
HAL Id: hal-01482014
https://inria.hal.science/hal-01482014

Submitted on 3 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Dynamic Software Product Lines with
Temporal Constraints

Gustavo Sousa, Walter Rudametkin, Laurence Duchien

To cite this version:
Gustavo Sousa, Walter Rudametkin, Laurence Duchien. Extending Dynamic Software Product Lines
with Temporal Constraints. 12th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2017), May 2017, Buenos Aires, Argentina. �hal-01482014�

https://inria.hal.science/hal-01482014
https://hal.archives-ouvertes.fr

Extending Dynamic Software Product Lines
with Temporal Constraints

Gustavo Sousa, Walter Rudametkin, Laurence Duchien
University of Lille / Inria

Lille, France
firstname.lastname@inria.fr

Abstract—Due to the number of cloud providers, as well as
the extensive collection of services, cloud computing provides
very flexible environments, where resources and services can
be provisioned and released on demand. However, reconfigu-
ration and adaptation mechanisms in cloud environments are
very heterogeneous and often exhibit complex constraints. For
example, when reconfiguring a cloud system, a set of available
services may be dependent on previous choices, or there may be
alternative ways of adapting the system, with different impacts
on performance, costs or reconfiguration time.

Cloud computing systems exhibit high levels of variability,
making dynamic software product lines (DSPLs) a promising
approach for managing them. However, in DSPL approaches, ver-
ification is often limited to verifying conformance to a variability
model, but this is insufficient to verify complex reconfiguration
constraints that exist in cloud computing systems.

In this paper, we propose the use of temporal constraints and
reconfiguration operations to model a DSPL’s reconfiguration
lifecycle. We demonstrate how these concepts can be used to
model the variability of cloud systems, and we use our approach
to identify reconfigurations that meet given criteria.

Keywords-variability; dynamic software product lines; feature
models; cloud computing;

I. INTRODUCTION

In the cloud computing paradigm, computing resources are
delivered to customers as services at different levels of abstrac-
tion, such as infrastructure, platform and software [1]. Each
cloud computing provider offers a different set of services,
such as processing power, network communication, virtual
machines, containers, software packages, application servers,
databases, development and management tools, etc. When
deploying an application to the cloud, customers can select
a set of services to build a cloud environment that supports
their applications’ requirements.

However, cloud providers are very heterogeneous, and each
provider may have a different set of complex rules governing
the selection of services. To deal with this complexity, recent
works [2], [3], [4], [5] have proposed the use of software prod-
uct line (SPL) techniques, such as feature models, to capture
the variability of cloud configurations, allowing the automated
setup of cloud environments. The cloud computing model also
supports rapid provisioning and release of resources [1], pro-
viding mechanisms for reconfiguring an existing environment
to cope with new application requirements or context changes.
The high variability in cloud configuration, together with the
support for dynamic provisioning, makes dynamic software

product lines (DSPLs) a promising approach to build adaptive
cloud environments.

However, mechanisms offered for adapting cloud environ-
ments may differ substantially between providers, and complex
constraints may also apply to reconfigurations. Depending
on providers, the same context or requirements change may
require a different set of reconfiguration operations. Even
within the same provider, multiple alternative ways of per-
forming the same reconfiguration may be offered, each one
with a different impact on performance, costs and downtime.
Additionally, choices made in the initial or previous configu-
rations may affect the set of available future reconfigurations,
thus changing the system’s variability over its lifecycle. In a
sense, reconfigurations in cloud systems are not stateless, they
depend on the system’s current and past configurations, but
this information is not captured in DSPLs.

Previous work on DSPLs [6], [7] highlight the importance of
guaranteeing a safe transition from a valid initial configuration
to a target configuration. However, in most DSPL approaches
verification is restricted to checking if a target configuration
complies to its variability model. In existing approaches, there
is no regard about how the system transitions between config-
urations, if there are any constraints over these transitions, or
if multiple alternatives are available.

In this paper, we propose extending feature models with
temporal constraints and reconfiguration operations to model
the variability of DSPLs. We introduce reconfiguration opera-
tions to enable describing multiple alternative reconfiguration
paths, together with their associated costs. We demonstrate
how principles from model checking can be used to implement
reasoning over these concepts, allowing us to check for
reconfiguration request validity and to find reconfigurations
that meet a specific criteria (e.g., downtime, costs). Finally,
we evaluate our approach with a use case on adaptive cloud
computing environments.

In Section II, we discuss the motivation for using temporal
constraints in dynamic software product lines for cloud com-
puting. In Section III, we define the semantics of temporal
logic constraints and reconfiguration operations on feature
models. Section IV describes the implementation of a tool
for automated reasoning over feature models with temporal
constraints and reconfiguration operations. Finally, we discuss
related work in Section VI and the conclusions in Section VII.

II. MOTIVATION

When a cloud environment is initially setup for an applica-
tion, it is conceived to support initial application requirements.
However, as application requirements evolve or the system
load changes, its environment should be reconfigured to deal
with these new requirements. These changes may include the
provisioning of extra resources such as virtual machines or
application containers when more requests arrive, or upgrading
to a larger database plan as the system starts having more
users, or changing the application framework to cope with
application evolution.

Systems that exhibit runtime variability as the cloud envi-
ronments are candidates for employing a DSPL architecture.
DSPLs leverage concepts and engineering foundations from
SPL to support the construction of adaptive systems [8]. The
core element of both approaches is a variability model that
specifies variation points in which members of a product
line can differ. Feature models are widely used to model
variability in product line approaches, and many methods for
their automated analysis are available [9].

In DSPL approaches, feature models may be enriched with
context [10] and binding time [11], [12], [13] information.
A reconfiguration is usually triggered by monitored context
features or another system component requesting the inclusion
(exclusion) of a set of features to (from) the current config-
uration. Techniques for automated analysis of feature models
are then used to verify if the requested configuration is valid
according to feature model structure and constraints. Once a
target configuration is validated, adaptation mechanisms from
the underlying platform (e.g. component models, reflection,
models@runtime) are used to enact the it.

However in cloud computing, reconfiguration mechanisms
may vary according to the provider, and even for the same
provider different services may have different reconfiguration
support. While some services may have their settings updated
at runtime, others may require a service restart or still a
complete redeployment of the service.

A. Motivating example

To illustrate the problems faced while managing variability
and adaption in cloud environments we present an example
from the Heroku PaaS provider. The feature model in Fig. 1
describes part of the variability in the configuration of Heroku
PaaS. In Heroku, users can define application projects that
include support for development in a given programming
language such as Java, Ruby or PHP and a set of additional
cloud services such as databases, caching, monitoring tools,
etc. The cloud customer can choose in which geographical
region (US or EU) he wants the application project to be
deployed and cloud services may be available at different plans
(M1, M2, H1, H2, S1, S2, etc), with different capabilities and
costs.

