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Abstract. Many uniform total order broadcast protocols have been de-
signed in the last 30 years. Unfortunately, none of them achieves both
optimal throughput and low latency. Indeed, protocols achieving optimal
throughput rely on a ring dissemination pattern, which induces high la-
tencies. Protocols achieving low latency rely on IP multicast and fail to
achieve good throughput because of message losses. In this paper, we de-
scribe FastCast, the first protocol that achieves both optimal throughput
and low latency. To achieve low latency, FastCast relies on IP multicast.
To achieve optimal throughput, FastCast defines a protocol responsi-
ble for dynamically computing the throughput at which processes can
send IP multicast messages. Thanks to this dynamic bandwidth alloca-
tion protocol, FastCast allows multiple processes to simultaneously send
messages, while avoiding message losses. An evaluation of FastCast on a
cluster of 8 machines shows that it indeed achieves optimal throughput
and a very low latency.

1 Introduction

State-machine replication [1] is a popular technique to ensure fault-tolerance
in computer systems. The operating principle of state-machine replication is
simple: several replicas of the same software object are maintained on different
machines (also called processes). Each replica executes the same requests in the
same order and is thus consistent with other replicas. Consequently, if one or
more replicas fail, remaining replicas are consistent and guarantee accessibility
to the object. To ensure that replicas execute requests in the same order, each
replica broadcasts the requests it receives to other replicas using a uniform total
order broadcast [2], and executes requests in the order in which they are delivered
by the protocol. A uniform total order broadcast protocol ensures the following
properties for all messages that are broadcast: (1) Uniform agreement: if a replica
delivers a message m, then all correct replicas eventually deliver m; (2) Strong
uniform total order: if some replica delivers some message m before message m′,
then a replica delivers m′ only after it has delivered m.

Many uniform total order broadcast protocols have been designed in the
last 30 years [3]. They can be classified into two categories: those targeting low
latency, and those targeting high throughput. Latency measures the time required
to complete a single message broadcast without contention, whereas throughput
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measures the number of broadcasts that the processes can complete per time
unit when there is contention.

Protocols targeting low latency usually rely on IP multicast, a low-level net-
working protocol allowing senders to reach multiples destinations using a single
message. These protocols do not achieve high throughput for the following rea-
son: IP multicast messages are dropped when the network is congested. To limit
congestion, protocols are designed in such a way that only one process at a time
can send IP multicast messages. As we explain in Section 3.2, this does not allow
achieving optimal throughput.

Protocols targeting high (actually optimal) throughput [4, 5] organize pro-
cesses in a virtual ring topology: each process only communicates with its suc-
cessor on the ring, using a reliable point-to-point communication protocol: TCP.
These protocols achieve significantly higher throughput than protocols targeting
low latency, e.g. +25% in a system comprising 4 processes. Nevertheless, these
protocols have a significant drawback: because of the ring topology they rely on,
latency linearly increases with the number of processes in the system.

In this paper, we present, FastCast, the first protocol that achieves both op-
timal throughput3 and low latency. To achieve low latency, FastCast relies on IP
multicast. To achieve optimal throughput, FastCast allows multiple processes to
simultaneously send IP multicast messages. Message ordering is achieved by a
fairly classical fixed-sequencer scheme [3]. The novelty in FastCast lies in a sub-
protocol executed by all processes that dynamically computes at which through-
put each process can send IP multicast messages.

We have implemented FastCast in C++ and have compared its performance
to that achieved by two recent state-of-the-art protocols: LCR [5] and Ring-
Paxos [6]. The former achieves optimal throughput, whereas the latter aims at
achieving both high throughput and low latency. Our evaluation on a cluster of 8
machines shows that FastCast achieves optimal throughput and very low latency.
More precisely, FastCast achieves up to 86% faster throughput than RingPaxos,
and up to 247% lower latency than LCR.

This paper is organized as follows. Section 2 gives a brief overview of the
related work. Section 3 presents the FastCast protocol. A detailed performance
evaluation is provided in Section 4, before concluding the paper in Section 5.

2 Related Work

Various total order broadcast protocols have been devised during the past 30
years [3]. We can distinguish two classes of protocols: those providing uniform
agreement and those providing non-uniform agreement. In uniform agreement
protocols, if a process delivers a message, then all correct processes will even-
tually deliver it. This is not necessarily the case in non-uniform protocols: if a
node delivers a message and subsequently fail, the message might not be deliv-
ered by remaining (correct) processes. Total order broadcast protocols ensuring
uniform agreement are more complex to implement and are often less efficient

3 As proved in [5], a total order broacast protocol can only achieve optimal throughput
if all processes simultaneously broadcast messages.
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than non-uniform protocols. Nevertheless, they can be used for a much broader
sets of applications. Consequently, the protocol we propose in this paper imple-
ments uniform agreement. In the remainder of this section, we do thus put more
emphasis on uniform total order broadcast protocols.

