
HAL Id: hal-01483812
https://inria.hal.science/hal-01483812

Submitted on 6 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Emergency Messages in the Commercial Mobile Alert
System

Paul Ngo, Duminda Wijesekera

To cite this version:
Paul Ngo, Duminda Wijesekera. Emergency Messages in the Commercial Mobile Alert System. 6th
International Conference on Critical Infrastructure Protection (ICCIP), Mar 2012, Washington, DC,
United States. pp.171-184, �10.1007/978-3-642-35764-0_13�. �hal-01483812�

https://inria.hal.science/hal-01483812
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 13

EMERGENCY MESSAGES IN THE
COMMERCIAL MOBILE ALERT SYSTEM

Paul Ngo and Duminda Wijesekera

Abstract The U.S. Department of Homeland Security initiated the Commercial
Mobile Alert System (CMAS) to ensure that emergency situations are
effectively communicated to the general public. CMAS uses the exist-
ing commercial telecommunications infrastructure to broadcast emer-
gency alert text messages to all mobile users in an area affected by
an emergency. One of the limitations of CMAS is that the maximum
message size is 90 characters of plaintext. This paper proposes an en-
hancement to CMAS that provides more detailed information within
the 90-character text using an encoding technique. The viability of
the enhancement is demonstrated using a prototype that generates and
broadcasts CMAS emergency alerts to Android phones, on which an
emergency response application intercepts, decodes and displays the
alerts to users.

Keywords: Commercial Mobile Alert System, emergency response, alert messages

1. Introduction

Protecting assets against man-made and natural emergencies is a priority.
However, due to the unexpected nature of emergencies, preparing for, respond-
ing to and recovering from an emergency are always challenging. Indeed, the
emergency problem space is often overlooked until an emergency arises, often
unexpectedly.

In the aftermath of the September 11, 2001 terrorist attacks, communications
were identified as a major bottleneck for emergency and rescue operations.
Telecommunications service providers experienced an extremely high overload
of calls in and out of the stricken areas, which caused congestion at access and
core networks, resulting in many calls being blocked or rejected [8]. However,
mobile users were still able to send and receive text messages.

In 2006, the U.S. Federal Government established the Worker Adjustment
and Retraining Notification (WARN) Act that supported research and develop-

172 CRITICAL INFRASTRUCTURE PROTECTION VI

ment efforts related to the Common Mobile Alert System (CMAS) [3]. CMAS
utilizes the existing commercial telecommunications infrastructure to broadcast
emergency alerts and warnings to a specified geographic area. The current mes-
saging protocol standard, however, is limited to 90 plaintext characters, which
is not enough to communicate detailed information. This paper describes an
enhanced encoding technique that enables the broadcasting of more detailed
information while satisfying the 90-character constraint.

2. CMAS Limitations

In 2006, the U.S. Government initiated the Commercial Mobile Alert Ser-
vice (CMAS) to broadcast emergency alert text messages to the public [5].
Unlike the short message service (SMS) point-to-point communications proto-
col, CMAS uses a dedicated broadcast control channel to send text message
alerts, which can reach millions of wireless subscribers within minutes. Note
that CMAS does not require subscriber registration; the service is available as
long as a user is within range of a cellular access point. While CMAS is designed
to communicate information to the general public during emergency situations,
it inherits the following weaknesses from the cellular broadcast service:

CMAS alert messages cannot broadcast to an area smaller than a cell
site, which is defined in the Federal Information Processing Standard
(FIPS) code [4]. The area of a cell site varies depending on the population
density and can be too large for targeted broadcast alerts in a small-scale
emergency (e.g., a burning building or an apartment gas leak).

CMAS disseminates three types of alerts: (i) Presidential alerts; (ii) im-
minent threat alerts; and (iii) AMBER alerts [11]. CMAS is not designed
to broadcast alerts for local emergencies.

The CMAS specification [2] states that the Common Alerting Protocol
(CAP) version 1.2 is to be used to communicate emergency alerts. How-
ever, CAP 1.2 was designed for department and agency communications
across different levels of government (e.g., federal, state and local). Also,
most of the information in a CAP 1.2 message is not relevant to emer-
gency mobile broadcasting and the message structure does not meet the
requirements associated with local emergencies.

CMAS broadcast messages are limited to 90 characters of plaintext [2].
This size limitation restricts the ability to disseminate detailed and infor-
mative emergency messages.