While initially setting up an application project, customers
have access to all cloud services, and can select any config-
uration that complies with the feature model. However, after
the initial setup, reconfigurations may be limited by the initial

Heroku

Process
Type

EU US
Size

S1X

S2X

PM

Framework

Java

Ruby

PHP

Heroku
Postgres

H1

H2 S1

S2

ClearDB
MySQL

M1

M2 M3

M4Kind

Web Worker

Application

Location

Fig. 1. Partial feature model for the Heroku PaaS provider

choices or require extra operations. Below we present some of
the reconfiguration constraints identified on the Heroku PaaS
provider.

• MySQL database plan. Four different plans are available
for the ClearDB MySQL service, each one with different
storage and pricing. Heroku provides support for upgrad-
ing directly from a smaller to a larger plan1, however
it does support downgrading to a smaller plan. Thus,
once a choice is made, future reconfigurations should not
consider smaller plans, even if the feature model describe
it as a possible alternative.

• PostgreSQL database plan. Heroku Postgres provides a
wide range of service plans classified into three cate-
gories: Hobby, Standard and Premium. Heroku proposes
two ways to upgrade or downgrade between different
plans2. The first way relies on the use of pgcopy tool,
and requires a downtime of about 3 minutes per GB. The
second method creates a follower database with the new
desired plan and wait until it to syncs with the original
database. This process can take several hours, in which
additional costs for maintaining two databases should be
considered, but downtime is minimal or unnoticeable. Re-
configurations from or to Hobby plans are only possible
with the pgcopy method.

• Framework type. Changing the framework3 (buildpack)
can be achieved by updating a configuration variable and
redeploying the application code. The executing instances
of the application server are restarted.

• Application container size. Application container in-
stances (called dynos in Heroku) can be easily resized
at runtime4 by resetting the size attribute. Heroku plat-
form will take care of alternately replacing instances of
previous size by new instances of the requested size.

• Application location. Changing the location of an appli-

1https://devcenter.heroku.com/articles/cleardb#
upgrading-your-cleardb-database

2https://devcenter.heroku.com/articles/upgrading-heroku-postgres-databases
3https://devcenter.heroku.com/articles/buildpacks#

setting-a-buildpack-on-an-application
4https://devcenter.heroku.com/articles/scaling#scaling-the-dyno-size

https://devcenter.heroku.com/articles/cleardb#upgrading-your-cleardb-database
https://devcenter.heroku.com/articles/cleardb#upgrading-your-cleardb-database
https://devcenter.heroku.com/articles/upgrading-heroku-postgres-databases
https://devcenter.heroku.com/articles/buildpacks#setting-a-buildpack-on-an-application
https://devcenter.heroku.com/articles/buildpacks#setting-a-buildpack-on-an-application
https://devcenter.heroku.com/articles/scaling#scaling-the-dyno-size

cation project requires migrating it to another data center5

and therefore implies a series of complex operations. This
may include the migration of application code and data.
Similar to the examples above, this can be achieved in
different ways by combining different operations, with
different effects on costs, downtime and performance of
the application during migration.

Even from this simple example, we can notice that cloud
environments may be subject to complex constraints governing
when and how a new configuration can be reached. Existing
DSPL approaches do not provide enough support for mod-
eling or reasoning over reconfigurations constraints and are
restricted to verification of the structural variability.

B. Challenges
We wish to provide support for automated reasoning on

reconfigurations in cloud systems. To do so, we require mod-
eling the constraints and reconfiguration operations of a cloud
system in a way that allows for a generically, independent of
cloud providers. In this paper, we investigate how reconfigu-
ration constraints can be added to feature models to support
modeling and reasoning over cloud environments adaptation.
More specifically, we try to tackle the following challenges.
• Model temporal constraints on DSPLs. How to define

constraints that include temporal aspects, such as when
selecting a feature makes another feature unavailable for
all future reconfigurations?

• Model reconfiguration operations and constraints How
to capture multiple alternative reconfiguration paths and
their impact on performance, costs and reconfiguration
time?

• Finding reconfigurations How to implement reasoning
over feature models and reconfiguration constraints to
answer queries such as ’what is the cheapest reconfig-
uration path to meet a set of requirements’ or ’is there a
reconfiguration path in which there is no downtime?’.

III. MODELING DSPL ADAPTATION

Previous works [7], [6] on DSPL highlight the need for
adaptive systems to perform safe transitions between con-
figurations. According to Morin et al. [6], systems should
evolve through a safe migration path between configurations,
while Hubaux et al. [7] say that transitions should not only
consider static constraints of a variability model but also the
”dynamic constraints that determine the allowed transitions
between configurations”.

In spite of it, existing works on DSPLs provide little support
for reasoning over transitions between configurations. In most
approaches, verification is limited to checking if a target
configuration conforms to a variability model.

In some approaches, the variability model is augmented with
context features [14], [15], [16], [10] or binding time [11], [13]
information. Still, verification is restricted to monitoring con-
text changes, checking what features need to be (de)selected
and verifying if these features can be rebound at runtime.

5https://devcenter.heroku.com/articles/app-migration

According to [17], [6], [18] a DSPL can be abstracted as
a reactive transition system [19] in which states represent
valid system configurations and state transitions define system
adaptations. The variability model is therefore a compact
notation for describing a DSPL’s transition system. By using
a variability model we eliminate the need to enumerate all
possible system configurations and transitions.

However, as a variability model abstracts away from its
underlying transition system, it fails to capture any restriction
that may exist on the transitions between configurations. By in-
troducing temporal constraints and reconfiguration operations
we give first class status to these transitions while looking for
a compromise between full specification of a transition system
and the more abstract view based on variability models.

A. Preliminary definitions

In the following paragraphs, we will go over definitions for
feature models, transition systems and DSPLs. Then, we will
introduce temporal constraints and reconfiguration operations
to DSPLs.

Definition 1: A feature model can be defined as a tuple
M = (F , P) where F is the set of features and P ⊆ P(F) is
the set of valid products that can be derived from the feature
model. We also use the [[M]]FM notation to denote the set of
products of a feature model M .

Definition 2: A transition system [19] can be described by a
Kripke structure [20] T = (S, I,R,AP,L) where S is a finite
set of system states, I ⊆ S is the set of initial states, R ⊆ S×S
is a left-total relation representing state transitions, AP is a set
of propositions and L : S → 2AP is a labeling function. An
execution path of T is a non-empty infinite sequence of states
ρ = 〈s0, s1, s2, s3, ...〉 such that s0 ∈ I and (si, si+1) ∈ R for
all i ≥ 0. The behavior of a transition system t is defined by
the set all possible execution paths, denoted by [[T]]TS ⊆ Sω
where Sω is the set of all infinite sequences of states in T .

Definition 3: Given a feature model M = (F , P), the
corresponding DSPL can be represented as a transition sys-
tem DSPL(M) = (S, I,R,AP,L) where I = S = P ,
R = S × S, AP = F and L(s) = s.

From this definition, a DSPL can be seen as transition
system in which each state represents a possible configuration
according to the feature model. The system can start at any
configuration and transition to any other possible configura-
tion.

B. Temporal constraints

A temporal property [21] defines a condition over the
execution paths of a transition system. A system is said to
satisfy a given property if all of its possible execution paths
satisfy the property. Thus, a temporal property specifies the
admissible or desired behavior of a system over time.