Défago and Schiper have written an extensive survey on total order broad-
cast protocols [3]. They distinguish five types of total order broadcast protocols:
fixed-sequencer, moving sequencer, privilege-based, communication history, and
destination agreement. As is explained in the survey [3], “communication his-
tory” and “destination agreement” protocols [7–16] are less efficient than other
types protocols. The three other types of protocols work as follows. In a fixed
sequencer protocol [6, 17–23], a single process is elected as the sequencer and is
responsible for the ordering of messages. The sequencer is unique, and another
process is elected as a new sequencer only in the case of sequencer failure. Moving
sequencer protocols [24–27] are based on the same principle as fixed sequencer
protocols, but allow the role of the sequencer to be passed from one process
to another (even in failure-free situations). This is achieved by a token which
carries a sequence number and constantly circulates among the processes. The
motivation is to distribute the load among sequencers, thus avoiding the bot-
tleneck caused by a single sequencer. When a process p wants to broadcast a
message m, it sends it to all other processes. Upon receiving m, processes store
it into a receive queue. When the current token holder q has a message in its
receive queue, q assigns a sequence number to the first message in the queue
and broadcasts that message together with the token. For a message m to be
delivered, it has to be acknowledged by all processes. Acks are gathered by the
token. Finally, privilege-based protocols [28–33] rely on the idea that senders can
broadcast messages only when they are granted the privilege to do so. The priv-
ilege to broadcast (and order) messages is granted to only one process at a time,
but this privilege circulates from process to process in the form of a token. As
with moving sequencer protocols, the throughput when all processes broadcast
cannot be higher than when only one process broadcasts.

All the protocols mentioned above have been designed with the goal to en-
sure low broadcast latency. Latency measures the time required to complete a
single message broadcast without contention. As shown in [5], above-mentioned
protocols are far from sustaining optimal throughput. Throughput measures the
number of broadcasts that the processes can complete per time unit. In some
high load environments, e.g. database replication for e-commerce, throughput is
often more important than latency. Indeed, under high load, the time spent by a
message in a queue before being actually disseminated can grow indefinitely. A
high throughput broadcast protocol reduces this waiting time. The authors of [5]
prove that in a system comprising N nodes interconnected by a fully-switched
network where each link has a bandwidth of B, the optimal throughput that can
be achieved by a total order broadcast protocol is equal to B ∗N/(N − 1). For
instance, in a system with 4 nodes interconnected by a gigabit ethernet switch
(B=1Gb/s), each node can deliver messages at a throughput of 1,33Gb/s. The
only protocol currently able to sustain that throughput is the LCR protocol [5].
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In other protocols, the maximum throughput at which a node can deliver mes-
sages is B (1Gb/s in the example taken before). This is for instance the case of
protocols known to be efficient such as Spread [33], RingPaxos [6], or the protocol
designed by Chang and Maxemchuck [24]. The reason why these protocols do not
achieve optimal throughput is that only one node at a time is allowed to broad-
cast a message. As explained in [5], optimal throughput can only be achieved
when all nodes are allowed to simultaneously broadcast messages. Throughput-
wise, LCR is thus much more efficient than other protocols. Nevertheless, the
throughput-efficiency of LCR comes at a price: latency linearly increases with
the number of nodes in the system. This comes from the fact that, in order to
sustain high throughput, LCR uses a ring-based pipelining patterns: nodes are
organized in a virtual ring. Each node only communicates with its successor in
the ring. This pipelining pattern is efficient as it avoids message collisions, but it
is not latency-efficient. In this paper, we propose a protocol that reaches optimal
throughput, but that achieves a much lower latency than the LCR protocol.

3 The FastCast Protocol

In this section, we describe the FastCast protocol. We start by a description of
the system model we consider. We then give an overview of FastCast, followed
by a description of the three subprotocols that compose it.

3.1 System Model

We have designed the FastCast protocol for small clusters of homogeneous ma-
chines interconnected by a local area network. We assume that machines can
only fail by crashing (i.e. Byzantine failures are out of the scope of this paper),
that crashes are rare, and that each node is equipped with a perfect failure
detector (P ) [34]. A perfect failure detector outputs the list of alive processes
and guarantees strong accuracy (correct machines are never suspected to have
crashed) and strong completeness (every crash is eventually detected). In order
to implement a perfect failure detector, each machine creates a TCP connection
to all other machines and maintains this connection during the entire execution
of the protocol (unless the machine fails). When a connection fails, the machine
tries to re-establish it five times. If the machine does not succeed, it considers
that the other machine crashed. This is a reasonable assumption provided that,
on a cluster, the latency of the network interconnecting the machines is very
low [35].

