐ→ C ′, on C

f
ÞÐ→ C ′, and vCw.

The following lemma allows us to reason up to τ -transitions
on the HOcore side.

Lemma 27. Let P , P ′ be machine processes. If P
τÔÔ⇒ P ′

and WkObs(P ) =WkObs(P ′), then P ≈HO P ′.

Proof. One can show that {(P ∥ R,P ′ ∥ R) ∣ P
τÔÔ⇒

P ′,WkObs(P ) =WkObs(P ′)}∪{(R,R)} is a barbed bisim-
ulation, using Lemma 12.

Lemma 28. The relation R ▵= {(C,C ′) ∣ vCw ≈HO vC ′w} is
a machine bisimulation.

Proof. Let C1 R C ′
1. Suppose first that C1

τ
ÞÐ→

∗

C2
f
ÞÐ→ C3; then

vC1w ∥ f τÔÔ⇒ vC2w ∥ f τÔÔ⇒ vC3w by Lemma 13, which in
turn implies that there exists P such that vC ′

1w ∥ f τÔÔ⇒ P
and vC3w ≈HO P . In particular, we have WkObs(vC3w) =
WkObs(P ), meaning that ¬(P ↓f). Consequently, there exists

P ′ such that vC ′
1w

τÔÔ⇒ P ′ and P ′ ↓f . Then we have
P ′ ∥ f τÔÔ⇒ next(f,P ′) and P ′ ∥ f τÔÔ⇒ P . By Lemma 12,
we have either P

τÔÔ⇒ next(f,P ′) or next(f,P ′) τÔÔ⇒ P .
Suppose WkObs(P ) ≠ WkObs(next(f,P ′)). It is possible
only if there is a choice process between the two. If we have
next(f,P ′) τÔÔ⇒ Pc

τÔÔ⇒ P , with Pc a choice process, then
WkObs(P ) = {▶} or WkObs(P ) = {▼}, which contradicts
WkObs(P ) = WkObs(vC3w) (the translation of a configu-
ration cannot have only ▶ or only ▼ as weak observable
actions). If P

τÔÔ⇒ Pc
τÔÔ⇒ next(f,P ′), with Pc a choice

process, then a communication on a flag ▶ or ▼ happens
between Pc and next(f,P ′), as it is the only way to reach a
configuration from a choice process. It means that P ↓f , which
is again in contradiction with WkObs(P ) = WkObs(vC3w).
Consequently, we have WkObs(P ) =WkObs(next(f,P ′)) so
by Lemma 27, we have next(f,P ′) ≈HO P ≈HO vC3w, and by

Lemma 13, we have C ′
1

τ
ÞÐ→

∗ f
ÞÐ→ C ′

3 where vC ′
3w = next(f,P ′),

so we have C3 R C ′
3, as wished.

Suppose C1
τ
ÞÐ→

∗

C2
☆
ÞÐ→; then vC1w ∥ ☆ τÔÔ⇒ vC2w ∥

☆ τÔÔ⇒ P with P ≈HO 0 by Lemma 13, which in turn
implies that there exists P ′ such that vC ′

1w ∥ ☆ τÔÔ⇒ P ′

and P ≈HO P ′ ≈HO 0, so by Lemma 13, we have C ′
1

τ
ÞÐ→

∗ ☆
ÞÐ→,

as wished.

Lemma 29. If C ≈m C ′, then vCw ≈HO vC ′w.

Proof. We prove that

R ▵=
⎧⎪⎪⎨⎪⎪⎩

(PC ∥ R,PC′ ∥ R) ∣ C ≈m C ′, PC
τÔÔ⇒ vCw , PC′

τÔÔ⇒ vC ′
w or

vCw
τÔÔ⇒ PC , vC

′
w

τÔÔ⇒ PC′ ,WkObs(PC) =WkObs(PC′)

⎫⎪⎪⎬⎪⎪⎭
∪ {(P ∥ R,P ′ ∥ R) ∣ P ≈HO 0 ≈HO P ′}

is a barbed bisimulation. The congruence condition is an
immediate consequence of the definition. The transitions from
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R are easy to match, and the observable actions are the same
because of the condition WkObs(PC) = WkObs(PC′). What
is left to check are the reductions.

