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Abstract. Model-based conformance testing of reactive systems con-
sists in taking benefit from the model for mechanizing both test data
generation and verdicts computation. On-line test case generation allows
one to apply adaptive on-the-fly analyzes to generate the next inputs to
be sent and to decide if observed outputs meet intended behaviors. On
the other hand, in off-line approaches, test suites are pre-computed from
the model and stored under a format that can be later performed on test-
beds. In this paper, we propose a two-passes off-line approach where: for
the submission part, a test suite is a simple timed sequence of numerical
input data and waiting delays, and then, the timed sequence of output
data is post-processed on the model to deliver a verdict. As our models
are Timed Output Input Symbolic Transition Systems, our off-line algo-
rithms involve symbolic execution and constraint solving techniques.
Keywords: Model-based testing, off-line testing, real-time systems, test
suite generation, verdict computation, symbolic execution, timed output-
input symbolic transition systems.

1 Introduction

Using formal methods to generate test cases and to compute verdicts has been
widely studied in the frame of Model Based Testing. In the domain of reactive
systems, models are often given as labeled transition systems which describe the
expected sequences of input and output data (called traces). Real executions of
the System Under Test (SUT) can also be seen as traces. Testing an SUT comes
to interact with it to build traces which are analyzed regarding to its model to
provide verdicts. In black box testing, an SUT is often hardly controllable at the
test execution phase, typically because, for the sake of abstraction, its reference
model may include non-deterministic situations (i.e. after a given trace, several
outputs may occur). For this reason, when dealing with automatic test case
generation, approaches in which inputs to be sent to the SUT are computed

? Work partially supported by the ITEA project openETCS.
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on-the-fly are very popular: they permit to stimulate it in a flexible manner
depending on observed SUT executions, and depending on the goal of the testing
process in terms of behaviors to cover. Such approaches are often qualified as
on-line testing.

The other alternative consists in: computing the full input sequence; submit-
ting the sequence to the SUT; storing the output sequence of the SUT during the
execution phase; computing a posteriori a verdict by analyzing the trace result-
ing from the merge of input and output sequences. Such approaches, qualified as
off-line testing ones, have several advantages. First, computed input sequences
can be stored and later translated into several formats, in particular to become
compatible with various home made test benches in different industrial contexts.
This allows one to avoid the intertwining (unavoidable in on-line approaches) of
the test generation/test execution/verdict computation processes, which may be
technically hard to achieve. Second, tests can be replayed as many times as de-
sired which makes off-line methods particularly well-adapted for non-regression
testing. Third, by construction, no constraint solving delays can interfere with
the test data execution. To sum up, off-line testing eases the deployment of input
sequences in the test environment and enables their reuse.

However, a particular source of concern about off-line testing is to know at
which instants precisely the tester has to send the successive data of the input
sequence. Those instants can be identified from the knowledge of a clock cycle or
of an hypothesis of an instantaneous reaction in synchronous frameworks (e.g.
testing from the clocked data-flow language Lustre in [10] or from Finite State
Machines –FSM– in [11]). In asynchronous systems, the waiting delay between
two successive inputs is important because the SUT takes time to compute
outputs to be sent, and because sending an input before the output computation
is complete, or after it is completed, leads to define different execution traces.
Therefore, timed models introducing time delays between communication actions
are good candidates to support input sequence generation. Moreover, in order
to properly identify the trace observed at the test execution step, one needs a
mechanism to know the order of occurrences between inputs and outputs: in
fact, measuring delays between outputs permits to reconstruct the full trace of
inputs, outputs and delays.

In this paper, we propose an off-line testing approach in a timed model-
based framework. The approach is decoupled in different steps: (a) the coverage-
based selection of an input sequence with delays; (b) the execution of the SUT
for the input sequence which generates an output sequence with delays as a
result. Input and output sequences are then merged to generate a complete
execution trace; (c) the verdict computation based on a traversal of the model
guided by the execution trace. The first and last steps are conducted off-line
with Timed Input Output Symbolic Transition Systems (TIOSTS) for models.
TIOSTS are extensions of Input/Output Symbolic Transition Systems (IOSTS)
[8] and of Timed Automata (TA) [1], in which both data and time properties
are expressed symbolically. Our framework is situated within the context of the
tioco conformance relation [5, 9, 14].
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Section 2 gives preliminaries about time and data denotation as first order
structures. In Section 3, we recall the tioco setting. Then, we present the syntax
of TIOSTS and give their semantics as timed traces in Section 4. We show in the
same section how to compute these traces using symbolic execution techniques.
In Section 5, we introduce our off-line testing algorithm. Section 6 reviews rele-
vant state of the art concerning timed conformance testing.

2 Data and Time Denotation

We use classical multi-typed first order logic to symbolically denote data and
time. A signature Ω is a triple (S,Op, P ) where S is a set of types, Op (resp. P ) is
a set of operations (resp. predicates) provided with a profile in S+ (resp. S∗). For
any set V of variables typed in S, we note TΩ(V ) (resp. PΩ(V )) the set of terms
(resp. predicate terms) over V and Ω inductively defined as usual. An Ω-model
M =

⋃
s∈SMs is provided with a function f : Ms1 × · · · ×Msn → Ms (resp. a

predicate p : Ms1 × · · · ×Msn) for each f : s1 · · · sn → s in Op (resp. for each
p : s1 · · · sn in P ). Substitutions (resp interpretations) are applications from V to
TΩ(V ) (resp. M) preserving types and can be canonically extended to TΩ(V ).4

The set SenΩ(V ) of all formulas contains the predicate terms (including the
truth values > and ⊥ denoting resp. the true and false values), the equalities
t = t′ for t, t′ terms of the same type and all formulas built over the usual
connectives ¬,∨,∧ and quantifiers ∀x, ∃x with x variable of V .

