
HAL Id: hal-01482412
https://inria.hal.science/hal-01482412

Submitted on 3 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards a TTCN-3 Test System for Runtime Testing of
Adaptable and Distributed Systems

Mariam Lahami, Fairouz Fakhfakh, Moez Krichen, Mohamed Jmaiel

To cite this version:
Mariam Lahami, Fairouz Fakhfakh, Moez Krichen, Mohamed Jmaiel. Towards a TTCN-3 Test System
for Runtime Testing of Adaptable and Distributed Systems. 24th International Conference on Testing
Software and Systems (ICTSS), Nov 2012, Aalborg, Denmark. pp.71-86, �10.1007/978-3-642-34691-
0_7�. �hal-01482412�

https://inria.hal.science/hal-01482412
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards a TTCN-3 Test System for Runtime
Testing of Adaptable and Distributed Systems

Mariam Lahami, Fairouz Fakhfakh, Moez Krichen, and Mohamed Jmaiel

Research Unit of Development and Control of Distributed Applications
National School of Engineering of Sfax, University of Sfax

Sokra road km 4, PB 1173 Sfax, Tunisia
{mariam.lahami,fairouz.fakhfakh,moez.krichen}@redcad.org,

mohamed.jmaiel@enis.rnu.tn

http://www.redcad.org

Abstract. Today, adaptable and distributed component based systems
need to be checked and validated in order to ensure their correctness
and trustworthiness when dynamic changes occur. Traditional testing
techniques can not be used since they are applied during the development
phase. Therefore, runtime testing is emerging as a novel solution for
the validation of highly dynamic systems at runtime. In this paper, we
illustrate how a platform independent test system based on the TTCN-3
standard can be used to execute runtime tests. The proposed test system
is called TT4RT: TTCN-3 test system for Runtime Testing. A case study
in the telemedicine field is used as an illustration to show the relevance
of the proposed test system.

1 Introduction

Nowadays, a relevant issue in the software engineering research area consists
in delivering software systems able to change their configuration dynamically
in order to achieve new requirements and avoid failures without service inter-
rupting. Therefore, they evolve continuously by integrating new components,
deleting faulty or unneeded ones and substituting old components by new ver-
sions at runtime. Dealing with such reconfiguration actions, the possibility of
unexpected errors (components failure, connections going down, etc.) during the
reconfiguration process is unavoidable.

Accordingly, a validation technique, such as testing, has to be applied in order
to detect as soon as possible such inconsistencies and to check functional and
non-functional requirements after each dynamic reconfiguration. Nevertheless,
traditional testing techniques cannot be done for these highly evolvable systems
since they are applied during the development phase.

For this reason, a recent branch of work has demonstrated the interest of
using the Runtime Testing as a new solution for the validation of the above
systems [1–8]. They have focused on building specific test infrastructures, for
instance based on the JUnit Framework. None of them have used a generic test
standard like TTCN-3 for the specification or the execution of runtime tests.

2 M.Lahami et al.

Furthermore, they are using at most one technique to isolate runtime tests in
the aim of reducing the interference between business and test data. To the best
of our knowledge, only one approach presented in [9] uses TTCN-3 standard for
online validation and testing of internet services. However, this work did not
deal with test isolation issues when testing is applied in the production phase.

This paper makes a contribution in these directions by proposing a TTCN-
3 test system for Runtime Testing (TT4RT). The key idea is to extend the
reference architecture of the standardized TTCN-3 test system by a new module
supporting different test isolation techniques. The latter is a fundamental issue
that has to be tackled while executing runtime tests either components under
test are testable or not testable. As illustrative example, we describe a case
study in telemedicine area called Teleservices and Remote Medical Care System
(TRMCS).

The remaining of this paper is structured as follows. Section 2 introduces the
runtime testing approach and its challenges that we are facing.The TTCN-3 stan-
dard and its key elements are introduced in Section 3. The proposed approach
is illustrated in section 4. Section 5 introduces the case study. Some scenarios
are illustrated in Section 6. A brief description of related work is addressed in
section 7. Finally, section 8 concludes the paper and draws some future work.

2 Runtime Testing Of Dynamic and Distributed
Component based systems

Runtime testing is a novel solution for validating highly dynamic systems. It
is defined in [10] as any testing method that has to be carried out in the fi-
nal execution environment of a system while it is performing its normal work.
It can be performed first at deployment-time and second at service-time. The
deployment-time testing serves to validate and verify the assembled system in its
runtime environment while it is deployed for the first time. For systems whose
architecture remains constant after initial installation, there is obviously no need
to retest the system when it has been placed in-service. On the contrary, if the
execution environment or the system behavior and architecture have changed,
service-time testing will be a necessity to verify and validate the new system in
the new situation [10].

