Data Multiverse: The Uncertainty Challenge of Future Big Data Analytics

Abstract : With the explosion of data sizes, extracting valuable insight out of big data becomes increasingly difficult. New challenges begin to emerge that complement traditional, long-standing challenges related to building scalable infrastructure and runtime systems that can deliver the desired level of performance and resource efficiency. This vision paper focuses on one such challenge, which we refer to as the analytics uncertainty: with so much data available from so many sources, it is difficult to anticipate what the data can be useful for, if at all. As a consequence, it is difficult to anticipate what data processing algorithms and methods are the most appropriate to extract value and insight. In this context, we contribute with a study on current big data analytics state-of-art, the use cases where the analytics uncertainty is emerging as a problem and future research directions to address them.
Type de document :
Communication dans un congrès
IKC'16: 2nd International Semantic Keyword-Based Search on Structured Data Sources (KEYSTONE) Conference, Sep 2016, Cluj-Napoca, Romania. pp.17-22, 2017, 〈10.1007/978-3-319-53640-8_2〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01480509
Contributeur : Bogdan Nicolae <>
Soumis le : mercredi 1 mars 2017 - 14:11:39
Dernière modification le : jeudi 1 juin 2017 - 16:28:07
Document(s) archivé(s) le : vendredi 2 juin 2017 - 12:42:10

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Radu Tudoran, Bogdan Nicolae, Götz Brasche. Data Multiverse: The Uncertainty Challenge of Future Big Data Analytics. IKC'16: 2nd International Semantic Keyword-Based Search on Structured Data Sources (KEYSTONE) Conference, Sep 2016, Cluj-Napoca, Romania. pp.17-22, 2017, 〈10.1007/978-3-319-53640-8_2〉. 〈hal-01480509〉

Partager

Métriques

Consultations de la notice

18

Téléchargements de fichiers

21