The first three limitations are addressed by our ERApp emergency applica-
tion for the Android mobile platform [7]. ERApp filters CMAS messages based
on the GPS location and displays alerts only if a user is within the affected
area. We also introduced the Emergency Alert System (ERAlert) to generate
CMAS alerts specifically for local emergencies. Additionally, we suggested en-
hancements to the CAP 1.2 message structure by adding XML tags to enable

Ngo & Wijesekera 173

relevant communications. This paper addresses the fourth limitation by em-
ploying an encoding scheme that enables detailed information to be sent in a
90-character message.

3. CMAS Enhancement

This section describes the CMAS enhancement for encoding and delivering
detailed emergency information messages. The solution affords the flexibility
to tailor messages specific to emergency situations.

3.1 ERApp Considerations

In 2003, OASIS sponsored the CAP initiative to provide messaging proto-
cols that facilitate inter-agency emergency communications. CAP, however, is
intended to facilitate communications between emergency systems and oper-
ators; it was not intended for one-way broadcast alerts to a population. For
example, the sender ID field is not relevant to users who receive broadcast alert
messages.

The GSM/UMTS cellular broadcast service technical specification does not
address broadcast alert messages for an area smaller than a cell site [1, 2]. The
ERApp solution, however, overcomes this challenge by enhancing the CAP
1.2 message structure [6] to include three additional tags: (i) affected area; (ii)
spreadable; and (iii) location. Broadcast localization is achieved by intercepting
and filtering a CMAS cellular broadcast service alert message based on the
distance between the location of the emergency and the recipient.

To support the ERApp implementation, the CAP 1.2 message structure must
be expanded to accommodate XML tags and values for the additional infor-
mation [9, 10]. We propose an encoding scheme that enables more emergency
data to be placed within the 90-character block. Upon receiving the CMAS
broadcast alert message, ERApp decodes the enhanced XML message into its
original format and displays the emergency information to the recipient.

3.2 CMAS Architectural Enhancement

ERApp requires a “codepage” to decode an emergency alert message. The
codepage contains a list of emergency message formats and region-specific emer-
gency tag repositories, which can be identified by the namespace of the unique
XML schema. The unique uniform resource identifier (URI) or uniform resource
name (URN) in the namespace is contained in the emergency XML alert mes-
sage. Note that each emergency tag repository contains a location-specific list
of emergency name and value pairs. The codepage can be downloaded auto-
matically to a mobile device during handover (i.e., the process of transferring
an ongoing call or data session from one cellular network to another). Enabling
codepage download during handover requires a minor enhancement to the cur-
rent architecture. To simplify our discussion, we consider the Global System for
Mobile Communications (GSM). Other networks such as Code Division Mul-

174 CRITICAL INFRASTRUCTURE PROTECTION VI

Figure 1. Handover enhancement.

tiple Access (CDMA), Universal Mobile Telecommunications System (UMTS)
and Long Term Evolution (LTE) have similar handover procedures.

GSM has four forms of handover: (i) intra-BTS handover; (ii) inter-BTS
intra-BSC handover; (iii) inter-BSC handover; and (iv) inter-MSC handover.
Although each form has different implementation details, the synchronization
procedure between the mobile station (MS) and the base transceiver station
(BTS) is common for all four handovers. During synchronization, the code-
page is transmitted from the BTS to the MS. Figure 1 shows a user with an
Android phone driving from an urban area to a rural zone. When the inter-
BSC handover occurs, the new codepage from the rural area is sent to the user’s
Android phone during the synchronization process.

A second approach is to request the codepage based on the GPS location
at the time of ERApp installation. This enables codepage download during a
non-emergency when bandwidth may be more readily available. This approach
is also better suited for fixed cellular devices that are more likely to remain in
one designated cell.

To enhance messaging details in the available 90-character text, we pro-
pose two encoding/decoding methods for inclusion with ERApp: (i) predefined
method; and (ii) just-in-time method. The predefined encoding method re-
quires ERAlert and ERApp to use the message format specified in the codepage,

Ngo & Wijesekera 175

alert
Message ID (identifier)
Message Status (status)

info
Category (category)
Urgency (urgency)
Severity (severity)
Certainty (certainty)
Expiration Date/Time (expires)
Event Type (event)
Event Description (description)
Affected Area (affectedarea)
Spreadable (spreadable)

location
Latitude (lat)
Longitude (lon)

1

1

Elements in italics are
mandatory; one (1)
indicates that only one
instance is permitted.