As previously mentioned in the definition of runtime testing, any test method
can be applied at runtime such unit testing, integration testing, conformance
testing, etc. In our work, we support unit testing as well as integration testing.
On the first hand, unit testing is used to validate that the component behavior
still conforms to its specification while it is running in isolation in the execution
environment. On the other hand, integration testing is used at runtime to vali-
date that the affected component compositions by the reconfiguration action still
behave as intended. In order to minimize the number of testers to be deployed
and the number of test cases to be re-executed, we apply unit and integration
tests only on the affected parts of the system under test by a reconfiguration
action. Consequently, the testing effort, cost and time will be reduced [11].

TTCN-3 Test System for Runtime Testing 3

However, other challenges still persist such as test processes interference with
the business processes of the running system due to their parallel execution. The
best way to resolve such problem is the application of test isolation mechanisms
widely discussed in [2, 4] (such as cloning components, adding a test interface,
tagging test data, blocking components during test, etc). This challenging issue is
resolved in our approach by supporting the well known test isolation mechanisms
in the literature. It will be discussed in depth in following sections.

3 TTCN-3 Overview

TTCN-3 (Testing and Test Control Notation Language Version 3) is a test spec-
ification language used to define test procedures for reactive black-box testing
of distributed systems [12]. This test standard has been widely used in the pro-
tocol testing field and is newly addressing other kinds of applications such as
service-oriented or CORBA-based systems. It is also suitable for various types
of tests such as conformance, robustness, regression and functional testing.

TTCN-3 allows the specification of dynamic and concurrent test systems. In
fact, it offers a test configuration system made of two kinds of test components:
Main Test Component (MTC) and Parallel Test Component (PTC). For each
test case, an MTC is created. PTCs can be created dynamically at any time
during the execution of test case. Thus, test system can use any number of test
components to realize test procedures in parallel. Communications between the
test system and the SUT are established through ports.

The structure of TTCN-3 test system is depicted in Figure 1. It is made up of
a set of interacting entities where each one corresponds to a specific functional-
ity involved in the test system implementation. These entities interact together
through two major interfaces: the TTCN-3 Control Interface (TCI) [13] and the
TTCN-3 Runtime Interface (TRI) [14]. They are briefly described [15] as follows:

– The Test Management (TM) Entity manages the test execution.
– The Test Logging (TL) Entity is responsible for maintaining the test logs.
– The TTCN-3 Executable (TE) Entity executes the compiled TTCN-3 code.
– The Coding/Decoding (CD) Entity encodes and decodes test data types and

values.
– The Component Handling (CH) Entity handles the communication between

test components.
– The SUT Adapter (SA) Entity implements communication between SUT

and test system.
– The Platform Adapter (PA) Entity implements timers and external func-

tions.

TTCN-3 is used in our context to define abstract test suites following the
TTCN-3 notation. In this case, test suites are specified at an abstract layer,
Abstract Test Suites (ATS). This feature helps to separate test design from test
implementation and makes the ATS language platform independent. Further-
more, it increases the reusability of the elaborated test cases. By doing this,

4 M.Lahami et al.

Test System User

TRI

TCI

Test Management(TM) Test Logging (TL)

C
o

d
in

g
a

n
d

D
e

co
d

in
g

(C
D

)

TTCN-3 Executable (TE)

Main Test Component

C
o

m
p

o
n

e
n

t

H
a

n
d

li
n

g
(C

H
)

Parallel Test

Component

System Under Test (SUT)

System Adapter (SA) Platform Adapter (PA)
TRI

Fig. 1. TTCN-3 reference architecture.

we can address complexity of testing evolvable systems which are also hetero-
geneous in structure and technologies. Hence, different network and platforms
technologies can communicate easily with the TTCN-3 test system through the
adaptation layer [16]. The latter comprises three parts of the reference architec-
ture that are Coding-Decoding entity, Test Adapter entity and Platform Adapter
entity. These entities provide means to adapt the communication and the time
handling between the SUT and test system in a loose coupling manner.

Due to all these features: a standardized, abstract and platform independent
test-language and offering a flexible adaptation layer with the aim of facilitating
interaction with the SUT, TTCN-3 was adopted in our work and also enhanced
to support runtime testing.