3.2 Overview

Our goal is to design a uniform total order broadcast protocol achieving optimal
throughput, while guaranteeing a low latency. In order to ensure low latency, the
best option is to use IP multicast. Indeed, using IP multicast, a process can reach
all other processes in the system sending a single message. This choice is natural
and most total order broadcast protocols rely on IP multicast. Unfortunately,
IP multicast is not reliable: messages are dropped as soon as the network gets
congested.
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In order to reduce the ratio of message losses, most state-of-the-art total
order broadcast protocols rely on a simple technique: only one process is allowed
to send IP multicast messages. That way, it is easy to avoid network congestion
by controlling the rate at which the sending process broadcasts IP multicast
messages. Unfortunately, using one single sender is not enough to reach optimal
throughput. To clarify that point, we depict in Figure 1 a system comprising
3 nodes interconnected by a 1Gb/s ethernet switch. On the left part of the
Figure, only one node sends IP multicast messages. The maximum throughput
at which nodes of the system can deliver messages in that configuration is 1Gb/s.
On the right part of the Figure, we display a configuration where the 3 nodes
simultaneously send IP multicast messages. Each node sends at a throughput of
500Mb/s. In that configuration, the maximum throughput at which nodes of the
system can deliver messages is equal to 1,5Gb/s: each node delivers 500Mb/s that
it produces itself, and 1Gb/s that are sent by other nodes. This is explained by
two facts: (i) network cables and Network Interface Cards (NIC) are full-duplex
(i.e. a node can simultaneously send and receive messages on the same network
cable), and (ii) switches only forward IP multicast messages to nodes other than
the source (i.e. a node does not receive its own messages via the network).

1Gb/s

1Gb/s
1Gb/s

0Gb/s

0Gb/s

0Gb/s

1Gb/s

500Mb/s

500Mb/s

500Mb/s

1Gb/s

1Gb/s 1Gb/s

500Mb/s

500Mb/s 500Mb/s

Fig. 1. Multicasting messages (one sender on the left, multiple senders on the right)
in a system comprising 3 nodes.

As the goal of FastCast is to reach optimal throughput while ensuring low la-
tency, the protocol allows multiple processes to simultaneously send IP multicast
messages. There are well-known algorithms for ensuring uniform total order of
messages multicast by different senders [3]. In this paper, our goal is not to design
a new one. Therefore, we take the simplest one, called fixed-sequencer protocol
(see Sections 3.3 and 3.4 for a short description). Rather, we focus on designing
a subprotocol in charge of synchronizing the various senders (see Section 3.5).
More precisely, our protocol allows every sender to gather the bandwidth require-
ments of other senders and to adapt its bandwidth accordingly (using a max-min
fair bandwidth allocation algorithm [36]). The idea implemented by the protocol
is simple and, as we show in Section 4, yields excellent performance.
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3.3 Ordering Subprotocol

FastCast is a uniform total order broadcast protocol exporting two primitives,
utoBroadcast and utoDeliver, and ensuring the following four properties:

– Validity: if a correct process pi utoBroadcasts a message m, then pi eventu-
ally utoDelivers m.

– Integrity: for any message m, any correct process pj utoDelivers m at most
once, and only if m was previously utoBroadcast by some correct process pi.

– Uniform Agreement: if any process pi utoDelivers any message m, then
every correct process pj eventually utoDelivers m.

– Total Order: for any two messages m and m′, if any process pi utoDelivers
m without having delivered m′, then no process pj utoDelivers m′ before m.

The ordering subprotocol implementing these four properties is given in Fig-
ure 2. This is a fairly classical fixed-sequencer pattern [3]. One process is desig-
nated leader, and is in charge of assigning and broadcasting sequence numbers.
It is important to notice that the leader is not in charge of forwarding content
messages (named Data message in Figure 2). Rather, these are processes that
are in charge of sending their Data messages to all other processes (line 10). In
order to ensure uniform agreement on message delivery, every node acknowledges
the reception of the messages and the sequence numbers associated with them
(line 19 for the leader, and line 24 for other processes). Every node waits for an
acknowledgment from all nodes before delivering a message (lines 30 and 31).
That way, a node is sure that the message it delivers is known (together with
its sequence number) by all other nodes and will thus be delivered by all correct
nodes even if it subsequently fails. Note that to handle message losses, a node
that broadcasts a message uses a timer (line 12). If after some amount of time, a
node has not delivered its own message (i.e. the message is still in the pendings
array as checked in line 35), it resends the message (line 36).

3.4 Membership Management Subprotocol

In order to handle nodes joining and leaving the system, the FastCast protocol
is built on top of a group communication system [37] relying on a perfect failure
detector [34]. Processes are organized into groups, which they can leave or join.
When a process joins or leaves a group, this triggers a view change protocol.
Thanks to the perfect failure detector, faulty processes are excluded from the
group after crashing. Upon a membership change, processes agree on a new view:
the current view vr is replaced by a new view vr+1.

