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1 Introduction
One of the major limits of kernel ridge regression (KRR) is that for n samples storing and manip-
ulating the kernel matrix Kn requires O(n2) space, which becomes rapidly unfeasible for large n.
Many solutions focus on how to scale KRR by reducing its space (and time) complexity without
compromising the prediction accuracy. A popular approach is to construct low-rank approximations
of the kernel matrix by randomly selecting a subset of m columns from Kn, thus reducing the space
complexity to O(nm). These methods, often referred to as Nyström approximations, mostly differ in
the distribution used to sample the columns of Kn and the construction of low-rank approximations.
Both of these choices significantly affect the accuracy of the resulting approximation [5]. Bach [2]
showed that uniform sampling preserves the prediction accuracy of KRR (up to ε) only when the num-
ber of columns m is proportional to the maximum degree of freedom of the kernel matrix. This may
require sampling O(n) columns in datasets with high coherence [4] (i.e., a kernel matrix with weakly
correlated columns). Alternatively, Alaoui and Mahoney [1] showed that sampling columns according
to their ridge leverage scores (RLS) (i.e., a measure of the influence of a point on the regression)
produces an accurate Nyström approximation with only a number of columns m proportional to the
average degrees of freedom of the matrix, called effective dimension. Unfortunately, the complexity
of computing RLS is comparable to solving KRR itself, making this approach unfeasible. However,
Alaoui and Mahoney [1] proposed a fast method to compute a constant-factor approximation of the
RLS and showed that accuracy and space complexity are close to the case of sampling with exact
RLS at the cost of an extra dependency on the inverse of the minimal eigenvalue of the kernel matrix.
Unfortunately, the minimal eigenvalue can be arbitrarily small in many problems. Calandriello et al.
[3] addressed this issue by processing the dataset incrementally and updating estimates of the ridge
leverage scores, effective dimension, and Nyström approximations on-the-fly. Although the space
complexity of the resulting algorithm (INK-ESTIMATE) does not depend on the minimal eigenvalue
anymore, it introduces a dependency on the largest eigenvalue of Kn, which in the worst case can
be as big as n. This can potentially reduce the advantage of the method. In this paper we introduce
SQUEAK, a new algorithm that builds on INK-ESTIMATE, but uses unnormalized RLS and an
improved RLS estimator. As a consequence, the algorithm is simpler, does not need to compute an
estimate of the effective dimension for normalization, and it achieves a space complexity that is only
a constant factor worse than sampling according to the exact RLS.

2 Background
Notation. We use curly capital letters A for collections and |A| for the number of entries in A,
upper-case bold letters A for matrices and lower-case bold letters a for vectors. We denote by [A]ij
and [a]i the (i, j) element of a matrix and i-th element of a vector respectively. We use en,i ∈ Rn for
the i-th indicator vector of dimension n. Finally, the set of the first n integers is [n] := {1, . . . , n}.

Kernel regression. We consider a regression dataset D = {(xt, yt)}nt=1, with input xt ∈ X ⊆ Rd
and output yt = f?(xt) + ηt, where f? is an unknown target function and ηt is a zero-mean i.i.d.
noise. We denote by K : X × X → R a positive definite kernel function. Given the first t samples
in D, the kernel matrix Kt ∈ Rt×t is obtained as [Kt]ij = K(xi,xj) for any i, j ∈ [t] and we denote
by yt, f

?
t ∈ Rt the vectors with components yi and f?(xi), i ∈ [t]. Whenever a new point xt+1

arrives, the kernel matrix Kt+1 ∈ Rt+1×t+1 is obtained by bordering Kt as

Kt+1 =

[
Kt kt+1

k
T

t+1 kt+1

]
(1)



where kt+1 ∈ Rt is such that [kt+1]i = K(xt+1,xi) for any i ∈ [t] and kt+1 = K(xt+1,xt+1).
At any time t, the objective of kernel regression is to find the vector ŵt ∈ Rt that minimizes the
regularized quadratic loss

ŵt = argmin
w

‖yt −Ktw‖2 + µ‖w‖2 = (Kt + µI)−1yt, (2)

where µ ∈ R is a regularization parameter. If µ is properly tuned, then ŵt achieves a near-optimal
risk R(ŵt) = Eη

[
||f?t −Ktŵt||22

]
. Nonetheless, the computation of the final ŵn requires O(n3)

time and O(n2) space, which is infeasible for large datasets.