If PC
τÐÐÐ→ P ′

C , then we show that there exists P ′
C′ ∥ R

such that PC′ ∥ R
τÔÔ⇒ P ′

C′ ∥ R and P ′
C ∥ R R P ′

C′ ∥ R. If
PC

τÔÔ⇒ vCw and PC′
τÔÔ⇒ vC ′w, then taking P ′

C′ = vC ′w

works. If vCw
τÔÔ⇒ PC and vC ′w

τÔÔ⇒ PC′ , then we
distinguish two cases. If PC is not a choice process, then
WkObs(PC) = WkObs(P ′

C), and we can simply choose
P ′
C′ = PC′ . Otherwise, the transition PC

τÐÐÐ→ P ′
C is

making a choice, and we have WkObs(PC) = {▶,▼}, and
either WkObs(P ′

C) = {▶} or WkObs(P ′
C) = {▼}. But

WkObs(PC) = WkObs(PC′), which is possible only if PC′
also reduces to a choice process. Then it is possible to choose
the corresponding branch, and define P ′

C′ accordingly.

Suppose PC ∥ R
τÐÐÐ→ P ′ with a communication on a flag

f —a communication on another name is not possible; then
PC ↓f , which is possible only in the case vCw

τÔÔ⇒ PC , and

R ↓f . Suppose f ≠☆. Then we also have PC
fÐÐÐ→ PC2

τÔÔ⇒
vC2w for some PC2 and with vC2w = next(f,PC), so by
Lemma 12, there exist R′ such that P ′ = PC2 ∥ R′. We have

vCw
f

ÔÔ⇒ vC2w, so C
τ
ÞÐ→

∗ f
ÞÐ→ C2 holds by Lemma 13. Because

C ≈m C ′, there exists C ′
2 such that C ′ τ

ÞÐ→
∗ f
ÞÐ→ C ′

2 and C2 ≈m
C ′

2. By Lemma 13, this implies vC ′w
f

ÔÔ⇒ vC ′
2w; in particular,

there exists PC′2 such that vC ′w
τÔÔ⇒ fÐÐÐ→ PC′2

τÔÔ⇒ vC ′
2w.

By Lemma 12, we also have PC′
τÔÔ⇒ fÐÐÐ→ PC′2 , therefore

we have PC′ ∥ R
τÔÔ⇒ PC′2 ∥ R

′, with PC2 ∥ R′ R PC′2 ∥ R
′,

as wished.
If f = ☆, then PC

☆ÐÐÐ→ P for some P ′′ such that
P ′′ ≈HO 0, and by Lemma 12, we have P ′ = P ′′ ∥ R′. We
have vCw

τÔÔ⇒ ☆ÐÐÐ→ P ′′, so C
τ
ÞÐ→

∗ ☆
ÞÐ→ holds by Lemma 13.

Because C ≈m C ′, we have C ′ τ
ÞÐ→

∗ ☆
ÞÐ→. By Lemma 13,

this implies vC ′w
τÔÔ⇒ ☆ÐÐÐ→ P ′′′ for some P ′′′ such that

P ′′′ ≈HO 0. By Lemma 12, we also have PC′
τÔÔ⇒ fÐÐÐ→ P ′′′,

therefore we have PC′ ∥ R
τÔÔ⇒ P ′′′ ∥ R′, so we obtain

processes in the second set of R.

Theorem 14. C ≈m C ′ iff vCw ≈HO vC ′w.

Proof. By Lemmas 28 and 29.

B. Proofs for Applicative Bisimilarity

Lemma 20. If t′ is closed, then ⟨0,1,⊙, (t, e)⟩ind
Seq(t′)
ÞÐÐ→

⟨t, (t′, ε) ∶∶ e, []⟩ev.

Proof. Let η = (t, e). First, for all n, we have
⟨0,1, ρ, η⟩ind

⊞
ÞÐÐ→

n ⊡
ÞÐÐ→ ⟨n,n + 1, ρ, η⟩tm. Then we show by

induction on t′ that ⟨0,1, ρ, η⟩ind
SeqTm(t′)

ÞÐÐ→ ⟨t′, κ, ρ, η⟩tm where
κ = max (fv(t′)) + 1 if t′ is not closed, and κ = 0 otherwise.
The case t = n is concluded with the previous observation. If

t′ = t′1 t′2, then

⟨0,1, ρ, η⟩ind
SeqTm(t′1)

ÞÐÐ→ ⟨t′1, κ1, ρ, η⟩tm (by induction)
ê

ÞÐÐ→ ⟨0,1, (t′1, κ1) ∶∶ ρ, η⟩ind
SeqTm(t′2)

ÞÐÐ→ ⟨t′2, κ2, (t′1, κ1) ∶∶ ρ, η⟩tm (by induction)
@

ÞÐÐ→ ⟨t′1 t′2,max (κ1, κ2), ρ, η⟩tm
And by case analysis on (κ1, κ2), one can check that
max (κ1, κ2) is the desired value. If t′ = λ.t′′, then by

induction, we have ⟨0,1, ρ, η⟩ind
SeqTm(t′′)

ÞÐÐ→ ⟨t′′, κ, ρ, η⟩tm, and then
⟨t′′, κ, ρ, η⟩tm

λ
ÞÐÐ→ ⟨t′, κ′, ρ, η⟩tm where κ′ is as wished de-

pending on κ.

