Active Learning of Extended Finite State Machines

Abstract : Once they have high-level models of the behavior of software components, engineers can construct better software in less time. A key problem in practice, however, is the construction of models for existing software components, for which no or only limited documentation is available. In this talk, I will present an overview of recent work by my group — done in close collaboration with the Universities of Dortmund and Uppsala — in which we use machine learning to infer state diagram models of embedded controllers and network protocols fully automatically through observation and test, that is, through black box reverse engineering.
Type de document :
Communication dans un congrès
Brian Nielsen; Carsten Weise. 24th International Conference on Testing Software and Systems (ICTSS), Nov 2012, Aalborg, Denmark. Springer, Lecture Notes in Computer Science, LNCS-7641, pp.5-7, 2012, Testing Software and Systems. 〈10.1007/978-3-642-34691-0_2〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01482424
Contributeur : Hal Ifip <>
Soumis le : vendredi 3 mars 2017 - 15:21:41
Dernière modification le : vendredi 3 mars 2017 - 15:25:06
Document(s) archivé(s) le : mardi 6 juin 2017 - 13:06:18

Fichier

978-3-642-34691-0_2_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Frits Vaandrager. Active Learning of Extended Finite State Machines. Brian Nielsen; Carsten Weise. 24th International Conference on Testing Software and Systems (ICTSS), Nov 2012, Aalborg, Denmark. Springer, Lecture Notes in Computer Science, LNCS-7641, pp.5-7, 2012, Testing Software and Systems. 〈10.1007/978-3-642-34691-0_2〉. 〈hal-01482424〉

Partager

Métriques

Consultations de la notice

124

Téléchargements de fichiers

76