N
N

N

HAL

open science

Adaptive Filtering as a Service for Smart City
Applications

Riccardo Petrolo, Valeria Loscri, Nathalie Mitton, Elisa Herrmann

» To cite this version:

Riccardo Petrolo, Valeria Loscri, Nathalie Mitton, Elisa Herrmann. Adaptive Filtering as a Service for
Smart City Applications. 14th IEEE International Conference on Networking, Sensing and Control

(ICNSC), May 2017, Cosenza, Italy. hal-01482715

HAL Id: hal-01482715
https://inria.hal.science/hal-01482715
Submitted on 8 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01482715
https://hal.archives-ouvertes.fr

Adaptive Filtering as a Service for Smart City
Applications

Riccardo Petrolo*, Valeria Loscrif, Nathalie Mitton, and Elisa Herrmann*
*Rice University, USA - tInria Lille - Nord Europe, France - iATOS, Spain

Abstract—Smart cities are a key factor in the consumption
of materials and resources. As populations grow and resources
become scarcer, the efficient usage of these limited goods becomes
more important. Building on and integrating with a huge amount
of data, the cities of the future are becoming a realization today.
There are millions of sensors in place already, monitoring various
things in metropolises. In the near future, these sensors will
multiply until they can monitor everything from streetlights and
trashcans to road conditions and energy consumption.

In this context, effective strategies or solutions for refining
data sets can play a key role. Based on these premises, we
propose intelligent and adaptive filtering mechanisms as a service
(FIIAAS) integrated in the VITAL-OS middleware and will show
their feasibility and their effectiveness in the smart city context.

Index Terms—Smart Cities, Internet of Things, Cloud of
Things, Filtering.

I. INTRODUCTION

With the growth of our population and the advent of
concepts such as cloud computing and the Internet of Things
(IoT), the natural step cities will take is to become more
interconnected. There are millions of sensors in place already,
monitoring various things in metropolises. In the near future,
these sensors will multiply until they can monitor everything
from trashcans to streetlights and to road conditions and
energy consumption [?].

These smart cities will allow us lowering energy consump-
tion, optimizing resources exploitation, and building efficient
cities.

The European Commission has predicted that by 2020,
there will be 50 to 100 billion devices connected to the
Internet [?]. When large numbers of sensors are deployed and
start collecting data, traditional application-based approaches
become infeasible. Therefore, researchers have introduced a
significant amount of middleware solutions.

In the literature, there are numerous descriptions of middle-
ware to support wireless sensor networks in a broad spectrum
of activities. IoT middleware solutions help users retrieve data
from sensors and feed them into applications easily by acting
as mediators between (remote) hardware and application(s).
Moreover, several filtering mechanisms have been proposed
in different contexts ranging from Wireless Sensor Networks
to RFID. In the IoT context, there is a real need of effective
filtering mechanisms.

This work is partially supported by CPER FEDER DATA and by the
European Community in the framework of the VITAL FP7 project.

In this paper, we propose an adaptive filtering mechanism
as a service, able to reduce and refine the initial dataset on the
basis of the parameters defined by the user. The mechanism
is integrated in the VITAL platform in order to show its
effectiveness.

The rest of the paper is organized as follows. In Section
we give a general overview of the VITAL architecture and its
components. In Section we detail the filtering module and
specify the two types of filtering mechanisms implemented as
static filtering. Section[[V]describes the continuous mechanism
filtering as adaptive approach. Section [V| overviews the broad
set of filtering problems and solutions. Finally, we conclude
our paper in Section

II. VITAL

The main objective of VITAL is to integrate different IoT
platforms and ecosystems. To this end, a key factor is the
virtualization of interfaces in combination with cross-context
tools that enable the access and management of heterogeneous
objects supported by different platforms and managed by
different administrative stakeholders.

Figure |1| shows the VITAL architecture organized in three
main layers: IoT Platforms and Data Sources, Platform Ag-
nostic Management, Monitoring and Governance, and Smart
City Applications and Tools. Below we present the features of
fundamental modules:

o IoT Platforms and Data Sources. At the bottom of
the architecture different data-sources stand. In order to
be virtualized and integrated into VITAL, those systems
have to expose a well defined PPI (Platform Provider
Interface).

o Platforms Access and Data Acquisition (PADA). It has
the objective to access the low-level capabilities of the
[oT Systems (through PPI) and to transform the acquired
data and meta-data into a common data model (i.e.,
VITAL ontology).