The view change procedure is detailed in Figure 3. Note that when a view
change occurs, every process first completes the execution (if any) of all other
procedures described in Figure 2. It then freezes those procedures and executes
the view change procedure. The latter works as follows (Note that the view
change functions make use of two primitives Rsend and Rreceive that implement
reliable communication channels. In our implementation, these primitives are
implemented using TCP): every process sends its pendings and seqnos arrays to
all other processes (line 2). Upon receiving these arrays, every process updates
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Procedures executed by any process pi

1: procedure initialize(initial view)
2: pendings[]← ∅
3: seqnos[]← ∅
4: acks[][]← ∅
5: snToDeliver ← 0
6: leader = p0

7: sn← 0

8: procedure utoBroadcast(m)
9: idm ← hash(pi,m)

10: Send 〈Data, idm,m〉 to all processes
11: pendings[idm]← m
12: SetTimeout 〈idm〉

13: upon Receive 〈Data, idm,m〉 from pj do
14: if pi = leader then
15: if 6 ∃ seqnos[idm] then
16: seqnos[idm]← sn
17: sn← sn + 1
18: acks[idm][pi] = 1
19: Send 〈Ack, idm, seqnos[idm]〉 to all processes
20: pendings[idm]← m
21: tryDeliver()

22: upon Receive 〈Ack, idm, snm〉 from pj do
23: if pj = leader and ∃ pendings[idm] then
24: Send 〈Ack, idm, snm〉 to all processes
25: acks[idm][pi] = 1
26: seqnos[idm]← snm

27: acks[idm][pj ] = 1
28: tryDeliver()

29: procedure tryDeliver()
30: while ∃ idm s.t. (seqnos[idm] = snToDeliver and sum(acks[idm]) = n) do
31: utoDeliver(m)
32: snToDeliver ← snToDeliver + 1
33: pendings← pendings− pendings[idm]

34: upon Timeout〈idm〉 do
35: if ∃ pendings[idm] then
36: Send 〈Data, idm, pendings[idm]〉 to all processes
37: SetTimeout 〈idm〉

Fig. 2. Pseudo-code of the ordering mechanism.



8 Gautier Berthou and Vivien Quéma

its own pendings and seqnos arrays using those received from all other processes
(lines 15 and 17). Then, the processes send back an Ack Recover message
(line 18). Processes wait until they receive Ack Recover messages from all
processes (line 3) before sending an End Recovery message to all (line 4).
When a process receives End Recovery messages from all processes (line 5), it
can deliver all the messages for which it has a sequence number (lines 19 to 24).
Thus, at the end of the view change procedure, all processes belonging to the
new view will have delivered the same messages in the same order. Each process
then empties its pendings, seqnos and acks arrays (lines 8 to 10). Moreover, each
process uses as new leader the first process in the new view (line 11).

Procedures executed by any process pi

1: upon view change(new view) do
2: Rsend 〈Recover, pi, pendings, seqnos〉 to all pj ∈ new view
3: Wait until received 〈Ack Recover〉 from all pj ∈ new view
4: Rsend 〈End Recovery〉 to all pj ∈ new view
5: Wait until received 〈End Recovery〉 from all pj ∈ new view
6: forceDeliver()
7: view ← new view
8: pendings[]← ∅
9: seqnos[]← ∅

10: acks[][]← ∅
11: leader = first process in view
12: sn← nextToDeliver

13: upon Rreceive 〈Recover, pendingspj , seqnospj 〉 from pj do

14: for each [idm] ∈ pendingspj do

15: pendings[idm]← pendingspj [idm]

16: if ∃ seqnospj [idm] then

17: seqnos[idm]← seqnospj [idm]

18: Rsend 〈Ack Recover〉 to pj

19: procedure forceDeliver()
20: for each idm ∈ seqnos[idm], ordered by increasing sequence number do
21: if ∃ pendings[idm] and seqnos[idm] ≥ snToDeliver then
22: toDeliver(pendings[idm])
23: pendings← pendings− pendings[idm]
24: snToDeliver ← seqnos[idm] + 1
25: for each idm ∈ keys(pending[idm]), ordered by increasing idm do
26: toDeliver(pendings[idm])
27: pendings← pendings− pendings[idm]

Fig. 3. Pseudo-code of the membership management subprotocol.

3.5 Bandwidth Allocation Subprotocol

In this section, we describe the bandwidth allocation protocol implemented in
FastCast. We start by describing the principles underlying its design. We then
comment a detailed pseudo-code. Finally, we give an illustration of its behavior.

Principles. The goal of the bandwidth allocation protocol is to allocate band-
width for each sending node in order to allow multiple nodes to simultaneously
send IP multicast packets, while avoiding message losses. As explained before,
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having multiple senders is a requirement to ensure that the full network capa-
bility is used. If we assume that at a given time, all nodes know the bandwidth
requirements of all other nodes, it is easy to allocate bandwidth using a max-
min fair bandwidth allocation algorithm [36]. For instance, let us consider a
system comprising 3 nodes interconnected by a 1Gb/s ethernet switch. Let us
assume that each node knows that, e.g. node 1 requires 700Mb/s, node 2 requires
600Mb/s, and node 3 requires 300Mb/s. Each node can deterministically com-
pute the following fair bandwidth allocation: 500Mb/s for nodes 1 and 2, and
300Mb/s for node 3. It is indeed not possible to allocate more than 500Mb/s to
nodes 1 and 2. Otherwise, node 3 would have to receive messages at a higher
throughput than 1Gb/s, which it cannot do. Indeed, the network link connecting
node 3 to the switch has a capability of 1Gb/s.