Nyström approximation. A common approach to reduce the complexity is to (randomly) se-
lect m columns of Kt according to some distribution pt = {pt,i}ti=1 and construct the dictionary
It = {(ij ,kt,ij , p̃t,ij )}mj=1, which contains the set of indices ij ∈ [t], the corresponding columns
and their weights. Given a dictionary It, the regularized Nyström approximation of Kt is obtained as

K̃t = KtSt(S
T
t KtSt + γIm)−1ST

t Kt, (3)

where the selection matrix St ∈ Rt×m is defined as St = [(qp̃t,i1)
−1/2et,i1 , . . . , (qp̃t,im)−1/2et,im ],

q is a constant, and γ is a regularization term (possibly different from µ). At this point, K̃t can be
used to compute w̃t = (K̃t + µIt)

−1yt efficiently using block inversion, reducing the complexity
from O(n3) to O(nm2 +m3) time and from O(n2) to O(nm) space.

Ridge leverage scores. The accuracy of K̃t is strictly related to the distribution pt used to construct
the dictionary It. In particular, Alaoui and Mahoney [1] showed that sampling according to the
γ-ridge leverage scores (RLS) of Kt leads to an accurate Nyström approximation.
Definition 1. Given Kt = UtΛtU

T
t , the γ-ridge leverage score (RLS) of column i ∈ [t] is

τt,i = kT
t,i(Kt + γIt)

−1et,i = eT
t,iKt(Kt + γIt)

−1et,i, (4)

Furthermore, the effective dimension of the kernel is defined as deff(γ)t =
∑t
i=1 τt,i.

Similar to standard leverage scores (i.e.,
∑
j [U ]2i,j), RLSs measure the importance of each point xi

for the kernel regression. Furthermore, the sum of the RLSs is the effective dimension deff(γ)t,
which measures the intrinsic capacity of the kernel Kt when its spectrum is soft-thresholded by a
regularization γ. Using RLS in constructing a Nyström approximation leads to the following result.
Proposition 1 (Alaoui and Mahoney [1]). Let ε ∈ [0, 1] and In be the dictionary built with m
columns selected proportionally to RLSs {τn,i}. If m = O( 1

ε2 deff(γ)n log(
n
δ )), the Nyström approxi-

mation K̃n is a γ-approximation of Kt, that is 0 � Kt − K̃t � γ
1−εKt(Kt + γI)−1 � γ

1−εI and
the risk of w̃t isR(w̃t) ≤ (1 + γ

µ
1

1−ε )R(ŵt).

Unfortunately, computing exact RLS requires storing Kn, and has the sameO(n2) space requirement
as solving Eq. 2. In the next section, we introduce SQUEAK, an RLS-based incremental algorithm
able to preserve the same accuracy of Prop. 1 without requiring to know the RLS in advance, and that
generates a dictionary only a constant factor larger than exact RLS sampling.

3 Incremental Nyström approximation with ridge leverage scores
SQUEAK (Alg. 1) builds on the INK-ESTIMATE algorithm [3] with the major algorithmic difference
that the sampling probabilities are computed directly on estimates τt,i without renormalizing them by
an estimate of deff(γ)t. SQUEAK introduces two key elements: 1) an improved, accurate estimator
of the RLS and 2) an incremental sampling scheme for the construction of the dictionary It.
1) Estimation of RLS. We introduce an RLS estimator that improves on [3], showing that it can
be efficiently computed. At any time t, let Qt =

∑
iQt,i be the number of columns |It| con-

tained in the dictionary at time t, and St ∈ Rt×Qt the selection matrix constructed so far. Let
St+1 ∈ R(t+1)×(Qt+q) be constructed as [St, (q)

−1/2et+1,t+1, . . . , (q)
−1/2et+1,t+1] by adding

q copies of et+1,t+1 to the selection matrix. Denoting α = (1 + ε)/(1 − ε), we define the RLS
estimator as

τ̃t+1,i =
1 + ε

αγ

(
ki,i − kt+1,iS

(
S
T
Kt+1S + γI

)−1

S
T
kt+1,i

)
. (5)
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Algorithm 1 The SQUEAK algorithm
Input: Dataset D, regularization γ, µ, q
Output: K̃n, w̃n

1: Initialize I0 as empty, p̃1,0 = 1
2: for t = 0, . . . , n− 1 do
3: Receive new column [kt+1, kt+1]
4: Compute α-approximate RLS {τ̃t+1,i : i ∈ It ∪ {t+ 1}}, using It, [kt+1, kt+1], and Eq. 5
5: Set p̃t+1,i = max {min {τ̃t+1,i, p̃t,i} , p̃t,i/2}
6: Initialize It+1 = ∅
7: for all j ∈ {1, . . . , t} do
8: Qt,j = |{i = j : i ∈ It}|
9: if Qt,j 6= 0 then