Figure 2. CAP object model for CMAS messages.

which is communicated prior to the broadcast of an alert message. A major
advantage of this method is that more bytes are available for emergency data
because the tag and attribute names are not encoded. The AMBER alert is a
good candidate for the predefined encoding method. However, the predefined
method suffers from a loss of flexibility with regard to including or excluding
tags or attributes associated with a specific emergency.

The just-in-time encoding method does not require predefined message for-
mats, provided that the alert message complies with the emergency tag repos-
itory identified in the codepage. Although the just-in-time method requires
more bytes than the predefined method for the tag and attribute names, it
offers the flexibility required for specific emergency alerts.

3.3 CMAS Encoding Schemes

Figure 2 presents the CAP object model for CMAS messages. Current en-
coding schemes limit the utility of the static data fields in CMAS messages.
The enhanced structure, however, expands the XML schema to include more
expressive information for emergency reporting. To realize the full benefit of
the expanded structure, an encoding scheme is required that maximizes the
amount of information that can be expressed in each element. Before describing
the proposed enhancement, we review the WBXML and prime power encoding
schemes currently used by CMAS.

3.3.1 WBXML Encoding. The WBXML encoding converts
XML tags and attributes to the associated byte representation. WBXML en-
codes one byte for a beginning tag, one byte for a value and one byte for an
ending tag. A similar method is used to encode an attribute. The details of
the WBXML encoding are specified in Algorithm 1.

176 CRITICAL INFRASTRUCTURE PROTECTION VI

Algorithm 1 : WBXML Encoding Algorithm (Input: XML Stream)
Require: xmlStream ̸= null
1: tokenSteam← new ByteArrayOutputStream()
2: handler← new WBXMLContentHandler()
3: reader← XMLReader.createXMLReader()
4: reader.setContentHandler(handler)
5: xmlSource← new InputSource(xmlStream)
6: reader.parse(xmlSource)
7: tokens← handler.getTokens()
8: while tokens.hasNext() do
9: aToken← (Token)tokens.next()

10: tokenStream.write(aToken.getValue())
11: end while
12: return tokenStream

The WBXML algorithm requires a valid XML stream as its input. In Line
1, a new token stream is created as a new byte array output stream object
to store the encoded values. A WBXML handler is then created that imple-
ments callback methods (e.g., beginning tag, closing tag and text value) and
loads the codepage based on the namespace specified in an XML alert message.
The algorithm creates the XML reader in Line 3 and registers the WBXML
handler with the XML reader in Line 4. In Line 5, the algorithm creates a
new input source object from the XML stream, which is provided as input for
the reader.parse method in Line 6. The reader.parse method evaluates tags
and attributes in pre-order. When the parser identifies a beginning or closing
tag name, it calls the appropriate callback methods defined in the handler to
identify the tag name in the tag repository. The handler.getTokens call in Line
7 returns the list of byte tokens to be written into the token stream. Lines 8
through 11 recursively evaluate the list of tokens and write out the encoded
byte values to the output token stream, which is returned in Line 12. This
technique is useful for encoding values of known tags and attributes.

3.3.2 Prime Power Encoding. The prime power encoding
method encodes an XML document as a single, albeit large, integer. Note that
significant CPU power and computational time may be required to encode and
decode a simple XML document. The details of the prime power encoding are
specified in Algorithm 2.

Like the WBXML algorithm, the prime power algorithm requires a valid
XML stream as input. In Line 1, the algorithm creates the XML prime power
content handler. The handler implements the callback functions and loads
the codepage based on the namespace specified in an XML alert message. In
Line 2, the algorithm creates the reader. The handler is then registered with
the reader in Line 3 so callback functions are referenced when XML tags are
encountered. In Line 4, xmlSource is created from xmlStream. In Line 5, the
reader.parse method performs post-order lookups from the leaf node to the root

Ngo & Wijesekera 177

Algorithm 2 : Prime Power Encoding Algorithm (Input: XML Stream)
Require: xmlStream ̸= null
1: handler← new XMLPPContentHandler()
2: reader← XMLReader.createXMLReader()
3: reader.setContentHandler(handler)
4: xmlSource← new InputSource(xmlStream)
5: reader.parse(xmlSource)
6: return handler.getPPValue()

node. The first three prime numbers are reserved for the default node, internal
node and leaf node. At every node and node value, the parser performs the
prime encoding by taking the smallest available prime and raising it to the
power of the integer value represented in the tag repository. Finally, in Line
6 the handler returns the encoded integer value corresponding to the XML
document.