It is possible to design a protocol allowing nodes to exchange their bandwidth
requirements and ensuring that every node knows, at any time, the bandwidth
requirements of other nodes. Such a protocol would nevertheless be costly and
would require to force all nodes to synchronize whenever one node wants to
change its bandwidth. Interestingly, it is possible to fairly allocate bandwidth
with a weaker requirement: it is enough that every node receive the various
bandwidth requirements from other nodes in the same order. This property can
be easily achieved by leveraging the FastCast protocol itself. Each time a node
wants to modify its allocated bandwidth (e.g. to increase it, or to decrease it),
it sends a message to all other nodes using the FastCast protocol. That way, all
nodes receive the bandwidth requirement messages in the same order.

The question that remains to answer is: when can nodes actually modify
their bandwidth? A node behaves differently depending on whether it requires
a decrease of its bandwidth or an increase of its bandwidth. In the case of a
bandwidth decrease, the node actually decreases its bandwidth before sending
the message notifying other nodes. That way, when other nodes receive its noti-
fication message, they know that the node already decreased its bandwidth and
they can recompute the bandwidth allocation and possibly decide to increase
their own bandwidth. In the case of a bandwidth increase, a node n cannot di-
rectly increase its bandwidth (otherwise, that could congest the network). The
node does thus first send the message notifying others that it wants to increase
its bandwidth. Upon receiving the notification that node n wants to increase
its bandwidth, other nodes locally recompute the bandwidth allocation (based
on the new bandwidth requirement sent by node n) and possibly reduce their
own bandwidth. Then, each node sends an acknowledgement to node n. It is
only after it has received acknowledgments from all other nodes that node n can
actually increase its bandwidth (by locally computing the bandwidth allocation).

Detailed Pseudo-code. Figure 4 gives the pseudo-code of the bandwidth allo-
cation protocol. Every node stores the bandwidth requirements of other nodes in
the bwRequirements array and its current bandwidth in the currentBW variable.
The ongoing increase, delivered req, and acks fields are used when a node wants
to increase its bandwidth: ongoing increase stores the required increase (before
being stored in bwRequirements when all other processes will have acknowledged
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it); the delivered req field indicates whether the increase notification message has
been delivered by the requiring node itself (if that is not the case, the requiring
node cannot take its own request into account even if it received an acknowl-
edgement from all other processes); finally, the acks field is used to count the
number of acknowledgements that have been received for the ongoing bandwidth
increase request.

Before going into the details of the protocol, let us remark that the
BW allocation function (lines 34 to 47) implements a classical max-min fair band-
width allocation algorithm [36]. The only important point to mention is that it
uses a variable, called availableBW, that represents the maximum capability of
a network link. This capability is dependent from the average message size (it is
well-known that the larger the messages, the higher the throughput that can be
achieved by a communication protocol [5,6]). In our implementation, we use 4kB
as the average message size and set the value of availableBW to the capability
that the network links exhibit when used with 4kB messages (this capability
is close to the optimal one). To be sure that this is the actual capability that
network links will have at runtime, the FastCast protocols batches messages to
ensure that sent messages are at least 4kB large (unless there is no contention, in
which case small messages can be sent as the protocol does not need to sustain
high throughput in such cases).

Let us now describe the bandwidth allocation subprotocol. A node can ei-
ther ask to increase its bandwidth (using the increase BW procedure at line 7)
or to decrease it (using the decrease BW procedure at line 26). Let us first de-
scribe what happens when a node wants to increase its bandwidth. The node
calls the increase BW procedure. Inside this procedure, the node utoBroadcasts
an Incr message to all other processes (line 10). When delivering this mes-
sage, other processes update their bwRequirements array (line 12), recompute
the bandwidth allocation (line 13) using the BW allocation function, and sends
an Ack message back to the requiring process (line 14). When the requiring
node has both received an acknowledgement from all other nodes and delivered
its own increase request (line 16), it updates its bwRequirements array (line 21)
and recompute the bandwidth allocation (line 22).

Let us now describe what happens when a node wants to decrease its band-
width. The node calls the decrease BW procedure. Inside this procedure, the node
updates its bwRequirements array (line 28) and recompute the bandwidth allo-
cation (line 29). The requiring node then utoBroadcasts a Decr message to all
other processes (line 30). When delivering this message, other processes update
their bwRequirements array (line 32) and recompute the bandwidth allocation
(line 33), using the BW allocation function.