« Data Management Services (DMS). It provides cloud-
based functionality for managing data and meta-data. The
offered services include data and meta-data persistence,
creation of new data, and more. The DMS communicates,
via REST interfaces, directly with PADA, Added Value
Services and the VUAIs (Virtualized Unified Access
Interfaces).

¢ ICOs and Services Discovery (SD). VITAL provides the
means for discovering ICOs in the scope of horizontal

integrated IoT applications spanning multiple platforms
and business contexts. This module interacts with the
DMS in order to discover the “appropriate” resources for
a particular business context [?].

e Added Value Functionalities. This module involves a
set of complete services and tools:

— Filtering. This module is in charge for reducing the
information associated with individual data streams
persisted in the platform agnostic data manage-
ment layer. Therefore, it reduces unwanted informa-
tion, thereby optimizing processing performance and
economizing on network bandwidth.

— Complex Event Processing (CEP). It enables the
processing of data-streams for multiple sources in
order to identify patterns and/or infer events.

— Orchestration. Its goal is to combine and manage
multiple services from the above-listed modules,
in order to deliver new added-value services. The
combination of the various services is based on a
workflow of service oriented components and inter-
actions, which may be specified on the basis of rules.

o Smart City Applications and Tools. VITAL supports
the development, integration, deployment, and operation
of Smart City applications. This goes for instance with
a complete environment to assist in the easy deployment
and development of Smart City application [?].

III. INTELLIGENT MECHANISMS OF FILTERING

The Filtering module can be accessed through RESTful web
service. The communication standard used to exchange data is
JSON(-LD), the format in which this information will arrive as
input to the filtering module. The received parameters will then
be used to drive the filtering process itself. In order to retrieve
information, the Filtering module relies on the query endpoint
provided by the Data Management Service (DMS). To this
end, queries are defined using MongoDBF_] Query standard.
According to the standard, query parameters are exchanged
using a JSON object containing specific criteria, or conditions,
to be used for the selection of required results. The VITAL
Filtering module supports two different functions, threshold
and resampling.

A. Threshold Filtering

Threshold filtering is a function that allows users and ap-
plications to retrieve observations based on the comparison of
the measured value of a property and a threshold value defined
in the request. Figure |2 shows an example of the interactions
between the Filtering module and a generic requester. In this
example, a requester (i.e., the Orchestrator module) directly
activates the Filtering with the objective to filter observation
for a specific ICO. The function receives as input a JSON
object containing a set of keys like ICO identifier and threshold
numerical value. The request object is enriched with other

Uhttps://www.mongodb.com

options in order to configure the filtering process to operate
on a wider set of parameters.

In the following, we give some more details about the
available options in the filtering request and how they can
be configured to change the filtering logic. The key position
has been included to allow the filtering in a specific spatial
region. The aforementioned key is associated to a JSON object
with the triple latitude, longitude and radius. Even though
position is optional, the triple is mandatory. If a user wants
to restrict the filtering process over a specific area, all the
elements of the triple must be provided. If one of the element
is missing the request is considered as malformed and a
status code 400 (Bad Request) is returned. The keys ICO and
position are meant to be used alternatively. If the request object
contains the ICO key, the filtering is performed only over
the observations measured by the selected internet connected
object. If, instead, the request is characterized by the definition
of position option, the filtering process is performed over the
observations measured by all the internet connected object
that are registered in the geographical region specified in the
request. The option inequality defines the relationship between
the threshold value and the observed value.