4 The proposed Approach: TT4RT

Our main objective is to design and build a test system that handles complex-
ity of testing evolvable and heterogenous (both in structure and technologies)
systems. Therefore, we have enhanced the TTCN-3 test system by adding two
layers as depicted in Figure 2: a Test Management Layer and a Test Isolation
Layer. The main purposes of these layers are described in the following:

Test Management Layer. It intends to control the execution of runtime
tests. It includes a GUI component called TTmanGUI. The latter is responsible
mainly for starting and stopping test cases. The TTmanGUI interacts with the
TM entity offered by the classical TTCN-3 test system in order to achieve the
test execution management and also with test isolation layer in order to prepare
the test environment.

We have to mention that this layer has as input an XML file which contains
the components under test, the test components to deploy and their deployment

TTCN-3 Test System for Runtime Testing 5

TT4RT

Te
st

 I
so

la
ti

o
n

La
y

e
r

Adaptation Layer

Abstract Layer

Test Management Layer

Running System Under Test (SUT)

Fig. 2. Supported layers of TT4RT.

hosts as well as the test cases to execute. This file is called Resource Aware Test
Plan since the assignment of the test components to execution nodes must fit
some resource constraints 1. The structure of this file will be introduced later.

Test isolation Layer. It aims to reduce the interference risk between test
data and business data when testing is performed at runtime. It includes a
component which is able to choose the most adequate test isolation technique
for each component under test. This choice is suggested by using a policy called
Test Isolation Policy. For each test request, the proposed policy is executed in
order to generate the test isolation technique to apply. Our test system supports
four test isolation techniques: duplication, blocking, tagging and built-in tests.

For reasons of space, these techniques are briefly introduced through some
examples. For instance, if a component is not testable and it is under some
timing constraints then it will be automatically duplicated. In this case, the
test processes are executed in the duplicate with the aim of not disturbing the
execution of the original component. Unless the component is under some timing
constraints, it can be blocked until the test processes are achieved. Also, some
components can be provided with some capabilities such as testability through
a test interface or test awareness through a flag which lets the component under
test differentiate between the test data and business data. The proposed policy
treats all these conditions and produces the best solution when a test request is
triggered.

Abstract Layer. As we have explained above, this layer is offered by the
classical TTCN-3 test system in order to build abstract test suites. This feature
makes runtime tests independent of the test execution environment and enhances
their reusability and extensibility. All the specified test cases are compiled and
stored in a repository in order to make them executable.

Adaptation Layer. It includes the implemented Coding/Decoding and Sys-
tem Adapter entities which facilitate the communication between TT4RT and
the SUT in production phase.

1 This assignment problem is not considered in this current work

6 M.Lahami et al.

TTmanGUI

TCI

Test Management(TM)

C
o

d
in

g
a

n
d

D
e

co
d

in
g

(C
D

)TTCN-3 Executable (TE)
C

o
m

p
o

n
e

n
t

H
a

n
d

li
n

g
(C

H
)

Test Isolation

1

Resource

Aware

Test Plan

2

4

5

7
8

14

17

18

TTCN-3 based test

cases repository

System Under Test (SUT)

System Adapter (SA) Platform Adapter (PA)

TRI

C
o

d
in

g

D
e

co
d

in
g

Main Test Component

C
o

m
p

o
n

e
n

t

H
a

n
d

li
n

g
(C

H
)

Parallel Test

component

Test Isolation

Policy

TT4RT
3

6 9

10

11

12

13

15
14

16

Fig. 3. The proposed workflow of the TT4RT system.

In order to detail the internal interactions in TT4RT system, a workflow
illustrated by the Figure 3 is given:

– When a reconfiguration action is triggered, the test plan that describes the
affected parts of the SUT by this dynamic change and the test configuration
used to validate it, is generated. This plan is considered as an input to the
TT4RT system (Step 1).

– Test isolation policy is called for each component under test in order to
choose the best test isolation technique (Step 2).

– The appropriate test isolation technique is then used to prepare the test
environment (Step 3).

– After preparing the test environment, the test system user initiates the test
execution through the TTmanGUI and by calling the adequate method in
the TM entity TciStartTestCase (Steps 4-5).

– Once the test process is started, the TE entity creates the involved test
components and informs the SA entity that the test case has been started
with the aim of allowing the SA entity to prepare its communication facilities.
This is done through the call of triExecuteTestcase method (Step 6).

– Next, TE invokes the CD entity in order to encode the test data from a
structured TTCN-3 value into a form that will be accepted by the SUT.
This is done through the call of encode method (Step 7).

– The encoded test data is passed back to the TE entity as a binary string
and forwarded to the SUT via the SA entity with the triSend method (Steps
8-9-10).