Illustration. We provide three illustrations of the bandwidth allocation proto-
col in Table 1, Table 2, and Table 3. We consider a system with 3 processes inter-
connected by a 1Gb/s switch. In each table, we describe a set of steps that hap-
pen in the system and we illustrate how the different fields of the three processes
are updated. Initially, the three processes have a null bandwidth (currentBW is
equal to 0 in Table 1, step S1). In Table 1 we depicts what happens when from
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Procedures executed by any process pi

1: procedure initialize(initial view)
2: bwRequirements[]← [0, · · · , 0]
3: currentBW ← 0
4: ongoing increase← 0
5: delivered req ← false
6: acks← 0

7: procedure increase BW(amount)
8: wait until ongoing increase = 0
9: ongoing increase← amount

10: utoBroadcast 〈Incr, amount〉 to all processes

11: upon utoDeliver 〈Incr, amount〉 from pj 6= pi do
12: bwRequirements[pj ]← bwRequirements[pj ] + amount
13: currentBW ← BW allocation()
14: Rsend 〈Ack〉 to pj

15: upon utoDeliver 〈Incr, amount〉 from pi do
16: delivered req ← true

17: upon Rreceive 〈Ack〉 from pj do
18: acks← acks + 1
19: if acks = N − 1 then
20: wait until delivered req = true
21: bwRequirements[pi]← bwRequirements[pi] + ongoing increase
22: currentBW ← BW allocation()
23: acks← 0
24: ongoing increase← 0
25: delivered req ← false

26: procedure decrease BW(amount)
27: wait until ongoing increase = 0
28: bwRequirements[pi]← bwRequirements[pi]− amount
29: currentBW ← BW allocation()
30: utoBroadcast 〈Decr, amount〉 to all processes

31: upon utoDeliver 〈Decr, amount〉 from pj 6= pi do
32: bwRequirements[pj ]← bwRequirements[pj ]− amount
33: currentBW ← BW allocation()

34: function BW allocation()
35: nodes← pi and the (N-2) other iggest values in bwRequirements
36: availableBW ← B
37: do
38: allocated = false
39: for pj in nodes do
40: if bwRequirements[pj ] ≤ availableBW/size(nodes) then
41: nodes← nodes− pj

42: availableBW ← availableBW − bwRequirements[pj ]
43: allocated = true
44: while(nodes 6= ∅ and allocated = true)
45: if pi ∈ nodes then
46: return availableBW/size(nodes)
47: return bwRequirements[pi]

Fig. 4. Pseudo-code of the bandwidth allocation protocol.



12 Gautier Berthou and Vivien Quéma

this initial state, p0 calls increase BW(800) and p1 calls increase BW(300). Pro-
cesses reach a state (step S8) in which p0 has its currentBW variable equal to
700Mb/s and p1 has its currentBW variable equal to 300Mb/s. From that state
(also depicted in Table 2, step S9), Table 2 depicts what happens when p2 calls
increase BW(600). Processes reach a state (step S13) in which p0 and p2 both
have their currentBW variable equal to 500Mb/s, and p1 has its currentBW vari-
able equal to 300Mb/s. From that state (also depicted in Table 3, step S14),
Table 3 depicts what happens when p2 calls decrease BW(500). Processes reach
a state (step S16) in which p0 has its currentBW variable equal to 700Mb/s, p1

has its currentBW variable equal to 300Mb/s and p2 has its currentBW variable
equal to 100Mb/s.

Table 1. A first example execution of the bandwidth allocation protocol.
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S1
p0 [0, 0, 0] 0 0 0 -

Initial statep1 [0, 0, 0] 0 0 0 -
p2 [0, 0, 0] 0 0 0 -

S2
p0 [0, 0, 0] 0 800 0 -

p0 calls increase BW(800)
p1 calls increase BW(300)

p1 [0, 0, 0] 0 300 0 -
p2 [0, 0, 0] 0 0 0 -

S3
p0 [0, 0, 0] 0 800 0 -

p2 utoDelivers 〈Incr, 800〉p0
p2 utoDelivers 〈Incr, 300〉p1

p1 [0, 0, 0] 0 300 0 -
p2 [800,300, 0] 0 0 0 -

S4
p0 [0, 0, 0] 0 800 1 -

p0 Rreceives 〈Ack〉p2
p1 Rreceives 〈Ack〉p2

p1 [0, 0, 0] 0 300 1 -
p2 [800, 300, 0] 0 0 0 -

S5
p0 [0,300, 0] 0 800 1

√
p0 utoDelivers 〈Incr, 800〉p0
p0 utoDelivers 〈Incr, 300〉p1

p1 [0, 0, 0] 0 300 1 -
p2 [800, 300, 0] 0 0 0 -

S6
p0 [0, 300, 0] 0 800 1

√

p1 Rreceives 〈Ack〉p0p1 [0, 0, 0] 0 300 2 -
p2 [800, 300, 0] 0 0 0 -

S7
p0 [0, 300, 0] 0 800 1

√
p1 utoDelivers 〈Incr, 800〉p0
p1 utoDelivers 〈Incr, 300〉p1

p1 [800,300, 0] 300 0 0 -
p2 [800, 300, 0] 0 0 0 -

S8
p0 [800, 300, 0] 700 0 0 -

p0 Rreceives 〈Ack〉p1p1 [800, 300, 0] 300 0 0 -
p2 [800, 300, 0] 0 0 0 -
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Table 2. A second example execution of the bandwidth allocation protocol.
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S9
p0 [800, 300, 0] 700 0 0 -