This implies that for a closed term t′, we have

⟨0,1,⊙, η⟩ind
SeqTm(t′)

ÞÐÐ→ ⟨t′,0,⊙, η⟩tm, and the last transition
☆

ÞÐÐ→
gives what we want.

Theorem 21. (t, e) ≈app (s, d) iff ⟨t, e, []⟩ev ≈m ⟨s, d, []⟩ev.

Proof. To prove that machine bisimilarity implies
applicative bisimilarity, we show that R ▵=
{((t, e), (s, d)) ∣ ⟨t, e, []⟩ev ≈m ⟨s, d, []⟩ev} is an applicative
bisimulation. If ⟨t, e, []⟩ev

τ
ÞÐÐ→

∗

⟨λ.t′, e′, []⟩ev, then because
we have also ⟨λ.t′, e′, []⟩ev

⊚
ÞÐÐ→ ⟨0,1,⊙, (t′, e′)⟩ind, there

exist s′ and d′ such that
⟨s, d, []⟩ev

τ
ÞÐÐ→

∗

⟨λ.s′, d′, []⟩ev
⊚

ÞÐÐ→ ⟨0,1,⊙, (s′, d′)⟩ind
and ⟨0,1,⊙, (t′, e′)⟩ind ≈m ⟨0,1,⊙, (s′, d′)⟩ind. For all closed

t′′, we have then ⟨0,1,⊙, (t′, e′)⟩ind
Seq(t)
ÞÐÐ→ ⟨t′, (t′′, ε) ∶∶

e′, []⟩ev by Lemma 20, which can only be matched by

⟨0,1,⊙, (s′, d′)⟩ind
Seq(t)
ÞÐÐ→ ⟨s′, (t′′, ε) ∶∶ d′, []⟩ev meaning that

⟨t′, (t′′, ε) ∶∶ e′, []⟩ev ≈m ⟨s′, (t′′, ε) ∶∶ d′, []⟩ev. We can then
easily conclude.

For the reverse implication, we show that

R ▵= {(⟨t, e, []⟩ev, ⟨s, d, []⟩ev) ∣ (t, e) ≈app (s, d)}
∪ {(⟨n,κ, ρ, (t, e)⟩ind), ⟨n,κ, ρ, (s, d)⟩ind) ∣ (λ.t, e) ≈app (λ.s, d)}
∪ {(⟨t′, κ, ρ, (t, e)⟩tm), ⟨t′, κ, ρ, (s, d)⟩tm) ∣ (λ.t, e) ≈app (λ.s, d)}

is a machine bisimulation. If ⟨t, e, []⟩ev
τ

ÞÐÐ→
∗ ⊚
ÞÐÐ→

⟨0,1,⊙, (t′, e′)⟩ind, then we have ⟨t, e, []⟩ev
τ

ÞÐÐ→
∗

⟨λ.t′, e′, []⟩ev, so there exists (s′, d′) such that
⟨s, d, []⟩ev

τ
ÞÐÐ→

∗

⟨λ.s′, d′, []⟩ev so that (λ.t′, e′) ≈app
(λ.s′, d′). But then also ⟨λ.t′, e′, []⟩ev

⊚
ÞÐÐ→ ⟨0,1,⊙, (s′, e′)⟩ind

and we obtain configurations in R. If ⟨t′, κ, ρ, (t, e)⟩arg
f

ÞÐÐ→ C

with f ≠ ☆ and arg ∈ {ind, tm}, then ⟨t′, κ, ρ, (t, e)⟩arg
f

ÞÐÐ→
C ′ where C ′ is the same as C except for the stored
closures, which are not changed and therefore still
applicative bisimilar; we have therefore C R C ′.
If ⟨t′, κ, ρ, (t, e)⟩tm

☆
ÞÐÐ→ ⟨t, (t′, ε) ∶∶ e, []⟩ev, then

⟨t′, κ, ρ, (s, d)⟩tm
☆

ÞÐÐ→ ⟨s, (t′, ε) ∶∶ d, []⟩ev, and the resulting
terms are in R because (λ.t, e) ≈app (λ.s, d) implies
(t, (t′, ε) ∶∶ e) ≈app (s, (t′, ε) ∶∶ d) for all closed t′.
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⟨t s,E,n⟩ev
τ
ÞÐ→ ⟨t,E s,n⟩ev (FUN)