TTCN-3 Test System for Runtime Testing 7

– After the test data is sent, a timer can be started. To achieve this, the TE
invokes the triStartTimer method on the PA entity (Step 11).

– The SUT returns its response to the SA entity. The given response is an
encoded value that has to be decoded in order to be understandable by the
TTCN-3 test system (Step 12).

– For doing this, the SA entity forwards the encoded test data to the TE entity
through the method triEnqueueMsg (Step 13).

– The TE entity transmits the encoded response to the CD entity with the
intention of decoding it into a structured TTCN-3 value (this is done through
the call of decode method) (Step 14).

– The decoded response is passed back to the TE that stops the running timer
by invoking the triStopTimer method on the PA and finally computes the
global verdict (Steps 15-16-17).

– At last, the test system user is notified by the generated verdict (pass, fail
or inconclusive) by the TTmanGUI (Step 18).

The gains of this design are the conformance to the TTCN-3 standard, gener-
ality and platform-independency (applicable to every component based or service
oriented systems), reusability and extensibility (compiled code TTCN-3 is stored
as jar files in a repository and can be loaded at any time and also updated dy-
namically without restarting TT4RT system). Furthermore, TT4RT can be used
either at deployment time or at service time to validate the SUT. Instead the
classical TTCN-3 test systems which consider the SUT as a black-box, TT4RT
system treats the SUT as a grey-box (the SUT is composed of a collection of in-
teracting components and compositions under test (CUTs)). This fact can help
to localize easily the faulty component or composition and to proceed enhance-
ment of the quality and reliability of the SUT.

5 Case Study

To illustrate our approach, we choose a case study in the telemedicine field. In
fact, telemedicine has become an important research issue. It merges telecommu-
nication and information technologies in order to provide remotely clinical health
care. It facilitates communications between patients who suffer from chronic
health problems and medical staff. In addition, it improves the access to medical
services as well as the transmission of patient data (e.g monitored vital signs,
laboratory tests, etc.) especially when critical events or emergency situations
occur.

As widely described in the literature [17–19], telemedicine applications have
to evolve dynamically in order to fulfill new requirements such as adding new
health care services, updating the existing one in order to support improvements
in wireless and mobile technologies, etc. This adaptability is essential to ensure
that these applications remain within the functional requirements defined by
application designers, as well as maintain their performance, security and safety
properties. Furthermore, the execution environment of such applications is dis-
tinguished by its hardware heterogeneity (for instance PDA, PC and sensors) and

8 M.Lahami et al.

the use of large range of wireless networking solutions like wireless LANs, ad-hoc
wireless networks and cellular/GSM/3G infrastructure-oriented networks.

Due to these dynamic variabilities, medical errors and degradation of QoS
parameters can occur. Therefore, runtime testing is required to validate dynamic
system changes. Thus, this validation technique can improve health care quality
and lead to the early detection and repair of medical devices malfunctions. In
the following subsections, we present the architecture of the studied telemedicine
application and also its implementation.

5.1 Architecture of TRMCS Case Study

The adopted telemedicine application is called Teleservices and Remote Medi-
cal Care System (TRMCS). The main behaviors and structure of such system
are inspired from [20]. As depicted in Figure 4, TRMCS system provides mon-
itoring and assistance to patients suffering from chronic health problems. The
interacting actors in the system are :

– Medical staff which is composed of physicians, nurses, etc. These health care
providers can be located in their own office, hospitals or even an ambulance
car.

– One or more patients who are located at their home and are equipped with
wearable devices that can sense one or more vital signs such as blood pres-
sure, respiration rate, pulse rate, oxygen saturation and body core temper-
ature.

The wearable medical sensors measure and transmit biomedical data to local
as well as remote medical data centers. They should operate autonomously and
have to send alert signals when emergency problems arise.

The main functionalities that the TRMCS system supports are:

– The acquisition of biomedical data from patients equipped with wearable
medical sensors.

– The processing of monitored data by generating reports.
– The transmission of the monitored data, medical images, laboratory tests to

a local as well as remote medical data centers for storage.
– The analysis of monitored data by sending emergency signals when critical

events are triggered or threshold conditions are reached 2.

The latter functionality is highlighted and used as proof-of-concept. Within the
following studied scenario, the ability of TT4RT system to detect reconfiguration
faults is demonstrated.

Studied scenario. The initial architecture of the studied scenario is outlined
in the Figure 5. Each patient sends different kind of help requests to different
help centers such as doctor’s office, nursery, hospital and ambulatory. This help
request can be issued by the patient through a user GUI or raised automatically
by the monitoring system. In this current implementation, we support three
kinds of help requests: generating call, SMS or alarm signal.