Definition 4: Let T = (S, I,R,AP,L) be a transition
system, a temporal property P ⊆ Sω over T is a set of
execution paths over the states of T . The transition system
T satisfies the property P , written T |= P iff [[T]]TS ⊆ P .

https://devcenter.heroku.com/articles/app-migration

Temporal properties are commonly used in model check-
ing [19] to verify if a system exhibits a certain behavior, but
can also be used to specify how the system should behave.
Adding temporal properties to DSPL specification, allows to
constrain the transitions between configurations to only those
that satisfy the property. Thus, by combining feature models
with temporal constraints we can define more precisely the
adaptive behavior of a DSPL.

The semantics of a transition system and temporal properties
are defined by sets of execution paths over system states.
Transition systems and properties can be treated as languages
over the set of system states. The execution paths are infinite
words over the alphabet Σ = S. Thus, given a transition
system TS, we say L(TS) is the language that represents all
possible executions of TS. Similarly, for a property P , L(P)
is the language that represents all the possible executions that
satisfy P . The intersection of L(TS) ∩ L(P) is the set of
execution paths of TS that satisfy P .

Therefore, given a feature model M and a set of properties
φ ⊆ P(Sω), we want to build a transition system TSDSPL
such that

L(TSDSPL) =
⋂
x∈φ

L(DSPL(M)) ∩ L(x).

That is a transition system whose execution paths are infinite
sequences of configurations for feature model M that conform
to all temporal properties φ.

Linear temporal logic (LTL) [19] is one of the most com-
monly used formalisms for expressing temporal properties and
can represent a subset of the class of ω-regular properties.
ω-regular properties correspond to the class of ω-regular
languages, an extension of regular languages to infinite words.

In our work, we employ LTL as a formalism for defining
temporal constraints, but other notations [19] could also be
used applying the same principles. In LTL, formulas are
composed of a finite set of atomic propositions AP , boolean
connectors such as ¬, ∧, ∨,→, and temporal logical operators
U (until),© (next time), � (always) and � (eventually). Given
p ∈ AP , the syntax of an LTL formula can be defined by the
following grammar:

φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ |
φ Uφ | © φ | �φ | � φ

Besides the standard boolean logic operators, LTL temporal
operators can be defined in terms of the© (next) and U (until)
operators. The intuitive semantics of these operators is that
©φ means that proposition φ should hold in the next state of
a path. Thus the formula φ ∧©ψ defines the φ should hold
in the current state and ψ should hold in the next state. The
until operator defines that a a proposition should hold until
another becomes true. Therefore φ U ψ means that φ should
hold from now on up to when ψ becomes true.

When defining temporal constraints over feature models the
set of atomic propositions is defined by the set of features.
Thus, an atomic proposition is true at a given state if the

corresponding feature is selected in the corresponding config-
uration.

Using LTL we can express some constraints shown in
the motivating example in Section II-A. For example, in the
case of constraints on downgrading MySQL database plan,
we could use the following LTL formula to define that a
configuration using plan M2 cannot be downgraded to use
M1.

�(M2→ ¬ �M1)

Actually, this constraint expresses that if at any point in
time (�), if the system goes though a state in which M2 is
selected, then M1 should not eventually (¬�) be selected in
the future.

As part of the class of ω-regular languages, LTL formulas
are closed under union and intersection. Thus, given LTL
formulas φ and ψ, L(φ) ∩ L(ψ) = L(φ ∧ ψ).

From an LTL formula φ, we can build a corresponding
Büchi automaton Aφ that accepts exactly the infinite se-
quences of states that comply with φ. Büchi automata are
an extension of finite automata for ω-regular languages and
thus can be composed with a transition system to obtain
another transition system that represents the intersection of
both languages.

Thus, given a feature model and a temporal constraint, we
can define a DSPL transition system whose execution paths
are sequences of feature model configurations that conform
with the temporal constraint.

Definition 5: Given a feature model M and a LTL for-
mula φ, we can build DSPL with temporal constraints as
DSPL(M,φ) = DSPL(M) ⊗ Aφ. That is, the synchronized
product between the transition system for the DSPL defined
by M , and the Büchi automata for φ.

As discussed earlier, a feature model M defines a corre-
sponding transition system DSPL(M) in which there are
transitions between any two possible feature model config-
urations. The goal of including temporal constraints is to
limit these transitions and express the actual variability of the
system over time.

By combining a feature model with temporal constraints
we can define a DSPL’s adaptive behavior in a compact
way. Temporal constraints can be defined using well-known
LTL logical formalism, which can be transformed into a
Büchi automaton and combined with the feature model into a
transition system.

C. Reconfiguration operations

In the previous section we introduced temporal constraints
to feature models to define properties over a DSPL’s adaptive
behavior. For the analysis of temporal properties, we did not
consider any actions or labeling of transitions and analysis was
strictly state-based.

However, as seen in the motivating example, reconfiguring
a cloud environment may require executing some operations
such as migrating a database, restarting services, redeploying

an application project, etc. Each of these operations may have
different impacts on the application cost and performance,
and therefore should be considered during the reconfiguration
process.

For modeling a DSPL with reconfiguration operations we
rely on the definition of doubly labeled transition systems
(L2TS) [22], in which both states and actions can be la-
beled with atomic propositions. In the literature, other similar
notations such as labeled Kripke structures [23] and mixed
transition systems [24] have also been used for state/action-
based analysis.

Definition 6: A L2TS is a tuple T = (S, I, Act,R,AP,L)
where S is a finite set of system states, I is the set of initial
states, Act is a finite set of transition actions, R ⊆ S×2Act×S
is the transition relation, AP is a set of atomic propositions
and L : S → 2AP is a state-labeling function.

An execution path of t is an infinite sequence of states and
sets of actions ρ = 〈s0, α0, s1α1, s2, α2, s3, ...〉 such that s0 ∈
I and (si, αisi+1) ∈ R for all i ≥ 0.

This definition extends Kripke structures with a set of
actions that can be part of a transition. In the context of
a DSPL these actions represent reconfiguration operations
required to adapt the system from a current configuration to a
new desired configuration.

An L2TS enables describing a DSPL’s transition system
considering reconfiguration operations. However, as men-
tioned earlier, completely specifying a DSPL transition system
is unfeasible due to the large number of states and potential
transitions. As in the case of temporal constraints, it would be
more valuable to have a declarative language that enables de-
scribing in which cases reconfiguration operations are needed.

State/Event Linear Temporal Logic (SE-LTL) [23] is an
extension of LTL to support expressing temporal properties
over states and actions. SE-LTL is very similar to LTL,
but allows for temporal logic state/event formulas over state
atomic propositions and actions. Given p ∈ AP and a ∈ Act,
the syntax of an SE-LTL formula is defined by the following
grammar:

φ ::= p | a | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ |
φ Uφ | © φ | �φ | � φ

Semantics differ slightly as an SE-LTL property may also
include constraints over actions. In these cases, an action
holds at a given state in an execution path if it is part of
the transition immediately after it. Thus, given an execution
path ρ = 〈s0, α0, s1, α1, s2, ...〉, action a ∈ Act holds at state
i iff a ∈ αi. Note that the transition relation R ⊆ S×2Act×S
is defined over the power set of actions and each transition can
have multiple actions. The semantics of logical and temporal
operators is the same as in LTL.