The satisfaction of a formula ϕ by an interpretation ν : V → M is denoted
M |=ν ϕ where M |=ν t = t′ (resp. M |=ν p(t1, . . . , tn) with t1, . . . , tn terms of
TΩ(V )) is defined by ν(t) = ν(t′) (resp. (ν(t1), . . . , ν(tn)) ∈ p), and connectives
and quantifiers are handled as usual in more complex formulas.

We suppose that Ω contains a particular type time to denote durations.
For readability sake, Mtime is denoted D (for Duration) and is assimilated to
the set of positive (or null) real numbers.5 Op and P contain some classical
operations + : time × time → time, − : time × time → time, or predicates
<,≤: time × time, provided by default with their usual meanings.6. Variables
of type time are called clocks For a set of clocks T , we note Sentime(T ) the set
of formulas only containing conjunctions of formulas of the form z ≤ d, d ≤ z,
z < d or d < z, where d is a constant and z is in T .

In the sequel, Ω = (S,Op, P ) and M are supposed given.

3 System Under Test

In order to reason about Systems Under Test, we denote them as Timed Input
Output Labeled Transition Systems (TIOLTS) [6, 9, 14]. TIOLTS are automata

4 The set of applications from A to B is denoted as BA.
5 In practice, any set of values used in a constraint solver for approaching real numbers.
6 For simplicity, +, < . . . are also denoted by +, <.
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whose transitions are labeled either by actions (inputs, outputs) or by delays.
For simplicity, the unobservable action τ is not introduced (see [2]).

Let C be a set of channels. The set of actions over C, denoted ActM (C), is
IM (C) ∪OM (C) where IM (C) = {c?v | v ∈M, c ∈ C} denotes the set of inputs
and OM (C) = {c!v | v ∈ M, c ∈ C} denotes the set of outputs. Thus, c?v (resp.
c!v) stands for the reception (resp. emission) of v by the SUT on the channel c.

Definition 1 (TIOLTS). A TIOLTS over C is a triple (Q, q0, T r) where Q is
a set of states, q0 ∈ Q is the initial state, and Tr ⊆ Q× (ActM (C) ∪D)×Q is
a set of transitions.

For any tr = (q, a, q′) of Tr, source(tr), act(tr), and target(tr) stand respectively
for q, a, and q′. The set of paths of a TIOLTS A = (Q, q0, T r) is the set Path(A) ⊆
Tr∗ containing the empty sequence ε and all sequences tr1 . . . trn such that
source(tr1) = q0, and for all i < n, target(tri) = source(tri+1).7 Let p be a path
of A, the trace of p, denoted as trace(p), is ε if p = ε, trace(p′) if p = p′.tr with
act(tr) = 0, and act(tr).trace(p′) if p = p′.tr with act(tr) 6= 0. Traces(A) is the
set of traces of all paths of Path(A). The set TTraces(A) of timed traces of A
is the smallest set containing Traces(A) and such that:
• for any σ = σ′.d.σ′′ in TTraces(A), σ′.d1.d2.σ

′′ is in TTraces(A),
• for any σ = σ′.d1.d2.σ

′′ in TTraces(A), σ′.d.σ′′ is in TTraces(A),
• for any σ.r in TTraces(A) with r in ActM (C)∪(D\{0}), σ is in TTraces(A),
where d, d1 and d2 are any delays of D\{0} verifying d = d1 + d2.
We introduce a normalization operation whose purpose is to compute a trace

in which the occurring delays are the largest possible (by adding all consecutive
delays of a trace). Let σ be a trace of (ActM (C) ∪ (D\{0}))∗, σ is ε if σ = ε,
σ′.a if σ = σ′.a with a ∈ ActM (C), and σ′.(d1 + · · · + dn) if σ = σ′.d1 · · · dn
where for all i ≤ n, di ∈ D \ {0}, and σ′ is either ε or terminated by an action
in ActM (C).

We naturally define the trace duration as the sum of all delays occurring in
a trace. More precisely, for a trace σ, duration(σ) is 0 if σ = ε, duration(σ′) if
σ = σ′.r with r ∈ ActM (C), and duration(σ′) + d if σ = σ′.d with d ∈ D \ {0}.

Definition 2 (SUT ). A SUT over C is a TIOLTS S = (Q, q0, T r) over C
satisfying the following properties:
• Input enableness: ∀ q ∈ Q, c ∈ C, v ∈M , there exists (q, c?v, q′) in Tr,
• Time elapsing: ∀q ∈ Q s.t. there is no transition of the form (q, c!v, q′)

in Tr, then there exists (q, d, q′) in Tr with d in D\{0}.

Input enableness condition is very classical: it expresses that an SUT can-
not refuse an input. Time elapsing condition expresses that the absence of a
reaction amounts to observe no reaction during a strictly positive delay.

The conformance relation tioco [5,7,9,14] defines the correctness of an SUT
w.r.t a TIOLTS model.