2 For instance, when the heart rate exceeds a certain level of tolerance.

TTCN-3 Test System for Runtime Testing 9

Heterogeneous
Network

Patient Home
Medical Staff

Medical Data
Center

Nurse

Physician
Ambulatory

Fig. 4. Global view of Teleservices and Remote Medical Care System.

Patient
GUI Alarm

SMS

Call

Help Service

Nurse

Doctor

Hospital

Help Center
Service

Fig. 5. The initial configuration of the studied scenario.

Reconfiguration scenario. It comes a moment when this system is changed
to fulfill new requirements. For instance, the Alarm component is changed by
a new version with the aim of increasing SUT performance and responsiveness.
The new version sends the help request to the help center in a duration that
does not exceed 15 time units instead of 30 time units for the old version. Once
this reconfiguration is achieved, the new component and all the affected parts of
the system by this modification have to be tested.

5.2 Implementation of TRMCS Case Study

In the literature, we have found some research works that use the Open Service
Gateway initiative (OSGi) platform3 to implement such case study [21, 17]. We
follow the same technology choice due its dynamism (a powerful Framework to
create highly dynamic applications). Thus, we implement the studied scenario
using the OSGi Framework, especially OSGi iPOJO model4. Under OSGi ar-
chitecture, software components are encapsulated into bundles which is a java
archive file that contains packages and service prerequisites. These bundles are
loaded and run automatically by the Apache Felix5 1.8 implementation.

3 OSGi Alliance, http://www.osgi.org/markets/index.asp
4 http://felix.apache.org/site/apache-felix-ipojo.html
5 http://felix.apache.org/site/index.html

10 M.Lahami et al.

Without loss of generality, the proposed TT4RT system is used to validate
this service oriented application6 and to detect some previously seeded faults as
outlined in the section below.

6 Validation of TRMCS by using TT4RT System

The key concepts presented so far have been used in order to keep the system
quality at the same level after a dynamic update has taken place. Thus, we
have applied some runtime tests to the evolvable sub-system while substituting
the Alarm component by another version dynamically. The affected components
and compositions by this modification, their testability options, the test cases
to execute are specified in the generated Resource Aware Test Plan as outlined
in the Figure 6.

A test Component for validating

the new alarm component

The adopted test isolation technique

for the Component Alarm2

Test cases to execute by

test components

A test Component for validating

the affected composition

The adopted test isolation technique

for the Component Nurse

Fig. 6. The main features included in the Resource Aware Test Plan XML file.

Furthermore, We have to mention that some faults have been seeded in the
new configuration in order to assess the capabilities of TT4RT system to find
these reconfiguration faults. It is worth noting that some inconsistencies are
automatically detected by the OSGi Framework, for instance a required service
crashing. Nevertheless, TT4RT is still required to detect other kinds of faults
such erroneous results provided by the new service, incompatibilities between
compositions, degradation of quality of service, etc.

6.1 Specifying the abstract test cases

Different test cases specified following the TTCN-3 notation are available to
detect reconfiguration faults. In fact, TTCN-3 standard is used to define not only

6 It is worthy to note that our TT4RT system can be used to validate either object
or component based applications.

TTCN-3 Test System for Runtime Testing 11

the behavior of each test component but also the dynamic and concurrent test
configuration of each test request. First of all, the Listing 1 bellow outlines the
adopted test configuration and highlights the different test components involved
in this testing process.

1 testcase tc_substitute_alarm() runs on mtcType system systemType {
2 var ptcType ptc_alarm,ptc_alarm_nurse,ptc_alarm_hospital,ptc_alarm_doctor;
3 ptc_alarm := ptcType.create("ptc_alarm");
4 map(ptc_alarm:ptcPort, system:systemPort);
5 ptc_alarm.start(ptcBehaviour_alarm());
6 ptc_alarm.done;
7

8 ptc_alarm_nurse := ptcType.create("ptc_alarm_nurse");
9 map(ptc_alarm_nurse:ptcPort, system:systemPort1);

10 ptc_alarm_nurse.start(ptcBehaviour_alarm_nurse());
11 ptc_alarm_nurse.done;
12

13 ptc_alarm_doctor := ptcType.create("ptc_alarm_doctor");
14 map(ptc_alarm_doctor:ptcPort, system:systemPort2);
15 ptc_alarm_doctor.start(ptcBehaviour_alarm_doctor());
16 ptc_alarm_doctor.done;
17

18 ptc_alarm_hospital := ptcType.create("ptc_alarm_hospital");
19 map(ptc_alarm_hospital:ptcPort, system:systemPort3);
20 ptc_alarm_hospital.start(ptcBehaviour_alarm_hospital());
21 ptc_alarm_hospital.done;
22 }

Listing 1. The test configuration.