Consider the severity tag in the tornado example in Figure 3. The severity
tag has an integer value of 2 and a severity value of 2. To encode the severity
tag, the parser first encodes the severity tag value. Because the severity value
is the leaf node, the parser raises the leaf prime number 3 to the power of 2,
yielding a value of 9. The parser continues to encode the severity tag by raising
the internal node prime of 2 with the tag integer value of 2. Therefore, the
severity tag has the integer value of 4. To complete the encoding, the parser
multiplies the tag integer value of 4 with 1953125, which is the result of raising
the next available prime of 5 to the tag value integer of 9. The prime power
encoding for the severity tag yields the large integer value of 7812500. Note
that the integer values can be extremely large and become unmanageable very
rapidly.

3.3.3 CMAS Encodings. In order to provide more meaningful
CMAS alert messages for XML trees, we introduce the just-in-time and prede-
fined XML encoding schemes. These encoding schemes significantly reduce the
number of required encoded bytes.

Just-in-Time Encoding. The just-in-time encoding algorithm has two
phases: (i) preprocessing phase; and (ii) encoding phase. The preprocessing
phase builds the XML tag repository from the XML schema. For each level
of depth in the XML tree, the preprocessing phase examines all possible tag
names and associates each unique instance with an integer value starting at 0.
The process is repeated for all tag values, attribute names and attribute values.

The preprocessing phase generates a codepage for all region-specific tag
repositories. Each tag repository is identified and retrieved according to the
unique namespace of the XML schema. The generated codepage is location-
specific and pertains to emergencies that occur regularly in the associated re-
gion. For example, the codepage for areas in Florida can describe hurricane and

178 CRITICAL INFRASTRUCTURE PROTECTION VI

Figure 3. CMAS mobile alert message for a tornado warning.

tornado related tags, while the codepage for areas in California can describe
earthquake and wildfire tags.

Algorithm 3 : Preprocessing Algorithm (Input: XML Emergency Schema)
Require: xmlSchemaStream ̸= null
1: depth ← getDepth(xmlSchemaStream)
2: maxTags ← getMaxTags(xmlSchemaStream)
3: numTagBits ← log2(maxDepth) + log2(maxTags) + 1
4: maxTagValues ← getMaxTagValues(xmlSchemaStream)
5: maxAttrValues ← getMaxAttrs(xmlSchemaStream)
6: maxValues ← max(maxTagValues, maxAttrValues)
7: numValueBits ← log2(maxValues) + 1
8: numEncodingBits ← max(numTagBits, numValueBits)
9: encodingScheme ← getEncodingScheme(numEncodingBit)

10: return encodingScheme

As shown in Algorithm 3, the preprocessing phase uses the depth and the
maximum number of tags, tag values, attribute names and attribute values.
Furthermore, the preprocessing phase examines all static value tags and con-
solidates them to fit the selected encoding schema. Note that preprocessing
generates a combined tag in the tag repository, which significantly reduces the
number of encoded bytes.

Ngo & Wijesekera 179

1 - Node x = Depth y = Tags

Figure 4. Node depth and tags.

The just-in-time encoding algorithm (Algorithm 3) requires a valid XML
emergency schema as input. All the nodes in the schema are examined in Line
1 to compute the depth and in Line 2 to determine the maximum number
of tags (maxTags). Line 3 computes the number of bits required to encode
the tags. The algorithm then computes the maximum number of tag values
(maxTagValues) in Line 4 and the maximum number of attribute names and
attribute values (maxAttrValues) in Line 5. The maximum value (maxValues)
between the two is computed in Line 6. The algorithm then computes the
number of bits to encode the values. The number of bits required for encoding
the XML schema is computed in Line 8. In Line 9, the encoding scheme
(encodingScheme) is determined from one of the four values (e.g., 8 bits, 16
bits, 32 bits or 64 bits). The encoding is returned in Line 10.

An application of the just-in-time encoding scheme is illustrated in Figure 4.
As an example, a one-byte encoding scheme is used to encode an XML docu-
ment with depth x = 8 and maxTags y = 16. The number of encoding bits
(numTagBits) z1 is computed as:

z1 ≥ log2(x) + log2(y) + 1

where x is the depth and y is the maximum number of tags at each depth.