7 A∗ is the set of words on A with ε as the empty word and “.” as the concatenation
law.
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Definition 3 (tioco). Let S be an SUT and A a TIOLTS, both defined over
C. S conforms to A, denoted S tioco A, if and only if for any σ in TTraces(A)
and r in OM (C) ∪ (D\{0}) we have:

σ.r ∈ TTraces(S) =⇒ σ.r ∈ TTraces(A)

In the Introduction, we argued that test data, in off-line testing, is made of
a test input sequence to be submitted to the SUT and of a test output sequence
produced by the SUT. A natural testing hypothesis expresses that when these
two sequences are grouped, they form a trace of the SUT. In order to make
the connection between test data and the SUT, we start by introducing some
functions to handle traces: the projection function allows us to extract a sub-
trace, and the merge allows to combine two traces according to delays occurring
in them. Formally, for any trace σ, the input projection of σ, denoted σ↓I , is:
ε if σ = ε; σ′↓I if σ = σ′.o with o ∈ OM (C), and σ′↓I .x if σ = σ′.x with
x ∈ IM (C) ∪ (D\{0}). Similarly, the output projection of σ, denoted σ↓O , is
defined by exchanging the roles of inputs and outputs. Let us define the merge
operation by induction on the trace structure. For that purpose, let us consider
two traces σi in (IM (C)∪ (D\{0}))∗ and σo in (OM (C)∪ (D\{0}))∗ defined over
C. Merge(σi, σo) is defined as follows:

– σo (resp. σi) if σi = ε (resp. σo = ε),
– o.Merge(σi, σ

′) if σo = o.σ′ with o ∈ OM (C),
– i.Merge(σ′, σo) if σi = i.σ′ with i ∈ IM (C) and σo = d.σ′ with d ∈ D\{0},
– with σi = di.σ

′
i, di ∈ D\{0}, and σo = do.σ

′
o, do ∈ D\{0}

• di.Merge(σ′i, (do − di).σ′o) if di < do
• di.Merge(σ′i, σ

′
o) if di = do

• do.Merge((di − do).σ′i, σ′o) if do < di.

For merging two traces beginning with an input i and then an output o, we
choose to prioritize the output o: if from the point of view of the tester, i and o
are perceived as occurring at the same time, it is likely that o follows from the
previous inputs of the input sequence, not from i. Thus, placing o before i in the
merging trace explicits that i cannot be a cause of o.

As already explained, off-line test input sequences are modeled as sequences
of inputs and strictly positive delays.

Definition 4 (input sequence). An input sequence over C is a sequence of
(IM (C) ∪ (D\{0}))∗.

Once an input sequence is considered, the test execution phase amounts to
play it on S so that it produces an output sequence σo made of outputs and
strictly positive delays. Modeling S as a TIOLTS leads to the following facts:
• there exists a trace σ of TTraces(S), such that the input (resp. output)

projection of σ corresponds to the submitted input sequence (resp. the output
sequence collected when executing the input sequence);
• the duration of the test output sequence is strictly greater than the one of

the input sequence. Indeed, when collecting the output sequence, the tester will
at least wait a moment after sending the last input to the SUT.



6 B. Bannour, J. P. Escobedo, C. Gaston and P. Le Gall

Definition 5 (execution). Let S be an SUT over C, and let σi be an input
sequence over C.

An execution of σi on S, is defined as a sequence σo of (OM (C)∪ (D\{0}))∗
verifying: (1) Merge(σi, σo) ∈ TTraces(S) and (2) duration(σo) > duration(σi).

σo is called an output sequence of σi for S and we note σi ;S σo.

The condition (2) ensures that the trace Merge(σi, σo) is terminated by either
an output or a delay, as verified on the example of Figure 1. Moreover, let us
point out that due to non-determinism, there can exist two distinct traces σo
and σ′o such that σi ;S σo and σi ;S σ

′
o.

test input sequence
4·c?a·23·e?x·39·c?w SUT

test output sequence
12·c!b·31·e!y·65·c!m

Corresponding timeline
4·c?a·8·c!b·15·e?x·16·e!y·23·c?w·42·c!m

Fig. 1: Example of merging two test traces.

Timed Input Output Symbolic Transition Systems (TIOSTS) are models where
data and time are symbolically specified. They are well-accepted concise repre-
sentations of TIOLTS: symbolic data allow one to characterize internal states, to
express firing conditions of transitions and to denote exchanged messages, while
real-time properties are handled with constraints and resets on clock variables.

Since tioco defines conformance of an SUT w.r.t. a TIOLTS specification,
TIOSTS model semantics (Definition 8) is given in the form of TIOLTS.

4 Timed Input Output Transition Systems

TIOSTS are defined over a signature Σ = (C,A, T ) where C is a set of channels,
A is a set of variables (whose type is not time) called attribute variables, and
T is a set of clocks. The set of symbolic actions Act(Σ) is I(Σ) ∪ O(Σ) with
I(Σ) = {c?x|x ∈ A, c ∈ C} and O(Σ) = {c!t|t ∈ TΩ(A), c ∈ C}.

Definition 6 (TIOSTS). A TIOSTS over Σ is a triple (Q, q0, T r), where Q
is a set of states, q0 ∈ Q is the initial state and Tr is a set of transitions of
the form (q, φ, ψ,T, act, ρ, q′) where q, q′ ∈ Q, φ ∈ Sentime(T ), ψ ∈ SenΩ(A),
T ⊆ T , act ∈ Act(Σ), and ρ : A→ TΩ(A) is a substitution s.t. x does not occur
in ψ if act is of the form c?x.