The global test process is managed by the MTC component as defined in
line 1. This MTC component is responsible for dynamically creating a PTC
checking the new Alarm component (see line 3) and also three others PTCs for
validation the communication between the affected compositions (alarm-nurse,
alarm-hospital, alarm-doctor) as indicated respectively in line 8, 13 and 18. To
start the execution of these test components, the map7 and start methods are
used and the adequate function is called (see for example line 4 and 5).

1 function ptcBehaviour_alarm() runs on ptcType {
2 timer localtimer := 15.0;
3 ptcPort.send(msg_to_alarm);
4 localtimer.start;
5 alt {
6 [] ptcPort.receive("Service invoked Successfully")
7 {setverdict (pass, "Test service alarm successfully");}
8 [] ptcPort.receive
9 {setverdict (fail, "Something else received");}

10 [] localtimer.timeout
11 { setverdict (fail, "Timeout");}
12 localtimer.stop;
13 }}

Listing 2. An example of a PTC behavior.

We have to mention that the instantiation of test components and communi-
cation links are done dynamically and the execution of their behaviors is done
in a parallel manner. For instance, the next listing shows the behavior of one

7 This method aims for connecting a port of a PTC to a port of SUT.

12 M.Lahami et al.

PTC validating the new Alarm component (ptcBehaviour alarm()). As depicted
in the Listing 2, a timer is defined in line 2 and started in line 4 when testing
data are sent (see line 3). It is used to validate the timing behavior of the new
Alarm component that transmits the help request in a period of time smaller
than 15 time units. If this deadline is not respected by the new version (see line
10) a fail verdict is generated as indicated in line 11. Otherwise, the functional
behavior is validated and accordingly a partial verdict is computed (see line 7
and 9).

For editing and compiling the specified tests, we have used respectively the
CL Editor (TTCN-3 Core Language Editor) and the TThree Compiler that are
included in the TTworkbench basic tool 8. The generated Jars are stored in the
repository for further use and can be dynamically loaded during the execution
when runtime testing is required to validate dynamic changes.

6.2 Preparing the test execution environment

Before executing the compiled tests, the test isolation policy is called in order
to choose for each component under test the suitable test isolation technique.
The testability options of each component involved in the testing process are
specified in the resource aware test plan as depicted in Figure 6. In the current
scenario, the Alarm component is test aware. It differentiates between test data
and business data by using a test tag as illustrated in the test plan. The Nurse
component is not testable. Thus, we use the default test isolation technique
mentioned in the test plan file which is the duplication technique. In this case,
a new component is created which handles the test request. Such solution aims
not to disturb the original Nurse component. The same work is done for Doctor
and Hospital components.

6.3 Executing runtime tests

Once the Resource Aware Test Plan is loaded and the test process is started
through the TTmanGUI, the test environment is built and the test components
are created dynamically. The Figure 7 highlights the main interaction between
some components under test and the corresponding test components. For in-
stance, it shows that the test component PTC alarm is created in order to
validate the Alarm2 component. The latter is instructed to use both the testing
data and business data. Thus, PTC alarm sends inputs data which is generated
with the test tag and receive outputs in order to verify that the specified timing
constraint is respected by the new component. Furthermore, affected compo-
sitions are also checked by test components like PTC alarm nurse. Due to the
non testability of the Nurse component, it has been duplicated and the duplicate
component is used while testing the composition under test behavior.

We follow the same principles for the rest of the components under test as
specified in the resource aware test plan. Once the PTCs components terminate

8 http://www.testingtech.com/products/ttworkbench.php

TTCN-3 Test System for Runtime Testing 13

MTC

PTC
alarm

PTC
alarm_nurse

....

Alarm 2
Nurse

Help Center
Service

Help
Service

TT4RT

Duplicate
Nurse

SUT

Patient
GUI

Business
data

Test
data

Fig. 7. Test components interaction with the affected components under test.

their specified behaviors, they are removed from the test configuration. The
MTC component computes the global verdict which is finally displayed to the
test system user through the TTmanGUI. The latter has been implemented
using the Java language and the swing package. It has been packaged as an
OSGi bundle. The Figure 8 shows the proposed graphical user interface also the
final verdict of the executed runtime tests.

Fig. 8. Screenshot of the Prototype TTmanGUI of the TT4RT system.