10: Qt+1,j ∼ B(p̃t+1,j/p̃t,j , Qt,j)
11: Add Qt+1,j copies of (j,kt+1,j , p̃t+1,j) to It+1.
12: end if
13: end for
14: Qt+1,t+1 ∼ B(p̃t+1,t+1, q)
15: Add Qt+1,t+1 copies of (t+ 1,kt+1,t+1, p̃t+1,t+1) to It+1

16: end for
17: Compute K̃n using In and Eq. 3
18: Compute w̃n using K̃n, yn

DICT-UPDATE
SHRINK

EXPAND

If Qt ≥ q, then τ̃t+1,i can be computed in O(Q3
t ) time (O(Qt) to compute kt+1,iS and O(Qt)3

to invert the inner matrix) and O(Q2
t ) space. If Qt < q the same applies with q replacing Qt.

Furthermore, we have the following guarantee.
Lemma 1. Assume that the dictionary It induces a γ-approximate kernel K̃t. Then for all i such
that i ∈ {It ∪ {t+ 1}}, τ̃t+1,i computed using Eq.5 is an α-approximation of the RLS τt,i, that is
τt+1,i(γ)/α ≤ τ̃t+1,i ≤ τt+1,i(γ).

2) Sequential sampling. At each time step t, SQUEAK receives a new column [kt+1, kt+1]. This
can be implemented either by having a separate algorithm that constructs each column sequentially and
streams it to SQUEAK, or by storing just the samples (with an additional O(td) space complexity)
and computing the column once. Adding a new column to the matrix can either decrease the
importance of columns already observed (i.e., if they are correlated to the new column) or leave it
unchanged (i.e., if they are orthogonal) and thus the RLS evolves as τt+1,i ≤ τt,i [3, App. A, Lem. 4].
In the DICT-UPDATE loop, the dictionary is updated to reflect the change in importance of old columns
(e.g., pt,i = τt,i may decrease) and to add the new column proportionally to its RLS τt+1,t+1. The
dictionary It, and the new column are used to compute new approximate RLS τ̃t+1,i as in Eq. 5,
which in turn define the new sampling probabilities p̃t+1,i. The DICT-UPDATE phase is composed of
two steps. For each index i ∈ [t], the SHRINK step counts the number of copiesQt,i present in It, and
then draws a sample from the binomial B(p̃t+1,i/p̃t,i, Qt,i), where taking p̃t+1,i = min {τ̃t+1,i, p̃t,i}
ensures that the binomial probability at L10 is well defined. The more p̃t+1,i is lower than p̃t,i, the
more Qt+1,i will be lower than Qt,i. If the probability p̃t+1,i continues to decrease over time, it
is also possible that Qt+1,i is decreased to zero, and column i is completely dropped from the
dictionary. Intuitively, the SHRINK step stochastically reduces the size of the dictionary to reflect
the reductions of the RLSs. Conversely, the EXPAND step add the new column to the dictionary
with a number of copies (from 0 to q) which depends on its estimated relevance p̃t+1,t+1. Unlike
in [3], the approximate probabilities p̃t,i are not obtained by normalizing the approximate τ̃t,i by an
estimate of the effective dimension and thus they do not necessarily sum to one. Yet, we guarantee
that p̃t,i ≤ pt,i ≤ 1 by construction. Note that SQUEAK never estimates again the RLS of a columns
dropped from It. Moreover, computing Eq. (5) requires only to construct the kernel sub-matrix for
samples whose indices are in It. Therefore, if we are only interested in estimating the approximate
RLS τ̃t,i and not the regression weights w̃t, SQUEAK is the first RLS sampling algorithm that can
operate in a single pass over the dataset (store and access only the samples in It instead of the whole
Dt), without ever constructing the whole matrix. Thm. 1 guarantees that SQUEAK succeeds in
returning a γ-approximate matrix K̃n with high probability.
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Time |In| (Total space = O(n|In|)) Acc. loss Increm.