When firing a transition (q, φ, ψ,T, act, ρ, q′), φ is a formula constraining
the delay at which the action act occurs, ψ is a firing condition on attribute
variables, ρ assigns new values to attribute variables, and clocks in T are reset.
The restriction about the occurrence of the reception variable x in the firing
condition ψ is due to the fact that both formulas φ and ψ are evaluated precisely
at the reception instant.
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Example 1 (Trajectory module of a Flight Management System).
The Trajectory module is embedded in a plane and orchestrates the compu-

tation of plane trajectories. Figure 2 depicts its specification: it waits to receive
the current location of the aircraft (transition q0 → q1); it sends a request to
access the flight plan in less than 1 time units (transition q1 → q2); then, either
it receives the requested flight plan in less than 2 time units (transition q2 → q3)
or it does not receive it and sends an error message to its environment in less
than 3 time units (transition q2 → q0); after this step, the trajectory module
sends a request for parameters (typically, fuel quantity, speed, etc.) related to
the state of the plane (transition q3 → q4), and again either receives them in
less than 1 time unit or sends a warning message in less than 2 time units (two
transitions q4 → q5); then, the module sends in less than 1 time unit the loca-
tion, the flight plan and the parameters to a calculator (transitions q5 → q6),
which replies by sending the new trajectory of the plane in less than 2 time units
(transition q6 → q7) unless it fails to meet the time constraint, in which case
the module sends an error message in less than 3 time units; if the calculator
succeeds to react on time, the computed navigation commands are transmitted
to the environment (transition q7 → q0) in a total of less than 9 time units.

q0

q1 q2

q3

q4

q5q6

q7

dClock ≥ 1 ∧ dClock < 2
notif !cParams

data := (loc, fP lan, cParams)
{cClock}

dClock < 1
param?dParams

cParams := dParams
data := (loc, fP lan, cParams)

{cClock}

cClock ≥ 2 ∧ cClock < 3
error!timeout

location?loc
{fClock}

fClock < 1
plan!askF

{fClock, aClock} fClock < 2
plan?fP lan
{dClock}

fClock ≥ 2 ∧ fClock < 3
error!fT imeout

dClock < 1
param!askP
{dClock}

cClock < 1
calc!data
{cClock}

cClock < 2
calc?cmds

aClock < 9
nCmd!cmds

Fig. 2: TIOSTS for the Trajectory module.

Executions of TIOSTS transitions are called runs and modeled as TIOLTS
transitions whose states are called snapshots:

Definition 7 (runs of transitions). Let G = (Q, q0, T r) be a TIOSTS over
Σ. The set SnpM (G) of snapshots of G is the set Q×D×MA∪T . For any tr =
(q, φ, ψ,T, act, ρ, q′) ∈ Tr, the set of runs of tr is the set Run(tr) ⊆ SnpM (G)×
ActM (C) × SnpM (G) s.t. ((q, T , ν), actM , (q′, T ′, ν′)) ∈ Run(tr) iff there exist
d ∈ D and νi : A ∪ T →M satisfying:
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• T ′ = T + d,
• for all w ∈ T , νi(w) = ν(w) + d,
• if act = c!t then for all x ∈ A, νi(x) = ν(x),
• if act = c?x then for all y ∈ A \ {x}, νi(y) = ν(y),
such that we have: actM = νi(act), ∀x ∈ A, ν′(x) = νi(ρ(x)), ∀w ∈ T, ν′(w) = 0,
∀w ∈ (T \ T), ν′(w) = νi(w), M |=νi φ and M |=νi ψ.

Based on runs of transitions, we associate a TIOLTS to a TIOSTS:

Definition 8 (TIOLTS associated to a TIOSTS). The TIOLTS over C
associated to G, denoted LTSG = (SnpM (G)∪{init, qδ}, init, T r′), is defined as
follows: init, qδ are two distinct states not belonging to SnpM (G) and Tr′ is the
smallest subset of (SnpM (G)∪{init, qδ})× (ActM (C)∪D)× (SnpM (G)∪{qδ})
s.t.
Initialization: for any ((q0, 0, ν0), actM , (q, T , ν)) ∈ Run(tr) with tr ∈ Tr and
∀w ∈ T, ν0(w) = 0,
• if 0 < T , (init, T , (q0, T , ν0)) and ((q0, T , ν0), actM , (q, T , ν)) are in Tr′,
• else (T = 0) ((q0, 0, ν0), actM , (q, 0, ν)) is in Tr′,
Runs: for ((q, T , ν), actM , (q

′, T ′, ν′)) ∈ Run(tr) with tr ∈ Tr and q 6= q0,
• if T < T ′, ((q, T , ν), T ′−T , (q, T ′, ν)), ((q, T ′, ν), actM , (q

′, T ′, ν′)) are in Tr′,
• else (T = T ′) ((q, T , ν), actM , (q

′, T , ν′)) is in Tr′,
Quiescence: let snp in SnpM (G)∪{init} be a snapshot s.t. there does not exist
(snp, actM , snp

′) ∈ Tr′ with actM ∈ OM (C) ∪ (D\{0}), then (snp, d, qδ) ∈ Tr′
for any d ∈ D\{0}.

Initialization transitions are introduced to consider any possible interpretation
of attribute variables at the beginning of executions (clocks are set to 0), Runs
transitions naturally correspond to the execution of TIOSTS transitions, and
Quiescence transitions state that if no reaction (output or delay transitions) is
specified at a given state, then waiting for any delay from this state is possible.
We note TTraces(G) for TTraces(LTSG).

In the sequel, we will reason about traces of TTraces(G) by using symbolic
execution techniques. They consist in: executing the TIOSTS for symbolic values
rather than numerical ones, and computing constraints on those values for all
possible TIOSTS executions. In order to represent symbolic values, we suppose
that a set of fresh variables F =

⋃
s∈S Fs is given. Symbolic states are structures

used to store pieces of information concerning an execution:

Definition 9 (symbolic state). A symbolic state for G is a tuple (q, θ, π, ϑ, λ)
where q ∈ Q, θ ∈ Sentime(Ftime), π ∈ SenΩ(F ), ϑ ∈ TΩ(Ftime) and λ : A∪T →
TΩ(F ) is an application preserving types.

We note S the set of all symbolic states over F .