Using the SE-LTL we can express constraints from the
motivating example given in Section II-A that involve oper-
ations and features. For instance, we could express the rule
that changing the geographical region requires migrating the
application as follows:

�(((US ∧©EU) ∨ (EU ∧©US))→MigrateApp)

This constraint defines that whenever the location feature
is changed from US to EU or vice-versa, the MigrateApp
operation should be executed. Therefore, by employing SE-
LTL we can define temporal and propositional constraints over
features and reconfiguration operations.

Considering temporal constraints and reconfiguration oper-
ations we can redefine the syntax and semantics of DSPLs
based on a feature model.

Definition 7: Given a feature model M = (F , P) and
a set of reconfiguration operations OP, we can define the
corresponding DSPL as a doubly labeled transition system
such that DSPL(M,OP) = (S, I, Act,R,AP,L), where
I = S = P , Act = OP , R = S × 2OP × S, AP = F
and L(s) = s.

This definition extends DSPLs based on a feature model
with a set of reconfiguration operations. The obtained tran-
sition system allows transitioning between any feature model
configuration by executing any combination of reconfiguration
operations. As in the case of LTL formulas, SE-LTL can also
be used to build a Büchi automaton [23] that can be combined
with the transition system obtained from the feature model and
reconfiguration operations to limit the allowed transitions.

Definition 8: Given a feature model M , a set of re-
configuration operations OP and a SE-LTL formula
φ, we build a transition system DSPL(M,OP, φ) =
DSPL(M,OP) ⊗ Aφ.

That is the synchronized product, as defined in [23], of
the transition system obtained from the feature model and
reconfiguration operations with the Büchi automaton that
accepts the property defined by the formula φ.

D. Reconfiguration operation costs

Reconfiguration operations may result in downtime, per-
formance loss, or additional costs during reconfiguration. In
our motivating example, migrating a PostgreSQL database
using pgcopy requires about 3 minutes of downtime per
GB according to Heroku documentation. However, syncing a
follower database may take hours, and adds the expense of a
second database, but has minimal to no downtime.

To calculate the cost of applying a reconfiguration, we
assume that cloud providers supply a set of cost functions
C = {c0, c1, c2, c3, ...}, where each function ci ∈ C is
specific to a type of cost (e.g., downtime, performance penalty,
monetary cost) and takes as argument any reconfiguration
operation op ∈ OP .

Since many cost functions require access to the current
system configuration and load, we feel that providers are in
the best position to provide such functions. However, many
cost functions can be created, as we have done, by studying
the provider’s documentation. These serve as utility functions
that can be used to optimize a higher-level fitness function
that is written by the user. Furthermore, the units returned
by a cost function (e.g., seconds, dollars, percentage) don’t

need be standardized, nor do the same cost functions need
to be applied across providers. Because users will invoke this
functions explicitly, we only require that the user understand
the function, the units returned by the function, and how to
interpret them.

Introducing temporal constraints on DSPLs enables us to
express detailed constraints on how variability can be applied
to the system over its lifetime. Reconfiguration operations
allow describing and analyzing the different ways of effecting
a reconfiguration, as well as making explicit the constraints
between features and operation. Finally, cost functions provide
a means of understanding the side-effects of reconfigurations
and for optimizing the user’s extra-functional requirements,
such as downtime or cost. Together these constructs support
modeling adaptation constraints in cloud environments that
cannot be captured with variability models.

IV. REASONING ON DSPL ADAPTATION

The previous section presented how we define a DSPL
as a transition system, and how temporal constraints can be
combined with feature models to better capture a DSPL’s
adaptation behavior over time. In this section we discuss
implementing a reasoner for identifying a reconfiguration plan
given a reconfiguration request.

A. Reconfiguration query

Adaptations in a DSPL are usually triggered by requests
to include or remove a set of features from the current
configuration, or by changes in monitored context features.
In both cases, we have a current system configuration and a
high-level change request that specifies which features should
be included or excluded. From these, we want to identify the
set of possible reconfigurations that will move the system to a
target state that conforms to the requested change. In addition,
according to system preferences, we may also be interested
in finding a reconfiguration that meets some criteria, such as
having no downtime or minimizing costs.

Definition 9: A reconfiguration query q = (A,E, ψ) is
defined by a set A of features that should be part of the target
configuration, a set E of features that should not be part of the
target configuration, and a condition ψ over the reconfiguration
transition. This condition can be defined over reconfiguration
cost functions. Given c ∈ C and i ∈ N, a condition is defined
over the following grammar:

ψ ::= ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ψ → ψ | c relop i
relop ::= ≤ | < | > | ≥ | =

A condition ψ defines a predicate over transitions based on the
estimated costs of executing their reconfiguration operations.
Thus, given a condition ψ = c relop i, we have the predicate
gψ over 2Act defined as

gq(α) = α ⊆ Act ∧

(∑
a∈α

c(a)

)
relop i

For conditions that employ logical operators (i.e. ∧, ∨, ¬, →)
we can obtain a corresponding predicate by applying these
operators to predicates over costs accordingly.

Similarly, from feature sets A and E, we can also define a
predicate over the set of states S of a transition system that
recognizes candidate target configurations as

fq(s) = s ∈ S ∧A ⊆ L(s) ∧ (E ∩ L(s) = ∅)

Given a transition system T = (S, I, Act,R,AP,L), its
current state s and reconfiguration query q = (A,E, ψ), we
can define the set of possible reconfigurations as

NT (s, q) = {(α, s′) | (s, α, s′) ∈ R ∧ gq(α) ∧ fq(s′)}

A reconfiguration includes a target state and a set of
reconfiguration actions for moving the system to the target
states. The reconfigurations returned by function NT are those
for which the target states and reconfiguration actions comply
with the predicates defined by the reconfiguration query.

Example

B. Optimization query

Besides finding a set of possible reconfigurations for a
given query, one may be interested in identifying optimal
reconfigurations. with minimum monetary costs or downtime.

Definition 10: An optimization query o = (q, φ) is defined
by a reconfiguration query and an objective function φ. The
objective function φ : OP → N can be defined as composition
of cost functions c ∈ C.

Given a transition system T = (S, I, Act,R,AP,L), its
current state s and an optimization query o = (q, φ), we can
define the set of optimal reconfigurations as

OT (s, o) = min
(α,s′)∈NT (s,q)

(∑
a∈α

φ(r)

)
.

C. Symbolic representation

What’s symbolic representation: From a system current
configuration and reconfiguration query, we are interested in
finding one or many possible target configurations. From the
transition system of a DSPL, we can identify what are the
possible reconfigurations by looking at the transitions outgoing
the current system state and searching for the ones that agree
with the reconfiguration query. However, as discussed earlier,
explicitly building a DSPLs transition system can be unfeasible
due to the large number of possible states and transitions.