⟨v,E,n⟩ev
τ
ÞÐ→ ⟨E,v,n⟩ct (SWITCH)

⟨E t, v, n⟩ct
τ
ÞÐ→ ⟨t, v E,n⟩ev (ARG)

⟨(λx.t) E,v,n⟩ct
τ
ÞÐ→ ⟨[v / x]t,E,n⟩ev (BETA)

⟨◻, α, n⟩ct
α☆
ÞÐ→ (DONE)

⟨◻, λx.t, n⟩ct
⊚
ÞÐ→ ⟨[n / x]t,◻, n + 1⟩ev (LAMBDA)

⟨α E, v, n⟩ct
α▼
ÞÐ→ ⟨◻, v, n⟩ct (VAL)

⟨α E, v, n⟩ct
α▶
ÞÐ→ ⟨E,n,n + 1⟩ct (CONTEXT)

Fig. 8: NFB machine for call by value

C. Call-by-Value

We informally present the machines for the call-by-value
λ-calculus, without the proofs, to see how our techniques can
be adapted in that case. The syntax of values and call-by-value
contexts are as follows.

v ∶∶= α ∣ λx.t
E ∶∶= ◻ ∣ E t ∣ v E

Contexts are represented inside-out: plugging is defined as
◻[t] ▵= t, (E t2)[t1]

▵= E[t1 t2], and (v E)[t] ▵= E[v t].
Normal forms are either values or terms of the form E[α v].

We present a variant of the CK machine [11] with evaluation
contexts below.

t s ⋆E τ
ÞÐ→ t ⋆E s (FUN)

v ⋆E τ
ÞÐ→ E ⋆ct v (SWITCH)

E t ⋆ct v
τ
ÞÐ→ t ⋆ v E (ARG)

(λx.t) E ⋆ct v
τ
ÞÐ→ [v / x]t ⋆E (BETA)

When we get a value in an evaluation context, we switch into
the continuation mode (rule SWITCH) to evaluate the argument
of that value (rule ARG), or do the β-reduction if the argument
itself is a value (rule BETA).

Normal-form bisimilarity for call-by-value is defined as
follows.

Definition 30. A symmetric relation R is a normal-form
bisimulation if tR s implies:

● if t ⋆ ◻ τ
ÞÐ→

∗

◻ ⋆ct α, then s ⋆ ◻ τ
ÞÐ→

∗

◻ ⋆ct α;
● if t ⋆ ◻ τ

ÞÐ→
∗

◻ ⋆ct λx.t′, then there exists s′ such that
s⋆◻ τ

ÞÐ→
∗

◻⋆ct λx.s′ and [α /x]t′ R [α /x]s′ for a fresh
α;

● if t⋆◻ τ
ÞÐ→

∗

α E ⋆ct v, then there exist E′ and v′ such that
s ⋆ ◻ τ

ÞÐ→
∗

α E′ ⋆ct v′, v R v′, and E[α′]R E′[α′] for a
fresh α′.

Normal-form bisimilarity ≈nf , is the largest normal-form
bisimulation.

We extend the CK machine into a NFB machine in Figure 8.
We have a counter n to generate fresh variables, as in call-by-
name. The four last rules tell us what to do to compare normal
forms. If we get a variable α, then we signal its value and
we are done (transition DONE). If we have a λ-abstraction,
we restart the machine (transition LAMBDA). If we have a

context of the form α E, it means that we have a normal form
E[α v]: we have to choose if we either test v (transition VAL)
or E (transition CONTEXT). To test v, we forget about E, and
enter the context mode with ⟨◻, v, n⟩ct after flagging α and
▼. Depending on v, we will then apply the transition DONE
or LAMBDA. To test E, we generate a fresh variable to plug
into E, meaning that we continue with ⟨E,n,n + 1⟩ct (after
flagging α and ▶).

We can translate this machine in HOcore using the same
techniques and prove full abstraction as in call-by-name. In-
ternalizing applicative bisimilarity in call-by-value is straight-
forward: its definition differs from call-by-value only in the
fact that the testing argument must be a λ-abstraction. Con-
sequently, we just use the argument-generating rules from
Figure 4 on top of the CK machine, and change the rule
RESTART so that it can trigger only if the constructed term is
a λ-abstraction.