For a symbolic state η = (q, θ, π, ϑ, λ), q denotes the state reached after an
execution leading to η, θ is a constraint on symbolic delay values called time path
condition, π is a constraint on symbolic data values called data path condition,
ϑ denotes the duration from the beginning of the execution leading to η, and λ
denotes terms over symbolic variables in F that are assigned to variables of A.
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In the sequel, ΣF stands for (F,C). Moreover for any symbolic state η =
(q, θ, π, ϑ, λ), q(η), θ(η),π(η), ϑ(η) and λ(η) stand resp. for q, θ, π, ϑ and λ. For
an application λ : A∪T → TΩ(F ), we extend it in a canonical way to TΩ(A∪T ),
SenΩ(A∪T ) and Act(Σ). All these extensions are also simply denoted by λ. The
symbolic execution of a TIOSTS is based on symbolic executions of transitions:

Definition 10 (symbolic execution of transitions). Let G = (Q, q0, T r) be
a TIOSTS over Σ and tr = (q, φ, ψ,T, act, ρ, q′) be in Tr. A symbolic execution
of tr from η in S is st = (η, actF , η

′) ∈ S × Act(ΣF ) × S such that q(η′) = q′,
ϑ(η′) = ϑ(η) + z where z ∈ Ftime is a new fresh variable, and there exists
λi : A ∪ T → TΩ(F ) satisfying:
• if act ∈ O(Σ), then that for all x ∈ A, λi(x) = λ(x),
• if act ∈ I(Σ) of the form c?y then λi(y) is a fresh variable of F and for all
x ∈ A \ {y}, λi(x) = λ(x),
• for all w ∈ T we have λi(w) = λ(w) + z,

such that actF = λi(act), for all x ∈ A, λ(η′)(x) = λi(ρ(x)), for all w ∈ (T \
T), λ(η′)(w) = λi(w), for all w ∈ T, λ(η′)(w) = 0, Finally π(η′) = π(η) ∧ λi(ψ)
and θ(η′) = θ(η) ∧ λi(φ).

The variable z is called the delay of st and is denoted delay(st). source(st),
act(st) and target(st) stand respectively for η, actF and η′. In the sequel, for
any symbolic transition st = (η, actF , η

′), we note Fresh(st) = {delay(st)} if
act ∈ O(Σ) and Fresh(st) = {delay(st), λi(y)} if act = c?y. The symbolic
execution tree associated to the TIOSTS is then defined as follows:

Definition 11 (symbolic execution of a TIOSTS). A symbolic execution
of G = (Q, q0, T r) is a couple SE(G) = (Init, ST ) where:
• Init = (q0,>,>, 0, λ0) is such that ∀x ∈ T, λ0(x) = 0 and for all distinct
variables x, y in A, λ0(x) and λ0(y) are distinct variables of F ,
• ST is the set of all symbolic executions st of tr in Tr from η ∈ S with q(η) =
source(tr) and Fresh(st) ∩ λ0(A) = ∅. Moreover for any two distinct st1, st2 ∈
ST , Fresh(st1) ∩ Fresh(st2) = ∅.

Example 2 (Symbolic execution). Figure 3 depicts the symbolic execution of the
Trajectory module of Example 1. For the sake of clarity: only one path of the
tree is shown, representing a complete cycle of the Trajectory module, transitions
deviating from this path are cut; we show the delay of the transition together
with its symbolic action; and, only the information associated with symbolic
state η1 is detailed –note that values of clocks are actually summations of delays
(e.g. fClock1 represents the summation 0 + z1).

In order to deal with quiescence, we complete symbolic executions by new
transitions. Contrarily to TIOLTS, transitions of TIOSTS carry actions that
are necessarily inputs or outputs (not delays). For this reason, we artificially
introduce a new symbol δ! denoting the absence of reactions.

Definition 12 (quiescence enrichment). Let SE(G) = (Init, ST ) be a sym-
bolic execution. For all η ∈ S let us note React(η) the set of st in ST with
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Init : (q0, θ0, π0, ϑ0, λ0)

η1 : (q1, θ0, π0, ϑ1, λ1)

η2 : (q2, θ1, π0, ϑ2, λ2)

η3 : (q0, θ2, π0, ϑ3, λ3)

η5 : (q1, θ2, π0, ϑ5, λ5)

z4·location?loc2

z2·error!fT imeout0
η4 : (q3, θ3, π0, ϑ4, λ4)

η6 : (q4, θ4, π0, ϑ6, λ6)

η7 : (q5, θ5, π0, ϑ7, λ7)

z6·notif !cParams0
η8 : (q5, θ6, π0, ϑ8, λ8)

η9 : (q6, θ7, π0, ϑ9, λ9)

η10 : (q0, θ8, π0, ϑ10, λ10)

z9·error!cT imeout0
η11 : (q7, θ9, π0, ϑ11, λ11)

η12 : (q0, θ10, π0, ϑ12, λ12)

z11·nCmd!cmds1

z10·calc?cmds1

z8·calc!data1

z7·param?dParams1

z5·param!askP0

z3·plan?fP lan1

z1·plan!askFp0

z0·location?loc1

η12 : (q0, θ10, π0, ϑ12, λ12)

θ10 : > ∧ fClock1<1 ∧ fClock4<2 ∧ dClock5<1

∧dClock7<1 ∧ cClock8<1 ∧ cClock9<2
∧aClock11<9

π0 : >
ϑ12 : z0 + z1 + z3 + z5 + z7 + z8 + z10 + z11
λ13 : loc ← loc1, askFp ← askFp0,

fPlan ← fPlan1, . . .