One approach to deal with this problem is to build a
symbolic representation of the transition system. The idea
behind symbolic representation is to represents sets of system
states and the transition relation as a propositional formula. Set
operations can then be effected as logical operations between
formulas and set membership by solving satisfiability. Thus,
the set of states of a transition system can be defined by a
propositional formula over the set of atomic propositions using
substantially less space than the number of possible states.

A feature model can also be seen as a symbolic repre-
sentation of the set of valid configurations for a system.

A model with n features can describe a system with up
to 2n possible configurations. In addition, a feature model
can also be represented as a propositional formula [25], for
which the satisfiable assignments represent the set of valid
configurations.

Let T = (S, I, Act,R,AP,L) be a transition system, the
transition relation R ⊆ S × 2Act × S can be defined by
a propositional formula over AP ∪ Act ∪ AP ′. For
representing a transition system as a propositional formula we
need to define two sets of propositional variables, representing
the set of atomic propositions AP at the source and target
states. Here we have AP ′ = {p′ | p ∈ AP} as a copy of
atomic propositions that represent the labeling in a target state.
Besides this, we have to consider transition actions that may
occur between any two states, represented by Act.

For each state in a transition system, the labeling function
L : S → 2AP defines exactly what are the atomic propositions
that hold at a given state. For any state s ∈ S, we may define
a propositional formula that uniquely identifies this state as
L̃(s) = (

∧
p∈L(s)

p) ∧ (
∧

p∈(AP\L(s))
¬p).

Similarly, every transition (s, α, t) in the transition relation
R ⊆ S × 2Act × S has a set of transition actions a ∈ α. For
any set of transition actions, we may define a propositional
formula that uniquely identifies it as
L̃(α) = (

∧
a∈α

a) ∧ (
∧

a∈(Act\α)
¬a).

Relying on these functions that uniquely identify a set of
actions and a state, we can define a transition relation by the
following propositional formula
R̃t =

∨
(s,α,t)∈R

L̃(s) ∧ L̃(α) ∧ L̃(t)
′
.

Thus, from any state s ∈ S the set of outgoing transitions
can be obtained by the propositional formula
P̃ ost(s) = R̃t ∧ L̃(s).
Based on this we can obtain a propositional formula that

represents the set of transitions that can be obtained by a
reconfiguration query. So, given a reconfiguration query q =
(A,E, ψ) and current state s, we can obtain the propositional
formula

˜Post(s, q) = L̃(s) ∧ ψ ∧ (
∧
p∈A

p′) ∧ (
∧
p∈E
¬p′)

that defines the set of transitions from state s that are
according to query q. By solving satisfiability over the formula
we can find the reconfiguration alternatives that support are
according to query.

Here, we showed how we can represent a transition system
symbolically by a propositional formula and use satisfiabil-
ity solver to find a set of transitions that support a given
query. However, we are not interested in building a symbolic
representation from a complete transition system, but directly
from a feature model extended with temporal constraints and
reconfiguration operations.

As mentioned earlier, if we do not consider temporal
constraints, a DSPL defined by a feature model can transition
between any two valid configurations. So, given a feature
model M , we have a propositional formula M̃ that defines the

set of allowed configurations [[M]]FM and a set of operations
OP , we can define the propositional formula for the transition
relation as
R̃FM = M̃ ∧ ÕP ∧ M̃ ′.
An LTL formula can also be transformed into a proposi-

tional formula [26], [27], that symbolically defines an equiva-
lent transition relation. The obtained propositional formula is
defined over the atomic propositions included in the formula,
which in the DSPL case can be features or operations. From
an LTL formula φ, we obtain a propositional formula Iφ that
defines the set of states in which φ holds and Rφ that defines
the transition relation. Thus, from a feature model M and an
LTL formula φ we can obtain the propositional formulas
ĨMφ = m̃ ∧ Iφ
that represents the set of valid configurations at the initial

state, and
R̃Mφ = m̃ ∧ m̃′ ∧ ÕP ∧Rφ
that represents the set of allowed transitions between system

states. Similarly, the set of valid transitions from a given
current state s is defined by the formula

˜PostMφ(s) = L̃(s) ∧ R̃Mφ.
Once we have a propositional formula that represents the

set of valid transitions from a current state, we can use a SAT
solver to find what are the possible transitions. So, given a
reconfiguration query q = (A,E, ψ) without any optimization
goal or cost constraints (ψ = true), we can obtain a valid
transitions by finding a satisfiable assignment to the formula

˜PostMφ(s, q) = L̃(s) ∧ R̃Mφ ∧ (
∧
p∈A

p′) ∧ (
∧
p∈E
¬p′).

If there are cost constraints (ψ 6= true), we can use support
from Pseudo-Boolean SAT solvers [28] for encoding linear
inequalities as boolean constraints. Similarly an optimization
request can be encoded using Pseudo-Boolean SAT optimiza-
tion [29].

Symbolic representation of transition systems enables to
express the sets of states and the transition relation as a propo-
sitional boolean formula. From a given feature model and LTL
formula, we can obtain a corresponding transition system as
well as its symbolic representation. Given a reconfiguration
query, we can use SAT solvers to reason over the system’s
symbolic representation and identify a valid transition from a
current state.

V. EVALUATION

To assess the use of temporal constraints and reconfiguration
operations in DSPLs, we evaluate them in the context of a case
study on the Heroku PaaS provider. Our goal is to validate the
feasibility of the proposed approach in modeling configuration
constraints of cloud providers, as well as the performance of
evaluating reconfiguration requests.

A. Tool implementation

Before presenting the evaluation results, we give a brief
overview of our implementation of the proposed approach.

To support specifying a DSPL, we designed a domain-
specific language to define feature models with cross-tree

/* Feature Model */
Heroku {
Application {
Location [US | EU | PrivateLocation [Virginia | Oregon | Frankfurt | Tokyo | Sydney]]
Process? {
Buildpack [Ruby | Node | Clojure | Python | Java | Gradle | Grails | Scala | Play | PHP | Go]
Kind [Web | Worker]
Size [Free | Hobby | Standard1X | Standard2X | PerformanceM | PerformanceL]
}
Addons? {
HerokuPostgres? [HobbyDev | HobbyBasic | Standard0 | Standard2 | Premium1 | Premium2]
ClearDBMySQL? [Ignite | Punch | Drift | Scream]
/* ... */
}
}
}
/* ... */
}
/* Temporal constraints */
[]((Punch -> X!Ignite) && (Drift -> X!(Punch || Ignite)) && (Scream -> X!(Drift || Punch || Ignite)))
[](Change(ClearDBMySQL) -> UpgradeMySQL)

[](Change(Location) -> MigrateApp)

[]((Change(HerokuPostgres) && (Switch(HobbyDev) || Switch(HobbyBasic))) -> PgCopy)
[](Change(HerokuPostgres) -> (PgCopy || FollowerPgDb))

Fig. 2. Sample extract from Heroku feature model

constraints on features, and temporal constraints on both
reconfiguration operations and features. From the feature di-
agram and cross-tree constraints, we generate a propositional
formula that correspond to a symbolic representation of the
set of valid configurations for the DSPL. From temporal con-
straints, described as LTL formulas, we also obtain a symbolic
representation of the DSPL’s transition relation. These are
then combined into propositional formulas that describe the
DSPL’s transition system as defined in Section IV. In both
cases, we implemented well-known algorithms presented in
previous work [25], [26], [27].