Keys from and fo define a time interval over which the
filtering is performed and expect input values in the XSD
format. The limitation over a time interval is optional, and
the filtering behavior changes according to the received con-
figuration. If both time boundaries are defined the filtering is
limited on the observations within the selected range. If only
from is provided, to is automatically set to the time value at the
moment of the request. If no time range is defined the filtering
process is performed over all the observation in the system. For
visually illustrating the filtering mechanism, we can consider
all available observations stored in the DMS, for a specific
ICO, regarding speed measurement. Such observations can be
plot as illustrated in Figure

B. Resampling

In the digital signal processing theory, a signal can be
sampled on a specific sample rate, measuring a physical value
on regular time intervals. Once the signal have been sampled,
the need to change this time interval can occur. This change
can be indicated as upsampling when the number of samples
is increased and downsampling when the number of sampling
is decreased. Upsampling operations are usually executed
using an interpolation process, whereas the downsampling
operations are conducted through a decimation process. In
the case where both operations are available the resultant
is known as resampling. For the filtering functionalities we
wanted to extend this concept also to data measured by an
internet connected object. Through the use of the resampling
function, observations stored in the DMS can be used as data
source to create a set of observation, which are separated in
time by a constant value. To provide an example, suppose that
an application need to calculate the speed measured by an ICO
with an interval of 15 minutes, while data are measured with
a interval than can vary from 8 to 12 minutes. To this end

https://www.mongodb.com

A
- ! __! !
* * Y Security
S t Cit
miur . 1ty Development Governance Management |
Applications

Tools

and Tools

Tools

Tools |

‘ v

't

Platform Agnostic
Management,
Monitoring and
Governance

L

v

‘ Virtualised Universal Access Interfaces (VUAIs)

Orchestration IR e
! Processing (CEP)

Added Value Services

Data Management Services (DMS)

loT Data Adapter (PADA)

: g

} !

}
L
X-GSN Xively
loT Platforms A \ A
and Data Sources :
Transport Open Data

for London London

Platform Provider Interface (PPI) J‘
i —

Hi Reply
A

FIT/loT LAB

London Air
Quality Network

Istanbul
Traffic Sensors

Fig. 1: The VITAL architecture.

the publish/subscribe paradigm offers a selective and flexible
acquisition and filtering mechanism of sensed data on mobile
devices, taking into account users preferences expressed as
subscription.

IV. ADAPTIVE FILTERING FOR [OT DATA-DRIVEN
PROCESSING

Adaptive filtering provides the capability of creating cus-
tomized filters that support complex filtering pattern by means
of a Complex Event Processing. The filter takes streams
of incoming events, in the form of input observations and
evaluates whether those events meets the rules specified by
the user and then publishes the resulting events to observers.
The VITAL CEP components for the different adaptive filters
are implemented based on the ATOS reference architecture for
distributed, scalable and cloudified complex event processing
[?]. An event stream can have an infinite number of events.
Windows provide a means to select event subsets for complex
event detection. Out of many possible ways to select events,
two of the most basic mechanisms include:

o Time Windows: In some specific cases, it is not sufficient
to detect a complex event when certain values are de-
tected. There is a need to take time range into account as
well. For example, detecting events when certain values
exceed or fall below some threshold within a specified
time period. These time periods are usually represented
by fixed time windows or sliding time windows. For
example, sliding time window can collect all sensor

readings during the last two hours and fixed time window
collects readings once every second hour;

o Tuple Windows: Instead of measuring elapsed time, tuple
windows select events based on number of occurrences
of particular events within an input stream. A typical
example of tuple window is collection of last twenty
sensor readings for further evaluation.

The typical transient event lasts for infinite small periods.
However real world scenarios require support for so called
long lasting events. The duration of such events is for a fixed
amount of time or until another event arrives. Specifically, in
the context of VITAL the idea of join events is to match events
coming from different input streams and produce new complex
event stream. A join between two data streams necessarily
involves at least one window. To perform a join, it is usually
necessary to wait for events on the corresponding stream or
to perform aggregation on selected events.

The most complex event processing implementations sup-
port window to window joins, outer joins or stream to database
joins. The joins are used for example to correlate information
across different security devices for sophisticated intrusion
detection mechanism and response.

A. Continuous Filtering

The CEP reference architecture is composed of four func-
tional blocks as listed below:

¢ Coordinator

« Event Collector

Requester

Filtering DMS

Threshold()

Filtering results

A 4

Prepare query()

queryData()

A 4

result dataset

Fig. 2: Filtering threshold - Example of interactions.

o Complex Event Detector
o Complex Event Publisher

Continuous filtering is the capability of attaching filtering
to a data stream and receiving filtered results by listening
to observations of different sources collected in the DMS
till a delete filter request tells the filtering mechanism to
stop. This filtering mechanism will create a CEP as a data
stream endpoint, and will publish the results as observations
continuously to the DMS until the filter is no longer needed
and is stopped by the user application. The components of the
Continuous Filter are depicted in [] The Filter Administrator
for the continuous filter has been redefined to create, read,
update, and delete continuous filters as virtual sensors.