Fig. 3: Symbolic execution for the Trajectory module example.

source(st) = η and act(st) ∈ O(ΣF ). The quiescence enrichment of SE(G) is
the couple SE(Gδ) = (Init, ST ∪∆ST ) where for all η ∈ S:
• Time based quiescence: Let θδ(η) be > if React(η) = ∅ and let θδ(η) be∧
st∈React(η) ∀delay(st).¬(θ(target(st))) otherwise. Then, (η, δ!, ηtδ) ∈ ∆ST with

ηtδ = (qδ, θ(η) ∧ θδ(η), π(η), ϑ(η) + z, λ(η)) with z is a new variable in Ftime.
• Data based quiescence: Let πδ(η) be > if React(η) = ∅ and let πδ(η)
be

∧
st∈React(η) ¬π(target(st)) otherwise. Then, (η, δ!, ηdδ ) ∈ ∆ST with ηdδ =

(qδ, θ(η), π(η) ∧ πδ(η), ϑ(η) + z, λ(η)) with z is a new variable in Ftime.

Time based quiescence transitions can be executed only if no transition
labeled by an output can be executed anymore due to unsatisfiable time con-
straints. By noting that delay(st) is the symbolic delay associated wit the tran-
sition st, θδ(η) precisely states that for all output transitions st of source η,
whatever the delay is, the time path condition (θ(target(st))) to fire st cannot
be satisfied. Similarly, Data based quiescence transitions can be executed
only if no transition labelled by an output can be executed anymore due to
unsatisfiable data constraints.

Example 3 (Quiescence enrichment).
The Trajectory module example takes all possible deadlock situations into

account. This is normal, since in an flight management system, we do not want
to have any of those situations. For illustration purposes, let us consider Init,
since there is no output transition leaving from it, a Data based quiescence is
detected, and as according to Definition 12, the transition (Init, δ!, ηdδ ) is added
to the tree, representing the fact that the module can remain silent until it
receives a location from the environment. If we consider η1, let us examine if
we can detect a Time based quiescence. That is, let us examine the formula
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∀z1.¬(θ1), where θ1 = fClock1 < 1. Since fClock1 = 0 + z1, there is no way
that for all z1, z1 ≥ 1 is true. Thus, no Time based quiescence is added to
the tree.

SE(G)δ characterizes in an intentional way the set of all timed traces of
the TIOLTS associated to G: we define paths of SE(G)δ as finite sequences
st1 · · · stn of transitions of ST , such that source(st1) = Init and for every
i < n, we have target(sti) = source(sti+1). For any finite path p = st1 · · · stn,
target(p) is Init if n = 0 and target(stn) otherwise. We note Path(SE(G)δ)
the set of all such paths. For a path p, we note Seq(p) the sequence defined
as ε if p = ε, Seq(p′).delay(st) if p is of the form p′.st with act(st) = δ!
and Seq(p′).delay(st).act(st) if p is of the form p′.st with act(st) 6= δ!. The
set TTraces(p) is defined as {σ|∃ν.(M |=ν θ(target(p)) ∧ π(target(p)) ∧ σ =
ν(Seq(p)))}.8 We note TTraces(SE(G)δ) the set

⋃
p∈Path(SE(G)δ)

TTraces(p).

5 Off-line Testing Algorithms

We present our algorithms w.r.t. the input sequence selection, the test execution,
and the verdict computation.

Input sequence selection. We propose to extract input sequences, as in-
troduced in Definition 4, from SE(G)δ. Following our previous works [7, 8], we
propose to use paths of SE(G)δ as test purposes, that is, we build input se-
quences corresponding to traces of a selected path. Given a test purpose p in
Path(SE(G)δ), an input sequence is built by applying the input projection on
a trace chosen in TTraces(p). Indeed, such input sequences are clearly good
candidates to put the SUT S in a configuration where S can reach the test pur-
pose. Therefore, we introduce the set IS(p) = {σ↓I | σ ∈ TTraces(p)} of input
sequences of p. We can capture the set IS(p) by simply building the correspond-
ing normalized traces and by highlighting the interpretations which satisfy the
constraints defining the target state of p:

{ν(Seq(p))↓I | ν |= θ(target(p)) ∧ π(target(p))}

Thus, defining a normalized input sequence for p comes to exhibit an interpre-
tation ν : F → M that satisfies both the time and data path conditions of the
target of p by constraint solving techniques, to compute ν(Seq(p)), and finally
“forget” output in the result thanks to the ↓I operator. We suppose that an
SUT S, a test purpose p and an input sequence σp↓I are given (σp is thus a timed
trace of p, normalized or not).

Test execution. As discussed in Section 3, the test execution is to submit
σp↓I to S, which in turn sends an output sequence σo, such that σp↓I ;S σo. We

note σS = Merge(σp↓I , σo). Recall that, due to potential non determinism of G,
even in the case S tioco G, we may have σS 6= σp.

8 An interpretation ν can be extended to sequences as follows: ν(Seq(p)) = ε if p = ε,
ν(Seq(p)) = ν(ω).ν(a) if Seq(p) = ω.a with a ∈ Act(ΣF ) and ν(Seq(p)) = ν(ω).ν(d)
if Seq(p) = ω.d with d ∈ TΩ(F )time.
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Verdict computation. Our algorithm takes as inputs three arguments,
SE(G)δ, p and σS, and computes verdicts concerning the correctness of S as-
sessment and concerning the coverage of p by σS. This algorithm can be seen
as an off-line version of the one defined in [7]. We begin by introducing some
intermediate definitions that are needed in the algorithm. A context is a math-
ematical structure denoting a path of SE(G)δ = (Init, ST ) potentially covered
by a trace, together with additional identification constraints induced by the
trace. Formally, a context is a tuple (η, ft, fd, d) where: η ∈ S denotes the target
state of the potentially covered path; ft ∈ SenTime(Ftime) expresses identifica-
tion constraints between time variables of F and numerical delays occurring in
the trace; fd ∈ SenΩ(F ) expresses identification constraints between data vari-
ables and values emitted and received in the trace; and finally, d is a numerical
delay that identifies how much time has elapsed in the given context. Intuitively,
when time elapses, if there is no modification of state, then the value d is simply
increased, else, the value d is reset to 0. In the sequel, state((η, ft, fd, d)) names
the state η. Since there may be more than one path which is covered by a trace,
we manipulate sets of contexts. We introduce the function Next(a, SC), which
computes the set of all contexts that can be reached from a given set of contexts
SC, when an action occurs or a delay elapses, i.e. a ∈ ActM (C) ∪ (D \ {0}):
Case a ∈ ActM (C) of the form c4t with 4 ∈ {?, !}: if there exists (η, ft, fd, d) ∈
SC, and a symbolic transition st = (η, c4u, η′) in ST , then:

(η′, ft ∧ d = delay(st), fd ∧ (t = u), 0) ∈ Next(a, SC)
provided that both ft ∧ d = delay(st) ∧ θ(η′) and fd ∧ π(η′) are satisfiable.
Case a ∈ D \ {0}: if there exists (η, ft, fd, d) ∈ SC, and a symbolic transition
st in ST with source(st) = η, then:
(η, ft ∧ ∃delay(st).(delay(st) ≥ d+ a ∧ θ(target(st))), fd, d+ a) ∈ Next(a, SC)
provided that ft ∧ ∃delay(st).(delay(st) ≥ d+ a ∧ θ(target(st))) ∧ θ(η) is satis-
fiable.

The general idea of the algorithm is to read one by one the elements of the
trace σS, and to compute either the next set of contexts or to emit a verdict.
Let us suppose that σS can be written as σpref .a.σsuf where a is an action
or a delay. SC(a) is a notation grouping the set of contexts SC reached after
reading the beginning σpref .a of the trace and the last analyzed element a. At
the initialization step, when no element of σS has been analyzed, then we use
the symbol , that is SC( ). The algorithm is then given as a set of rules of the
form:

SC(a) σsuf
Result

cond

σsuf is the remaining trace to be analyzed with respect to the first analyses
stored in SC(a), to SE(G)δ, and to p; cond is a set of conditions that has to be
satisfied so that the rule can be applied; and Result is either a verdict or of the
form SC ′(a′) σ′suf . Moreover, if σsuf = ε then Result is necessarily a verdict
since the initial trace σS is fully analyzed. If Result is SC ′(a′) σ′suf , then σsuf
can be written as a′.σ′suf . We will access respectively to a′ and σ′suf from σsuf
by using the usual notations head(σsuf ) and tail(σsuf ).
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Rule 0 corresponds to the initialization phase: the set of contexts contains
only one context stating that we begin at the symbolic state Init, there are no
constraints identified yet, and the associated delay is 0. Rule 1 is applied to com-
pute a new set of contexts. This is done as long as SC is not empty and there are
still elements of the trace to read. There are five verdicts: FAIL is emitted when
the trace denotes an incorrect behavior (Rule 2); PASS is emitted when the
trace denotes a correct behaviors, and the test purpose is the only path covered
(Rule 3); WEAK PASS is emitted when the trace denotes a correct behav-
ior, the test purpose is covered but there exists at least one other path covered
(Rule 4); INCONCr is emitted when the trace denotes a correct behavior, a
path is covered but not the test purpose (Rule 5); INCONCi is emitted when
the trace is not included in SE(G)δ due to input under-specification (Rule 6).

Rule 0: Initialization

{(Init,>,>, 0)}( ) σS
Rule 1: An action or a delay is read from the trace, SC is not empty.

SC(a) σ

Next(head(σ), SC)(head(σ)) tail(σ)
SC 6= ∅, σ 6= ε

Rule 2: An unspecified output o or delay d is read from the trace.

SC(a) σ

FAIL
SC = ∅; a ∈ OM (C) ∪D \ {0}

Rule 3: The read action permits to cover the test purpose, and no other paths.

SC(a) σ

PASS
σ = ε;∀ct ∈ SC, state(ct) = target(p);SC 6= ∅

Rule 4: The read action permits to cover the test purpose, and at least one other path.

SC(a) σ

Weak PASS

σ = ε;∃ct ∈ SC, state(ct) = target(p);
∃ct′ ∈ SC, state(ct′) 6= target(p);SC 6= ∅

Rule 5: Some paths are covered but not the test purpose.

SC(a) σ

INCONCr
σ = ε; ∀ct ∈ SC, state(ct) 6= target(p);SC 6= ∅

Rule 6: An unspecified input i is read.

SC(a) σ

INCONCi
SC = ∅; a ∈ IM (C)

In contrast with algorithms in [7,8], there are two kinds of inconclusive verdicts.
INCONCr corresponds to the classical one, while INCONCi is produced when
σS is of the form σpref .a.σsuf , where σpref is in SE(G)δ while σpref .a with
a ∈ IM (C) is not. This situation does not occur in on-line testing algorithms,
because they are in charge of stimulating the SUT so that it strictly follows the
test purpose, and emits a verdict as soon as the test purpose cannot be covered
anymore. On the contrary, unless σS can be decomposed as σpref .a.σsuf , where
σpref is a specified timed trace and σpref .a is not (in which case either FAIL
or INCONCi depending on the nature of a), all actions of σS will be analyzed
even though the emission of PASS is not possible anymore. This choice is made
in order to always emit FAIL for a trace revealing a non conformance, even if
we may be sure (several steps before) that PASS can not be emitted anymore.
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Example 4. Let us apply our rule-based algorithm to the Trajectory module
example. Let us suppose that there is a mapping between messages and integers.
Then, we choose the path of Figure 3 leading to η13, representing a complete
loop for the module, i.e., the path p:
z0·location?loc1·z1·plan!askFp0·z3 . . . z8·calc!data1·z10·calc?cmds1·z12·nCmd!cmds1.