To perform perform a reconfiguration or optimization query,
we convert the query into a propositional formula that repre-
sents the set of valid reconfigurations that comply with the
query. We then find candidate reconfigurations by solving
satisfiability over the combined formulas of the query and the
DSPL’s transition system.

As described in Section IV, the symbolic representation
of transition systems enables to express the sets of states and
the transition relation as a propositional boolean formula. We
use the SAT4J6 solver and the LogicNG7 library for encoding
Pseudo-Boolean constraints that involve cost functions. The
implementation was largely written in Groovy with smalls
parts in Java.

B. Case study

For our case study we designed a feature model containing
the features and constraints described in Section II. which was
augmented with data extracted from the Heroku website.

6http://www.sat4j.org/
7https://github.com/logic-ng

We obtained information on 161 addon cloud services from
different categories, such as data storage, networking, security,
management tools, etc. We automatically extracted, from each
addon’s webpage, the information on service plans, region
availability and language support. From region availability
information, we generated cross-tree constraints for 113 ser-
vices that are not available in every region. Similarly, 66
constraints were generated from language support information.
Additionally, for each addon with multiple service plans we
generated a reconfiguration operation, and a corresponding
temporal constraint, associating the operation to changing the
addon plan.

The resulting Heroku feature model consists of 1036 fea-
tures, 124 operations, 134 cross-tree constraints and 124
temporal constraints. We also defined two cost functions, price
and downtime. that estimate, respectively, the monetary cost
and the downtime of performing a reconfiguration operation.
Fig. 2 shows an extract from this feature model, defined in
the domain-specific language that was designed as part of
our tool implementation. The extract includes a part of the
feature model hierarchical structure as well as some temporal
constraints between feature changes and reconfiguration oper-
ations.

C. Experimental setup

To evaluate reconfigurations in Heroku PaaS environments,
we designed a set of 4 adaptation scenarios, defined in Table I,
that represent example adaptations. For each scenario, we
executed 5 different kinds of queries, including restrictions and
optimizations on price and downtime. These experiments were
run for 3 different utilization profiles that represent application
metrics at the moment a reconfiguration is triggered. In our

http://www.sat4j.org/
https://github.com/logic-ng

TABLE I
EXPERIMENTAL SETUP

Adaptation scenarios
1 Changes in database size triggers a request to a bigger

database plan.
2 Request for a new feature that is not available in the

current region.
3 Application requires changing the programming frame-

work and database.
4 Application container needs to be scaled up.

Reconfiguration queries
1 No cost constraints.
2 With constraints over downtime.
3 With constraints over downtime and price
4 Optimization based on downtime.
5 Optimization based on downtime and price.

Utilization profiles
1 DBSize: 10GB, AppSize: 100 MB, AppStartUp: 15s
2 DBSize: 100GB, AppSize: 200 MB, AppStartUp: 30s
3 DBSize: 2TB, AppSize: 500 MB, AppStartUp: 60s

experiment, we considered application and database size, as
well as application startup time. These metrics are used
because they affect reconfiguration costs, but other information
available from the executing environment could be used, in
conjunction with new operation cost functions, as well.

For each combination of adaptation scenario, query and
utilization profile we measured the time required to find one
valid reconfiguration. Besides this, we also measured the
time required to build a symbolic representation of a DSPL
transition system from the Heroku feature model. We executed
12 times each combination, leading to a total of 720 individual
query evaluations. All experiments were run on a late 2013
MacBook Pro Laptop with a 2 GHz Intel Core i7 processor
and 8GB of memory.

D. Results

In Table II we present the minimum, maximum and average
times of executing each of the measured processing operations.
The first line shows the time required to build a symbolic
representation of the transition system, which includes the
time to translate the feature model diagram and LTL formu-
las into propositional formulas. The second line shows the
time required to find a valid reconfiguration from a given
query. This includes the time to translate the query into a
propositional formula and solve satisfiability. The following
lines shows results for executions grouped by the kind of
query. As defined in Table I, we have reconfiguration queries
without cost constraints (1), with cost constraints (2, 3) and
optimization queries (4, 5).

The process step that required the most time was the con-
struction of a symbolic representation for the transition system
(average of 8777ms). However, this representation only needs
to be built once and can then be used for executing multiple

TABLE II
RESULTS

Execution time (ms)
Process step Avg StdDev Min Max #Exec
Build Trans System 8777.31 303.71 8262 10308 720

- Process FM 244.75 28.57 191 552
- Process LTL 8533.57 291.81 8025 10023

All Queries 183.34 50.20 118 389 720
- Build 83.05 50.69 27 227
- Solve 100.29 37.13 5 200

Q wo/ Constraints 140.97 12.93 118 198 144
- Build 32.73 4.56 27 48
- Solve 108.24 11.58 90 153

Q w/ Constraints 224.23 55.55 128 389 288
- Build 140.41 27.65 80 227
- Solve 83.82 53.13 5 200

Q w/ Optimization 163.63 13.26 136 230 288
- Build 50.85 7.11 38 77
- Solve 112.77 10.21 94 166

 100

 150

 200

 250

 300

 350

 400

Query 1 2 3 4 5

T
im

e
(m

s)

Query

Fig. 3. Distribution times for executing each query 144 times (4 scenarios
× 3 profiles × 12 runs)

reconfiguration queries. From analysis of the execution times
for reconfiguration queries we can see that those including
constraints on cost functions are the ones that required more
time to be executed (average of 225.78ms). This is mainly
due to the time required to encode Pseudo-Boolean constraints
on cost functions as propositional formulas. For the other
kinds of queries, most of time is spent on solving the boolean
satisfiability problem that we encode.

Fig. 3, shows a distribution of execution time for different
kinds of queries. From this chart, we can see that queries 2
and 3, that rely on cost constraints take substantially longer
than other kinds of queries. Besides this, queries that combine
different cost functions (3 and 5) take usually longer than with
just one cost function (2 and 4).

E. Threats to validity

The feature model for Heroku used in our evaluation was
built from information obtained through documentation and

structured data available on their website. This means the
variability and constraints considered may not be exhaustive
and there might be new constraints that are not supported by
our approach. Also, the cost functions defined for our exper-
iments return arbitrary values. More realistic cost functions
should rely on better information retrieved from the cloud
environment and the current configuration. Nevertheless, more
precise cost functions (e.g., that return a better estimate),
would not affect the performance or the modeling capacity
of the approach since we only rely on the return values.

We evaluated our approach using one case study that applies
to cloud computing. And although we have identified similar
concerns in other systems where temporal constraints exist and
are not modeled using unified or homogeneous mechanisms,
we have not evaluated our approach in these cases. Hence,
we are optimistic that our approach is applicable to other
providers, to other scenarios, and to other domains, but this
must be verified.