Initial state
(equal to S8 in Table 1)

p1 [800, 300, 0] 300 0 0 -
p2 [800, 300, 0] 0 0 0 -

S10
p0 [800, 300, 0] 700 0 0 -

p2 calls increase BW(600)p1 [800, 300, 0] 300 0 0 -
p2 [800, 300, 0] 0 600 0 -

S11
p0 [800, 300,600] 500 0 0 - p0 utoDelivers 〈Incr, 600〉p2

p1 utoDelivers 〈Incr, 600〉p2
p2 utoDelivers 〈Incr, 600〉p2

p1 [800, 300,600] 300 0 0 -
p2 [800, 300, 0] 0 600 0

√

S12
p0 [800, 300, 600] 500 0 0 -

p2 Rreceives 〈Ack〉p0p1 [800, 300, 600] 300 0 0 -
p2 [800, 300, 0] 0 600 1

√

S13
p0 [800, 300, 600] 500 0 0 -

p2 Rreceives 〈Ack〉p1p1 [800, 300, 600] 300 0 0 -
p2 [800, 300,600] 500 0 0 -

4 Performance Evaluation

In this section, we assess the performance of the FastCast protocol and compare
them to that achieved by two state-of-the-art protocols: LCR [5] and Ring-
Paxos [6]. All three protocols ensure uniform total order delivery of messages.
We chose LCR because it is the only existing protocol ensuring optimal through-
put [5]. Moreover, the choice of RingPaxos is motivated by the fact, as shown
in [6], it is the only protocol to “achieve very high throughput while providing low
latency”. The experiments only evaluate the failure free case because failures are
expected to be very rare in the targeted environment. Note that in the faulty
case, the performance of FastCast would be very similar to that of LCR pro-
vided that both protocols implement almost similar recovery algorithms. LCR
and FastCast relies on the use of a perfect failure detector, whereas RingPaxos
assumes a bound on the number of faulty processes.

We start by a description of the experimental setup. We then assess the band-
width allocation protocol of FastCast, and the throughput, the response time,
and the latency of FastCast, LCR and RingPaxos. Our evaluation shows that
FastCast is both throughput- and latency-efficient. More precisely, throughput-
wise, FastCast is as efficient as LCR. Latency-wise, FastCast is more efficient
than RingPaxos.
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Table 3. A third example execution of the bandwidth allocation protocol.
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S14
p0 [800, 300, 600] 500 0 0 -

Initial state
(equal to S13 in Table 2)

p1 [800, 300, 600] 300 0 0 -
p2 [800, 300, 600] 500 0 0 -

S15
p0 [800, 300, 600] 500 0 0 -

p2 calls decrease BW(500)p1 [800, 300, 600] 300 0 0 -
p2 [800, 300,100] 100 0 0 -

S16
p0 [800, 300,100] 700 0 0 - p0 utoDelivers 〈Decr, 500〉p2

p1 utoDelivers 〈Decr, 500〉p2
p2 utoDelivers 〈Decr, 500〉p2

p1 [800, 300,100] 300 0 0 -
p2 [800, 300, 100] 100 0 0 -

4.1 Experimental Setup

The experiments were run on a cluster comprising eight 8-core machines inter-
connected by a gigabit ethernet switch. Each core runs at 2.5GHz and is equipped
with 16GB of RAM. Moreover, each machine runs a Linux 2.6.32 kernel. The
raw bandwidth over IP between two machines (measured with Netperf [38]) is
equal to 942Mb/s. In order to ensure that the evaluation is fair, we have im-
plemented the FastCast and LCR protocols in C++, using the same code base
as the RingPaxos protocol. Finally, all the presented experiments start with a
warm-up phase, followed by a phase during which performance are measured.
The measurement phase lasts 5 minutes.

4.2 Bandwidth Allocation Assessment

We first assess the bandwidth allocation protocol implemented in FastCast. For
that purpose, we perform the following experiment. We deploy 4 nodes that
send messages of variable sizes: from 1kB to 6kB. The bandwidth requirements
of nodes vary during the experiment: initially all nodes require one fourth of the
total available bandwdith. After 10s, node 0 decreases its requirements, followed
by node 1 at time 20s. At time 30s, node 2 increases its bandwidth requirement.
Finally, at time 40s, node 0 increases its bandwidth requirement, whereas node
2 decreases them. The results are depicted in Figure 5. The X axis represents
the time, whereas the Y axis is used to represent the bandwidth requirements of
the 4 nodes, as well as the achieved and optimal throughput. We observe that
the achieved throughput is very close to the optimal one, thus confirming that
the bandwidth allocation protocol works efficiently. Moreover, we have used that
experiment to assess the time it takes for a node to increase its bandwidth, i.e.
the time that elapses between the moment when the node notifies other nodes
that it has new bandwidth requirements and the moment when the node is
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allowed to increase its bandwidth. We have run that experiment multiple times
and the average time required by the different nodes to increase their bandwidth
was 3.8ms.
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Fig. 5. Assessment of FastCast’s bandwidth allocation protocol.