Thus, the tester chooses the appropriate values and performs the input projection
of the trace, obtaining σp↓I : 0.1 location?4 2.8 plan?5 1.8 param?2 1 calc?1. Let us

assume that the SUT responds with σ↓O : 0.2 plan!8 2.1 error!6 0.1 nCmd!3 4.3 .

By applying the merge operation on σp↓I and σ↓O , we obtain the trace σ:

0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1 .

Figure 4 illustrates the application of the rule-based algorithm to σ.

(a) 0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1

ft=>; fd=>;SC={(Init, fd, ft, 0)}( ); (Initialization)

(b) 0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1

Next(0.1, SC)−→SC={(Init, ft∧z0=0.1, fd, 0.1)}(0.1); (Rule 1)

(c) 0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1

Next(location?4, SC)−→SC={(η1, ft, fd∧loc1=4, 0)}(location?4); (Rule 1)
.
.
.

.

.

.
.
.
.

(d) 0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1

Next(2.1, SC)−→SC={(η2, ft∧z2=2.1, fd, 2.1)}(2.1); (Rule 1)
.
.
.

.

.

.
.
.
.

(e) 0.1 location?4 0.1 plan!8 2.1 error!6 0.1 nCmd!2 0.5 plan?5 2 param?2 1 calc?1 1

Next(nCmd!2, SC)−→SC={∅}; (Rule 2, FAIL)

Fig. 4: Off-line Test Algorithm operating on a trace of the Trajectory module. At
any iteration, before the execution of any rule, σ is the non-dark-gray-shadowed
part of the depicted trace, head(σ) is the element pointed by the arrow, a is
the first element at its left (when it applies), and queue(σ) is the right-side
remainder. In (a), SC represents the set of context after initialization. (b)–(d)
represent the application of Rule 1, updating SC by reading the first element of
the trace (and applying the Next() function). In (e), the observed delay causes
the verdict to emit FAIL, since Next() returns an empty set.

What is interesting to notice in Figure 4 is that, if use an on-line test purpose-
guided algorithm as in [7], we emit the verdict INCONC as soon as we find
the delay 2.1 of output error!6 ((d) in the figure). One advantage of this off-
line algorithm is that we can emit better verdicts (less INCONC) since we are
analyzing the entire trace.

6 Related Work

Model-based conformance testing with tioco was addressed in [4, 5, 7] where
models are essentially timed automata (TA) [1] (without symbolic data). Authors
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in [5] have defined a pure on-the-fly testing algorithm. Without any preprocessing
on the model, at each moment, the algorithm computes on-the-fly a random
input and its corresponding submission delay from the model and checks outputs
and their timing against the model. This is reiterated until a verdict is emitted.
In [4], authors model the testing activity with the help of test cases which are
deterministic timed automata with inputs and outputs, whose states are labeled
by verdicts. These test cases are derived from a given test purpose and result from
some approximate determinisation mechanisms preserving the tioco conformance
relation. Such a design of test cases tends to reduce choice points at runtime:
however, decisions have still to be made when running test cases on SUT, for
example, concerning the choice between waiting for a delay or sending a data to
the SUT. So [4] may be viewed as a mixed approach, off-line for the selection, by
converting a test purpose as a test case, on-line for guiding the progress in the test
case during the execution. Recently, authors of [2,3,7,15] have defined seemingly
different reference models where both time and data are represented symbolically
as extensions to TA or/and input output symbolic transition systems (IOSTS)
[8, 13], still based on tioco. In addition, approaches [2, 7] have suggested on-line
testing algorithms guided by a test purpose: in [7], symbolic execution paths are
selected as test purposes while the work in [2] is conducted in the spirit of [4]. To
our knowledge, we are the first to propose in the context of the tioco conformance
relation a framework where test inputs are presented statically, without any
further processing to be done, while remaining executable and usable for verdict
computation.

7 Conclusion

We have proposed an off-line testing approach based on the tioco conformance
relation and on TIOSTS models which handle both data and time symbolically.
The approach includes three steps: (1) first, test input sequences are extracted
from a TIOSTS; for this, traces are extracted from paths of the symbolic ex-
ecution tree by using solving constraints and projection techniques; (2) test
executions produce output sequences that are merged with input sequences to
form input output traces; (3) resulting traces are analyzed in order to provide
verdicts. We highlight a verdict, specific to our off-line approach: the verdict
INCONCi, stating that an input can become unspecified in the context of the
test execution even if it was a specified input in the context of the test selection.
Our approach has been implemented using the symbolic execution tool Diver-
sity. Diversity is an extension of the tool AGATHA [12] that integrates several
sat-solvers and can analyze several languages, in particular TIOSTS or UML
sequence diagrams extended with time constraints [3, 7].9 Concerning data, our
implementation handles booleans, presburger integers, and could be extended to
any decidable data theory as in [8]. Until now, we have not investigaged zone-
based techniques usually undertaken with timed automata, essentially because
run-time efficiency is not of primary importance in an off-line framework. We

9 e.g. CVC3 http : //www.cs.nyu.edu/acsys/cvc3/
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are investigating techniques to reduce the occurrence of inconclusive verdicts. As
several reactions are possible after a given trace, the submission of an input se-
quence to SUT may result in a trace which runs outside the test purpose without
questioning conformance. To control non-determinism as much as possible, we
are studying under which hypotheses we can over constrain the input sequence
computation in order to force a correct SUT to follow a given path.
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