VI. RELATED WORK

Featured Transition Systems are a variant of transition
systems designed to describe the combined behavior of an
entire system family [30], [31]. Temporal logic is used for
defining properties to be checked against systems that are part
of a Software Product Line (SPL). However, their goal is to use
model checking to verify temporal properties over a family of
related systems, while ours is to define the adaptive behavior
of a Dynamic Software Product Line (DSPL).

In many DSPL approaches, variation points are augmented
with binding time information [12] to specify when features
can or must be (de)activated, such as during compilation,
configuration, start-up, runtime, etc. In [13], Bürdek et al.
propose an approach for defining constraints over binding
times, making it possible to indirectly define some temporal
properties through constraints between features and binding
times. However, in cloud environments, each cloud service
may exhibit a different and independent lifecycle, and temporal
constraints are not limited to binding time.

In [32], reconfiguration actions are used to update a sys-
tem’s architecture as a result of a dynamic reconfiguration.
This concept is similar to reconfiguration operations used in
our approach, but there is no support to evaluate the costs of
actions nor to reason over multiple alternative reconfiguration
paths.

In Genie [33], variability models are combined with tran-
sition diagrams that define how a system can adapt between
its different variants. However, when the number of system
variants is very large, fully defining its transition diagram can
quickly become unfeasible. In our work, we employ temporal
logic notation to define a system’s allowed transitions, which
enables to define the adaptive behavior in a declarative way.

In [34], authors propose to use temporal logic for specifying
reconfigurable component-based systems. Similar to our work,
temporal logic is used to declaratively define how a system can
be reconfigured.

A few recent works propose the use of DSPLs to manage
adaptive cloud systems. In [35] and [36], variability from ap-
plications and their running cloud environment are combined
to build systems that can adapt their behavior and executing
environment. In [37], authors propose an architecture for
changing the structure and configuration options of feature
models at runtime, allowing the dynamic evolution of the
system’s variability. Their work is also motivated by a cloud
computing scenario.

Our approach shares with previous work the use of vari-
ability models and transition systems to support the modeling
and management of adaptive systems. However, as cloud en-
vironments offer heterogeneous adaptation mechanisms there
may also be complex constraints governing when and how
a system can be adapted. Our work differs from previous
work by combining variability models with temporal logic
to support a declarative definition of adaptive systems with
complex adaptation constraints.

VII. CONCLUSION

In this paper we propose the use of temporal constraints
on variability models, which allows specifying a Dynamic
Software Product Line’s adaptive behavior. The need for
temporal constraints arised from the complex reconfiguration
constraints that we identified when managing the lifecycle
of adaptive cloud systems. We integrated temporal properties
and reconfiguration operations into the definition of DSPLs to
support expressing these constraints and reasoning over them
to find valid adaptations when a context change is identified.

Based on concepts from model checking, we implemented
a tool for checking a reconfiguration query against the current
system configuration. Our tool finds valid target configura-
tions, as well as sets of reconfiguration operations required
to update the cloud environment to the target configurations.
We evaluated the approach with a use case for the Heroku
PaaS cloud provider. The approach enabled us to define
many existing constraints that were not supported by previous
DSPL approaches and reason over them with low performance
overhead. The prototype implementation and results can be
found in the accompanying site8.

We plan to investigate how these concepts can be applied to
build multi-cloud adaptive environments, that is, cloud systems
composed of services operating across different providers. In
this case, reconfigurations may involve multiple providers and
the system needs to coordinate multiple DSPLs with differ-
ent variability and adaptation constraints. Another research
direction is to use temporal properties to support variability
evolution in cloud providers. As temporal properties define the
allowed transitions in a system, they could be used to define
valid reconfigurations for running systems when structural
variability is updated.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011.

8http://researchers.lille.inria.fr/sousa/seams17/

http://researchers.lille.inria.fr/sousa/seams17/

[2] C. Quinton, D. Romero, and L. Duchien, “SALOON: a platform
for selecting and configuring cloud environments,” Software: Practice
and Experience, vol. 46, no. 1, pp. 55–78, 2016. [Online]. Available:
http://dx.doi.org/10.1002/spe.2311

[3] G. Sousa, W. Rudametkin, and L. Duchien, “Automated setup of
multi-cloud environments for microservices applications,” in 9th IEEE
International Conference on Cloud Computing, San Francisco, United
States, Jun. 2016.

[4] J. Garcı́a-Galán, P. Trinidad, O. F. Rana, and A. Ruiz-Cortés, “Auto-
mated configuration support for infrastructure migration to the cloud,”
Future Generation Computer Systems, vol. 55, pp. 200 – 212, 2016.

[5] A. Ferreira Leite, V. Alves, G. Nunes Rodrigues, C. Tadonki, C. Eisen-
beis, and A. Magalhaes Alves de Melo, “Automating resource selec-
tion and configuration in inter-clouds through a software product line
method,” in 8th IEEE International Conference on Cloud Computing,
New York, United States, Jun. 2015, pp. 726–733.

[6] B. Morin, O. Barais, J. M. Jezequel, F. Fleurey, and A. Solberg,
“Models@run.time to support dynamic adaptation,” Computer, vol. 42,
no. 10, pp. 44–51, Oct 2009.

[7] A. Hubaux and P. Heymans, “On the evaluation and improvement of
feature-based configuration techniques in software product lines,” in
Software Engineering - Companion Volume, 2009. ICSE-Companion
2009. 31st International Conference on, May 2009, pp. 367–370.

[8] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic software
product lines,” COMPUTER, vol. 41, no. 4, pp. 0093–95, 2008.

[9] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis
of feature models 20 years later: A literature review,” Information
Systems, vol. 35, no. 6, pp. 615 – 636, 2010.

[10] J. Mauro, M. Nieke, C. Seidl, and I. C. Yu, “Context aware
reconfiguration in software product lines,” in Proceedings of the Tenth
International Workshop on Variability Modelling of Software-intensive
Systems, ser. VaMoS ’16. New York, NY, USA: ACM, 2016, pp. 41–48.
[Online]. Available: http://doi.acm.org/10.1145/2866614.2866620

[11] J. Lee and K. C. Kang, “A feature-oriented approach to developing
dynamically reconfigurable products in product line engineering,” in
10th International Software Product Line Conference (SPLC’06), 2006,
pp. 10 pp.–140.

[12] R. Capilla and J. Bosch, Binding Time and Evolution. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 57–73. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-36583-6 4

[13] J. Bürdek, S. Lity, M. Lochau, M. Berens, U. Goltz, and A. Schürr,
“Staged configuration of dynamic software product lines with complex
binding time constraints,” in Proceedings of the Eighth International
Workshop on Variability Modelling of Software-Intensive Systems, ser.
VaMoS ’14. New York, NY, USA: ACM, 2013, pp. 16:1–16:8.
[Online]. Available: http://doi.acm.org/10.1145/2556624.2556627

[14] K. Mens, R. Capilla, N. Cardozo, and B. Dumas, “A taxonomy
of context-aware software variability approaches,” in Companion
Proceedings of the 15th International Conference on Modularity, ser.
MODULARITY Companion 2016. New York, NY, USA: ACM, 2016,
pp. 119–124.