7 Related Work

Recent research activities have been proposed to deal with runtime testing in
dynamic environments. They aim to ensure the correctness of the running system

14 M.Lahami et al.

after reconfiguration. In fact, we distinguish approaches dealing with ubiquitous
software systems [1], CBA systems [3, 5, 4], SOA systems [6, 7], publish/subscribe
systems [2] and autonomic systems [8].

Each of them proposes a test system tightly coupled with the system under
test (SUT). In addition, they did not concentrate on proposing a generic and
platform independent test architecture that evolves when the system under test
evolves too. Moreover, they are based on only one technique to isolate runtime
tests in the aim of reducing the interference between business and test data ex-
cept [8] which supports two kinds of test isolation techniques. These approaches
mostly used a specific language framework such as Junit to write and execute
tests. None of them have used a generic testing language such as TTCN-3.

There have been many efforts on proposing test systems based on the TTCN-
3 standard. We distinguish research for testing protocol based applications [22,
15], Web services [23, 16], Web applications [24–26] and also real time and em-
bedded systems [27, 28]. To the best of our knowledge, [9] is the only previous
paper presenting ideas on using TTCN-3 standard for online validation and test-
ing of internet services. However, this work did not deal with test isolation issues
when testing is applied in the production phase.

Unlike these approaches, our work aims at proposing a generic and platform
independent test system based on the TTCN-3 standard to execute runtime
tests. The proposed test system supports different test isolation mechanisms in
order to support testing different kinds of components: test sensitive, test aware
or even non testable components. Such test system has an important impact on
reducing the risk of interference between test behaviors and business behaviors
as well as avoiding overheads and burdens.

8 Conclusion

The work presented in this paper focuses on the use of TTCN-3 standard for
executing runtime tests to reveal component based system inconsistencies and
faults. Our main contribution consists in adding a test isolation layer in the clas-
sic TTCN-3 test system in order to reduce test data interference with business
data at runtime. Furthermore, we add a test management layer that facilitates
the interaction between a test system user and the TT4RT system through a
graphical interface. We illustrated the proposed approach by implementing a
prototype for validating OSGi bundles in the context of telemedicine applica-
tions. In addition, we shortly presented the technical solutions that we employed
for the current implementation of our TT4RT system.

Nevertheless, distributing test configurations in different nodes remains un-
solved. Hence, we are exploring solutions in this area to distribute efficiently
test components with fitting some resource and connectivity constraints. Be-
sides, this work does not deal with test cases generation. All the executed tests
are specified manually. Therefore, we aim to investigate effort in automating
TTCN-3 test cases generation, especially when behavior adaptation occurs. An-

TTCN-3 Test System for Runtime Testing 15

other area to explore is the optimization of test cases selection by re-testing only
the affected parts of the system due to a reconfiguration action.

References

1. Merdes, M., Malaka, R., Suliman, D., Paech, B., Brenner, D., Atkinson, C.: Ubiq-
uitous RATs: how resource-aware run-time tests can improve ubiquitous software
systems. In: SEM ’06: Proceedings of the 6th international workshop on Software
engineering and middleware, New York, NY, USA, ACM (2006) 55–62

2. Piel, É., González-Sanchez, A., Groß, H.G.: Automating integration testing of
large-scale publish/subscribe systems. In Hinze, A., Buchmann, A.P., eds.: Prin-
ciples and Applications of Distributed Event-Based Systems. IGI Global (2010)
140–163

3. Piel, É., González-Sanchez, A.: Data-flow integration testing adapted to runtime
evolution in component-based systems. In: Proceedings of the 2009 ESEC/FSE
workshop on Software integration and evolution @ runtime, New York, USA, As-
sociation for Computing Machinery (2009) 3–10

4. Gonzalez, A., Piel, E., Gross, H.G.: Architecture support for runtime integration
and verification of component-based systems of systems. In Mauro Caporuscio,
Antinisca Di Marco, L.M.H.M.A.P.O.S., ed.: Automated Software Engineering -
Workshops, 2008. ASE Workshops 2008. 23rd IEEE/ACM International Confer-
ence on, IEEE Computer Society (sep 2008) 41–48

5. Niebuhr, D., Rausch, A.: Guaranteeing correctness of component bindings in dy-
namic adaptive systems based on runtime testing. In: SIPE 09: Proceedings of the
4th international workshop on Services integration in pervasive environments, New
York, NY, USA, ACM (2009) 7–12

6. Bai, X., Xu, D., Dai, G., Tsai, W.T., Chen, Y.: Dynamic reconfigurable testing of
service-oriented architecture. Volume 1. (july 2007) 368 –378