4.3 Throughput Assessment

To assess the throughput of the three protocols, we run the following benchmark:
we deploy N nodes that broadcast messages at the maximum throughput they
can sustain. The message size is fixed and set to 10kB, which allows reaching
the best possible throughput for each studied protocol. Each process periodically
computes the throughput at which it delivers messages. In this experiment, the
throughput is calculated as the ratio of delivered bytes over the time elapsed
since the end of the warm-up phase. The plotted throughput is the average of
the values computed by each process.

Figure 6 plots the throughput achieved by FastCast, LCR and RingPaxos
when varying the number of nodes from 2 to 8. As reference, we plot the opti-
mal throughput that can be achieved by (N/(N − 1) times the maximum link
speed of 942Mb/s). We can make several observations. First, the throughput of
FastCast and LCR is very close to optimal. As mentioned in the previous section,
this confirms the fact that the bandwidth allocation algorithm works efficiently.
Second, the throughput of RingPaxos is almost constant (at 939Mb/s). Again,
this behavior is expected: in RingPaxos, only one process at a time is allowed to
send IP multicast messages. This limits the throughput that can be sustained
by the protocol. For instance, with 4 nodes, FastCast and LCR are about 25%
faster than RingPaxos. In a system with 2 nodes, FastCast and LCR are about
86% faster than RingPaxos.
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Fig. 6. Throughput as a function of the number of nodes in the system for the FastCast,
LCR, and RingPaxos protocols.

4.4 Response Time Assessment

In this section, we evaluate the response time of FastCast, LCR, and RingPaxos
in a system comprising 8 nodes. In this experiment, we vary the throughput at
which the nodes inject new messages in the system. The size of messages that
are broadcast is 10kB. During the measurement phase, for every message m it
broadcasts, a sender evaluates the elapsed time between the broadcast and the
delivery of m. For each protocol, we stop the curve when the injected load is
higher than the throughput the protocol is able to sustain.

Results are depicted in Figure 7. The X axis represents the aggregated send-
ing throughput, whereas the Y axis represents the response time. We observe
that FastCast exhibits a consistently lower response time than both LCR and
RingPaxos. More precisely, FastCast achieves an up to 400% lower response time
than LCR and an up to 246% lower response time than RingPaxos. This comes
from the fact that both LCR and RingPaxos rely on a ring topology for sending
some of the messages that are exchanged among nodes: data messages in the case
of LCR, and ordering messages in the case of RingPaxos (notice that, unlike in
LCR, in RingPaxos, not all processes are organized in a ring [6]). The pipelining
pattern introduced by a ring topology increases the time it takes to process each
message with respect to a pure IP multicast protocol such as FastCast in which
no pipelining pattern is used.

4.5 Latency Assessment

In this section, we evaluate the latency achieved by the FastCast, LCR, and
RingPaxos protocols. We vary the size of the system from 2 to 8 nodes. Recall
that latency is defined as the time required to complete a message broadcast
when there is no contention. In order to measure the latency of the various pro-
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Fig. 7. Response time as a function of the aggregated sending throughput for the
FastCast, LCR, and RingPaxos protocols.

tocols, we perform the following experiment: one node in the system broadcasts
10kB messages at a very low throughput (1Mb/s). The sending node evaluates
the average time that elapses between the broadcast of each message and its
delivery.
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Fig. 8. Latency as a function of the number of nodes in the system for the FastCast,
LCR, and RingPaxos protocols.
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Results are depicted in Figure 8. The X axis represents the number of nodes,
whereas the Y axis represents the latency. We observe that FastCast exhibits
a consistently lower latency than both LCR and RingPaxos. More precisely,
FastCast achieves an up to 465% lower latency than LCR and an up to 247%
lower latency than RingPaxos. Moreover, we observe that the latency of FastCast
is constant, whereas that of RingPaxos and LCR increases with the number of
nodes. This again comes from the fact that both LCR and RingPaxos rely on
a ring topology for sending some of the messages. The reason why the curve
for RingPaxos is not linear is that in RingPaxos only a majority of nodes need
to be present in the ring. For instance, RingPaxos uses the same ring size (3)
for systems comprising 4 and 5 nodes, whereas in LCR, the ring size linearly
increases with the number of nodes in the system.

5 Conclusion

We have presented FastCast, a uniform total order broadcast protocol that
achieves both optimal throughput and very low latency. Unlike previous
throughput-optimal protocols, FastCast does not rely on a ring topology for
message dissemination. Rather, FastCast uses IP multicast, a low-level commu-
nication protocol that allows reaching multiple processes using a single message.
To avoid network congestion (and thus IP multicast packet drops), FastCast
implements a subprotocol in charge of dynamically computing the throughput
at which processes are allowed to send IP multicast messages. We have evalu-
ated FastCast on a cluster of 8 machines and have compared its performance
to that achieved by two recent state-of-the-art protocols: LCR and RingPaxos.
The evaluation shows that FastCast achieves optimal throughput and very low
latency.

Currently, FastCast assumes that it is the only source of network traffic.
In our future work, we plan to study extensions of FastCast to take into ac-
count background traffic. Our intuition is that a possible approach is to have
all applications running on a set of nodes share the same bandwidth allocation
mechanism.
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