In this case, the Event Collector the Listener component
is totally redefined for subscribing observations sources from
the DMS allowing the collection of historical and real time
observations to be filtered. The listener process has been
implemented for pulling observations from the source sensors
until the user sends a request to stop the filter. Since the filter
is going to last longer than the creation request, the Event
Collector and the Event Publisher are redefined to run in
different threads from the Filtering Administrator component
as they are going to be needed until the filter is stopped. Once
the CEP instance is created and the components are running,
the response to the user application is the identification of this
new virtual sensor in order to query the filtered observations
or to manage the continuous filter. Due to the modularity
of the Atos CEP architecture, it is possible to implement
many different kinds of adaptive filters providing different
implementations of the functional blocks of the architecture.
For example, filters that compare events to events in same
or different stream, or compare events to some aggregated
values. A typical example of event filtering is capturing sensor
readings where values average fall outside of expected range.

In this case, the Event Collector the Listener component is
totally redefined for subscribing observations sources from the
DMS allowing to gather historical and real time observations
to be filtered. The listener process has been implemented for
pulling observations from the source sensors until the user
send a request to stop the filter. The VITAL Event Filtering
functionality is exposed through set of RESTFul Services
through the Filtering administrator for managing the different
type of filters it provides.

V. RELATED WORK

In literature there are numerous descriptions of middleware
that implement filtering functionality. IoT middleware solu-
tions help users retrieve data from sensors and feed them into
applications easily by acting as mediators between (remote)
hardware and application(s). One example is Middleware
Linking Applications and Networks (MiLAN) [?], which
describes a complex middleware aimed to assist the commu-
nication over WSN for specific purposes. MiLAN receives
information about the applications and about the sensors and
resources available in the network. It exploits such information
to adapt the network configuration and, at the same time,
meet the application’s needs while extending the network
lifetime. One of the filtering functions provided by MiLAN
is mainly related to the selection of nodes actively involved.
As an example, there may be scenarios where multiple sensors
have overlapping coverage areas, hence producing redundant
information. The ability to enable only a subset of nodes in
the area can meet the application requirements and at the
same time save energy and extend the network lifetime. To
this purpose the system takes into account the power costs of
using every node in the network, which include the power to
run the device, the power to transmit its own and other nodes
data and the power needed to maintain a specific role in the

All available observations
T

140
. . . -
- .
| o . o o
1201 o ° o o ot . .
.
R A e N PR
S e PR S YRR S S 7 X e .
FEUEE ..‘...‘,,' L T A R
oo % w <, LI AP
100) =y D R R I £ oega » -
P8 - . * .
- % Iy L S * R T ¥
. 2 2 e
o4 . . - g e e,
. .
2 % . .
2 . ¢ .
.
80 ¢
.
.
60
%0 , . .
02-11-2015 03-11-2015 04-11-2015 05-11-2015 06-11-2015
Time (days)

(a) Speed observations of an ICO

Threshold based filtering
T

140

120 [

Speed

80

60 -

* Unselected Observations
*__Selected Observations
40 - :
02-11-2015 03-11-2015 04-11-2015 05-11-2015 06-11-2015
Time (days)

(b) Selection Threshold

Threshold and time based filtering
T T

140

Speed

60 [

*_Selected Observations
40 . .
02-11-2015 03-11-2015 04-11-2015 05-11-2015 06-11-2015
Time (days)

(c) Selection by threshold and time interval

Fig. 3: Filtering mechanisms.

network. The resources available in the network can be used
to introduce Virtual Sensors obtained by mixing different data
sources. Such functions can be exploited in the VITAL system.