[15] R. Capilla, Ó. Ortiz, and M. Hinchey, “Context variability for context-
aware systems,” Computer, vol. 47, no. 2, pp. 85–87, Feb 2014.

[16] R. Capilla, M. Hinchey, and F. J. Dı́az, “Collaborative context
features for critical systems,” in Proceedings of the Ninth International
Workshop on Variability Modelling of Software-intensive Systems, ser.
VaMoS ’15. New York, NY, USA: ACM, 2015, pp. 43:43–43:50.
[Online]. Available: http://doi.acm.org/10.1145/2701319.2701322

[17] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Autonomic computing
through reuse of variability models at runtime: The case of smart
homes,” Computer, vol. 42, no. 10, pp. 37–43, Oct 2009.

[18] K. Saller, M. Lochau, and I. Reimund, “Context-aware dspls:
Model-based runtime adaptation for resource-constrained systems,”
in Proceedings of the 17th International Software Product Line
Conference Co-located Workshops, ser. SPLC ’13 Workshops. New
York, NY, USA: ACM, 2013, pp. 106–113. [Online]. Available:
http://doi.acm.org/10.1145/2499777.2500716

[19] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[20] K. Schneider, Verification of Reactive Systems: Formal Methods and
Algorithms. SpringerVerlag, 2004.

[21] Z. Manna and A. Pnueli, “A hierarchy of temporal properties (invited
paper, 1989),” in Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, ser. PODC ’90. New

York, NY, USA: ACM, 1990, pp. 377–410. [Online]. Available:
http://doi.acm.org/10.1145/93385.93442

[22] M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti, An
Action/State-Based Model-Checking Approach for the Analysis of
Communication Protocols for Service-Oriented Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 133–148. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-79707-4 11

[23] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha,
State/Event-Based Software Model Checking. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 128–147. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24756-2 8

[24] C. Pecheur and F. Raimondi, Symbolic Model Checking of Logics with
Actions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 113–
128. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-74128-2
8

[25] D. Batory, Feature Models, Grammars, and Propositional Formulas.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 7–20.
[Online]. Available: http://dx.doi.org/10.1007/11554844 3

[26] E. M. Clarke, O. Grumberg, and K. Hamaguchi, “Another look
at ltl model checking,” Formal Methods in System Design, vol. 10,
no. 1, pp. 47–71, 1997. [Online]. Available: http://dx.doi.org/10.1023/A:
1008615614281

[27] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani, Improving the
Encoding of LTL Model Checking into SAT. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 196–207. [Online]. Available:
http://dx.doi.org/10.1007/3-540-47813-2 14

[28] T. Philipp and P. Steinke, PBLib – A Library for Encoding
Pseudo-Boolean Constraints into CNF. Cham: Springer International
Publishing, 2015, pp. 9–16. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-24318-4 2

[29] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,” Discrete
applied mathematics, vol. 123, no. 1, pp. 155–225, 2002.

[30] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: Efficient verification of temporal
properties in software product lines,” in Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 335–344.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806850

[31] A. Legay, P.-Y. Schobbens, P. Heymans, M. Cordy, J.-F. Raskin, and
A. Classen, “Featured transition systems: Foundations for verifying
variability-intensive systems and their application to ltl model checking,”
IEEE Transactions on Software Engineering, vol. 39, no. undefined, pp.
1069–1089, 2013.

[32] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Using feature models for
developing self-configuring smart homes,” in 2009 Fifth International
Conference on Autonomic and Autonomous Systems, April 2009, pp.
179–188.

[33] N. Bencomo, P. Grace, C. Flores, D. Hughes, and G. Blair,
“Genie: Supporting the model driven development of reflective,
component-based adaptive systems,” in Proceedings of the 30th
International Conference on Software Engineering, ser. ICSE ’08.
New York, NY, USA: ACM, 2008, pp. 811–814. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368207

[34] N. Aguirre and T. Maibaum, “A temporal logic approach to the spec-
ification of reconfigurable component-based systems,” in Automated
Software Engineering, 2002. Proceedings. ASE 2002. 17th IEEE Inter-
national Conference on, 2002, pp. 271–274.

[35] A. Almeida, E. Cavalcante, T. Batista, N. Cacho, F. Lopes, F. C.
Delicato, and P. F. Pires, “Dynamic adaptation of cloud computing
applications,” in The 25th International Conference on Software En-
gineering and Knowledge Engineering, Boston, MA, USA, June 27-29,
2013., 2013, pp. 67–72.

[36] A. Metzger, A. Bayer, D. Doyle, A. M. Sharifloo, K. Pohl, and
F. Wessling, “Coordinated run-time adaptation of variability-intensive
systems: An application in cloud computing,” in Proceedings of the
1st International Workshop on Variability and Complexity in Software
Design, ser. VACE ’16. New York, NY, USA: ACM, 2016, pp. 5–11.
[Online]. Available: http://doi.acm.org/10.1145/2897045.2897049

[37] L. Baresi and C. Quinton, “Dynamically evolving the structural
variability of dynamic software product lines,” in Proceedings of
the 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, ser. SEAMS ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 57–63. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2821357.2821367

http://dx.doi.org/10.1002/spe.2311
http://doi.acm.org/10.1145/2866614.2866620
http://dx.doi.org/10.1007/978-3-642-36583-6_4
http://doi.acm.org/10.1145/2556624.2556627
http://doi.acm.org/10.1145/2701319.2701322
http://doi.acm.org/10.1145/2499777.2500716
http://doi.acm.org/10.1145/93385.93442
http://dx.doi.org/10.1007/978-3-540-79707-4_11
http://dx.doi.org/10.1007/978-3-540-24756-2_8
http://dx.doi.org/10.1007/978-3-540-74128-2_8
http://dx.doi.org/10.1007/978-3-540-74128-2_8
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1023/A:1008615614281
http://dx.doi.org/10.1023/A:1008615614281
http://dx.doi.org/10.1007/3-540-47813-2_14
http://dx.doi.org/10.1007/978-3-319-24318-4_2
http://dx.doi.org/10.1007/978-3-319-24318-4_2
http://doi.acm.org/10.1145/1806799.1806850
http://doi.acm.org/10.1145/1368088.1368207
http://doi.acm.org/10.1145/2897045.2897049
http://dl.acm.org/citation.cfm?id=2821357.2821367

	Introduction
	Motivation
	Motivating example
	Challenges

	Modeling DSPL adaptation
	Preliminary definitions
	Temporal constraints
	Reconfiguration operations
	Reconfiguration operation costs

	Reasoning on DSPL adaptation
	Reconfiguration query
	Optimization query
	Symbolic representation

	Evaluation
	Tool implementation
	Case study
	Experimental setup
	Results
	Threats to validity

	Related work
	Conclusion
	References