7. Greiler, M., Gross, H.G., van Deursen, A.: Evaluation of Online Testing for Ser-
vices A Case Study. In: 2nd International Workshop on Principles of Engineering
Service-Oriented System, ACM (2010) 36–42

8. King, T.M., Allen, A.A., Cruz, R., Clarke, P.J.: Safe runtime validation of behav-
ioral adaptations in autonomic software. In Calero, J.M.A., Yang, L.T., Mármol,
F.G., Garćıa-Villalba, L.J., Li, X.A., Wang, Y., eds.: ATC. Volume 6906 of Lecture
Notes in Computer Science., Springer (2011) 31–46

9. Deussen, P.H., Din, G., Schieferdecker, I.: A TTCN-3 Based Online Test and
Validation Platform for Internet Services. In: Proceedings of the The Sixth Inter-
national Symposium on Autonomous Decentralized Systems (ISADS’03), Wash-
ington, DC, USA, IEEE Computer Society (2003)

10. Brenner, D., Atkinson, C., Malaka, R., Merdes, M., Paech, B., Suliman, D.: Re-
ducing verification effort in component-based software engineering through built-in
testing. Information Systems Frontiers 9(2-3) (2007) 151–162

11. Lahami, M., Krichen, M., Jmaiel, M.: A distributed test architecture for adapt-
able and distributed real-time systems. In the Journal of New technologies of
Information (RNTI), CAL’2011 (2012)

12. ETSI: Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language

13. ETSI: Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)

16 M.Lahami et al.

14. ETSI: Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)

15. Schulz, S., Vassiliou-Gioles, T.: Implementation of TTCN-3 Test Systems using the
TRI. In: Proceedings of the IFIP 14th International Conference on Testing Com-
municating Systems XIV, Deventer, The Netherlands, The Netherlands, Kluwer,
B.V. (2002) 425–442

16. Rentea, C., Schieferdecker, I., Cristea, V.: Ensuring quality of web applications by
client-side testing using ttcn-3. In: TestCom/Fates. (2009)

17. Chen, I.Y., Tsai, C.H.: Pervasive Digital Monitoring and Transmission of Pre-
Care Patient Biostatics with an OSGi, MOM and SOA Based Remote Health Care
System. In: Sixth Annual IEEE International Conference on Pervasive Computing
and Communications (PerCom). (2008) 704–709

18. Varshney, U.: Pervasive healthcare and wireless health monitoring. Mob. Netw.
Appl. 12(2-3) (2007) 113–127

19. André, F., Segarra, M.T., Zouari, M.: Distributed Dynamic Self-adaptation of Data
Management in Telemedicine Applications. In: Proceedings of the 7th International
Conference on Smart Homes and Health Telematics: Ambient Assistive Health and
Wellness Management in the Heart of the City. ICOST ’09, Berlin, Heidelberg,
Springer-Verlag (2009) 303–306

20. Inverardi, P., Muccini, H.: Software Architectures and Coordination Models. J.
Supercomput. 24(2) (February 2003) 141–149

21. Chen, I.Y., Huang, C.C.: A Service Oriented Agent Architecture To Support
Telecardiology Services On Demand. Journal of Medical and Biological Engineering
(2005)

22. Schieferdecker, I., Vassiliou-Gioles, T.: Realizing distributed ttcn-3 test systems
with tci. In: Proceedings of the 15th IFIP international conference on Testing of
communicating systems, Berlin, Heidelberg, Springer-Verlag (2003)

23. Schieferdecker, I., Din, G., Apostolidis, D.: Distributed functional and load tests
for web services. STTT 7 (2005) 351–360

24. Stepien, B., Peyton, L., Xiong, P.: Framework Testing of Web applications using
TTCN-3. Int. J. Softw. Tools Technol. Transf. 10(4) (2008) 371–381

25. Ying Li, Q.L.: Research on Web application software load test using Technology
of TTCN-3. American Journal of Engineering and Technologu Research 11 (2011)
3686–3690

26. Din, G., Tolea, S., Schieferdecker, I.: Distributed load tests with ttcn-3. In: Test-
Com. (2006) 177–196

27. Okika, J.C., Ravn, A.P., Liu, Z., Siddalingaiah, L.: Developing a ttcn-3 test har-
ness for legacy software. In: Proceedings of the 2006 international workshop on
Automation of software test, New York, NY, USA, ACM (2006) 104–110

28. Serbanescu, D.A., Molovata, V., Din, G., Schieferdecker, I., Radusch, I.: Real-time
testing with ttcn-3. In: TestCom/Fates. (2008) 283–301