Another example of proposed middleware is Garnet [?],
where the architecture is mainly focused in data stream
management. In the model depicted in Garnet, many sensors
transmit their data to a fixed network infrastructure via a
wireless medium. The access to this network is granted
through receivers. The relationship between sensor nodes and
receivers is many to many, thus arriving data undergoes a
filtering process. Such a process reconstructs the data stream
by eliminating duplicates generated by the reception of the
same information by multiple receivers. Moreover the bro-
ker is capable to filter sensor data according to the global
needs. So the acquired raw data are pre-processed, filtered
and enriched with semantic information. Another important
aspect is that those data should be sent to the interested
receivers in near real time. To this end the publish/subscribe
paradigm offers an appropriate solution. It offers a selective
and flexible acquisition and filtering mechanism of sensed data
on mobile devices. The dynamism and flexibility offered is
because it takes user’s preferences expressed as subscription
into account. Furthermore, communication between publish-
ers and subscribers is asynchronous, thus a device can be
registered and disconnected at the same time. All the data
that suits device’s subscriptions can be sent as soon as it gets
reconnected.

Liu and Martonosi in [?] propose a middleware archi-
tecture that enables application modularity, adaptability, and
reparability in wireless sensor networks. The proposed Im-
pala allows software updates to be received via the nodes
wireless transceiver and to be applied to the running system
dynamically. The filtering capabilities in this case are used in
order to dispatch events to the above system units and initiate
chains of processing. Within the context of RFID, different
filtering mechanisms have been introduced in literature; for
example the EPCglobal standard specifies filtering mecha-
nisms as part of the ALE (Application Level Event) layer of
the architecture [?]. As specified by the EPCglobal standard
in [?], the role of the ALE interface within the EPCglobal
Network Architecture is to provide independence among the
infrastructure components that acquire the raw EPC data, the
architectural component(s) that filter & count that data, and
the applications that use the data. In detail, the ALE interface:

e Provides a means for clients to specify, in a high-level,
declarative way, what EPC data they are interested in,
without dictating an implementation.

o Provides a standardized format for reporting accumulated,
filtered EPC data that is largely independent of where the
EPC data originated or how it was processed.

o Abstracts the sources of EPC data into a higher-level
notation of “logical reads”, often synonymous with “lo-
cation”, hiding from clients the details of exactly what
physical devices were used to gather EPC data relevant
to a particular logical location.

User Application/Development Tools

(HCEP)

Fig. 4: CEP Continuous Filter Architecture.

Authors in [?] introduce a middleware implementation of
ALE mechanisms. The proposed AspireRFIIf] extends the
filtering function to any kind of data such as active sensor data,

MAC addresses, phone numbers, etc. The Cougar projectE]

aims to tasking sensor networks through declarative queries.
Given a user query, a query optimizer generates an efficient
query plan for in-network query processing, which can vastly
reduce resource usage and thus extend the lifetime of a sensor
network. In this case, the filtering capabilities of the system
are used in order to filter the sensors interested by the query.
The main aspect that we addressed with this literature analysis
was to identify a broad set of filtering problems and solutions.
Unfortunately, due to the position of our filtering functions,
some of those problems cannot be properly addressed. This
is because some of those functionalities are strictly connected
with the sensing devices. This means that they have to be
handled by entities themselves, which reside inside the in-
dividual silos, before data is sent to the VITAL platform,
like the filtering of duplicated values. Some other aspects
are instead too specific to applications or users thus such
operations should be left to the applications, which lie in an
upper layer.

VI. CONCLUSION

In this paper, we have proposed different filtering mecha-
nisms as a service and we have shown their feasibility and
their effectiveness when integrated in the context of VITAL-
OS framework, a semantic-based framework able to manage
several data sources in the context of the Internet of Thing
paradigm with an horizontal vision of the different platforms.
Specifically, we have shown a viable solution to shrink the data
set based on the parameters defined by a user. Continuous
and adaptive filtering give the possibility to compare events
to events that belong to the same or to different stream, or

Zhttp://wiki.aspire.ow2.org
3https://www.cs.cornell.edu/boom/2004sp/Project Arch/Cougar/index.
html

compare events to some aggregated values. Filtering mecha-
nisms represent a very valuable added functionality for IoT
platforms.

http://wiki.aspire.ow2.org
https://www.cs.cornell.edu/boom/2004sp/ProjectArch/Cougar/index.html
https://www.cs.cornell.edu/boom/2004sp/ProjectArch/Cougar/index.html

	Introduction
	VITAL
	Intelligent mechanisms of Filtering
	Threshold Filtering
	Resampling

	Adaptive Filtering for IoT data-driven processing
	Continuous Filtering

	Related Work
	Conclusion