EXACT n3 n 1 N/A

Bach [2] ndmax
2
n

ε
+

dmax
3
n

ε

dmax,n
ε

(1 + 4ε) No

Alaoui and Mahoney [1] n(|In|)2
(
λmin+nµε
λmin−nµε

)
deff(γ)n + Tr(Kn)

µε
(1 + 2ε)2 No

Calandriello et al. [3] λ2
max
γ2

n2deff(γ)
2
n

ε2
λmax
γ

deff(γ)n
ε2

(1 + 2ε)2 Yes

SQUEAK n2deff(γ)
2
n

ε2
deff(γ)n
ε2

(1 + 2ε)2 Yes

RLS-SAMPLING
ndeff(γ)

2
n

ε2
deff(γ)n
ε2

(1 + 2ε)2 N/A

Table 1: Comparison of Nyström methods. λmax and λmin refer to largest and smallest eigenvalues of Kn.

Theorem 1. Let α =
(

1+ε
1−ε

)
and γ > 1. For any 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1, if we run Alg. 1 with

parameter q = O( αε2 log(
n
δ )) to compute a sequence of random dictionaries It each with a random

number of entries |It|, then with probability 1− δ, for all iterations t ∈ [n]

(1) The Nyström approximation K̃t (Eq. 3) associated with It is a γ-approximation of Kt.

(2) The number of stored columns is |It| =
∑
iQt,i ≤ O(qdeff(γ)t) ≤ O( αε2 deff(γ)n log(

n
δ )).

(3) The solution w̃t satisfiesR(w̃t) ≤ (1 + γ
µ

1
1−ε )R(ŵt).

As the previous theorem holds for any t ∈ [n], SQUEAK has any-time guarantees on its space
complexity, approximation, and risk performance. In fact, (1) combined with Lem. 1 shows that, at
all steps, τ̃t,i are α-approximate RLSs estimates. Since adding a column to Kt can only increase
the effective dimension (i.e., deff(γ)t ≤ deff(γ)t+1) [3, App. A, Lem. 5], from (2) we see that the
number of columns stored by SQUEAK over iterations never exceeds the budget O(deff(γ)n log(n))
required by sampling columns according to the exact RLS computed over the whole dataset. Notice
that this is obtained by automatically increasing the dictionary size (and space occupation) over time
to adapt to the growth in effective dimension of the data, which does not need to be known in advance.
Furthermore, if the size of the dictionary grows too large w.r.t. the memory available, we can still
terminate the algorithm knowing that the intermediate dictionary returned is a good approximation
of the part of dataset processed. We can also restart the process with a larger γ, since deff(γ)n is
inversely proportional to γ. The tradeoffs of this approach are quantified by (3), which shows that
all solutions w̃t incur a risk only a factor roughly (1 + γ/µ) away from the corresponding exact
solution ŵt. This means that choosing a small γ < µ allows to achieve a risk close to the exact
solution for a large range of µ, at the cost of increasing the space, while larger γ require less space
but it may prevent from tuning µ optimally. Finally, it is important to notice that even in the worst
case deff(γ)n = n, SQUEAK requires only log(n) more space than storing the whole matrix.

4 Discussion
Table 1 compares several Nyström approximation methods w.r.t. their space complexity and risk.
For all methods, we omit O(log(n)) factors. The space complexity of uniform sampling [2] scales
with the maximal degree of freedom dmax. Since dmax = nmaxi τn,i ≥

∑
i τn,i = deff(γ)n, uniform

sampling is often outperformed by RLS sampling. While Alaoui and Mahoney [1] also sample
according to RLS, their two-pass estimator is not very accurate. In particular, the first pass requires
to sample O (nµε/(λmin − nµε)) columns, which quickly grows above n2 when λmin becomes
small. Finally, [3] require that the maximum dictionary size is fixed in advance, which implies some
knowledge of the effective dimensions deff(γ)n, and requires estimating both τ̃t,i and d̃eff(γ)t. In
particular, this extra estimation effort causes an additional λmax/γ factor to appear in the space
complexity. This factor cannot be easily estimated, and causes a space complexity of n3 in the
worst case. We also include RLS-SAMPLING, a fictitious algorithm that receives the exact RLS in
input, as an ideal baseline for all RLS sampling algorithms. From the table, we can therefore see
that SQUEAK achieves the same space complexity (up to constant factors) as knowing the RLS in
advance. Moreover, although in this paper we only considered fixed design KRR, γ-approximation
guarantees for K̃n are commonly used in similar problems such as random design KRR, or Kernel
PCA. Finally, with a more careful analysis, we can generalize SQUEAK and its guarantees to the
distributed setting, where multiple machines construct dictionaries in parallel on separate datasets,
and then recursively merge them to construct a dictionary for the union of the datasets.
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