0 - Attribute v = Attributes + Attribute Values

1 - Tag v = Tag Value

Figure 5. Attribute depth and tags.

Figure 5 illustrates the encoding of a tag value, attribute name and attribute
value. Note that the depth does not have to be encoded because it is incorpo-
rated into the node. To compute the number of encoding bits for the values
(numValueBits) z2, the maximum number of tag values (maxTagValues) and
the maximum number of attributes and attribute values (maxAttrValues) must
be determined first. The number of encoding bits for the values is computed

180 CRITICAL INFRASTRUCTURE PROTECTION VI

disastertype certainty severity urgency category spreadable

Figure 6. Combined tag.

as:
z2 ≥ log2(v) + 1

where v is the maximum number between tag values, attribute names and
attribute values for each tag (maxValues). Finally, the number of encoding
bits (numEncodingBits) z required is given by:

z = max(z1, z2).

In Figure 5, we use an 8-bit encoding scheme to encode a known tag or a
known attribute. With this encoding scheme, the maximum number for tag
values, attribute names and attribute values is 128 for each tag.

Consider, for example, the tornado alert message discussed previously (Fig-
ure 3). The category, urgency, severity, certainty and spreadable tags have
static values. If each tag is encoded separately, ten bytes are required to en-
code the five tags and five tag values. As shown in Figure 6, combining the
tags realizes an encoding that uses only three bytes. Note that the category
tag has twelve possible values and requires four bits, whereas the spreadable
tag is a Boolean value and only requires one bit.

Algorithm 4 : MXML Encoding Algorithm (Input: XML Stream)
Require: xmlStream ̸= null
1: xmlStream← combinedTags(xmlStream)
2: handler← new MXMLContentHandler()
3: reader← XMLReaderFactory.createXMLReader()
4: reader.setContentHandler(handler)
5: xmlSource← new InputSource(xmlStream)
6: reader.parse(xmlSource)
7: masterNode← handler.getMasterNode()
8: outputStream← new ByteArrayOutputStream()
9: masterNode.writeStream(outputStream)

10: arrayBytes← outputStream.toByteArray()
11: outputStream.close()
12: return arrayBytes

After the preprocessing phase, the XML alert message document is ready for
the encoding phase. Algorithm 4 specifies the CMAS encoding scheme, which
we refer to as the mobile XML (MXML) encoding.

The MXML algorithm requires the codepage and a valid XML stream as
input. In Line 1, combined tags in the tag repository generate a new XML

Ngo & Wijesekera 181

stream. The MXMLContentHandler function in Line 2 creates the handler,
which implements the callback functions and loads the codepage based on the
XML namespace specified in the XML alert message. In Line 3, the XMLReader
function creates the reader and, in Line 4, the handler is registered with the
reader. In Line 5, xmlSource is created from xmlStream. In the encoding
phase, the MXMLContentHandler creates the internal tag repository. The
reader.parse method is called in Line 6 with xmlSource as the parameter; the
reader examines each XML tag value, attribute name and attribute value in
pre-order. The parser then encodes the XML document, starting from the root
element at depth zero and continues recursively to the other elements.

The encoding method uses a pre-order traversal to encode every tag name,
tag value, attribute name and attribute value. For every value encountered by
the parser, the value in the tag repository is correlated based on the depth level
and its parent node. The value is encoded by inserting the byte representation
into a byte array. The encoding bytes in the array from the child elements
are appended to the parent node. If the value is not statically known (i.e.,
the value is not registered in the tag repository), then it is encoded as a text
value with null bytes representing the beginning and end of the text. After
the encoding phase is complete, a byte array stream containing the encoding
bits is returned. The encoding byte array stream must be converted into an
array of characters using Base64 encoding to provide human-readable text. The
additional message length provided by the encoding is given by:

Base64 Length = (Bytes + 2 − ((Bytes + 2) mod 3))/3 ∗ 4.

An additional consideration is that the cellular broadcast service uses an in-
dependent broadcast control channel with dedicated bandwidth to send emer-
gency alerts. Because there is no competition with other channels for band-
width, emergency information can be segmented into multiple messages if the
alert exceeds the standard 90 characters. ERApp uses the message header fields
to reconstruct the original emergency information in its entirety.

Predefined Encoding. Similar to the just-in-time encoding algorithm,
the predefined encoding algorithm has two phases: (i) preprocessing phase; and
(ii) encoding phase. The implementation mirrors the just-in-time algorithm,
but with a slight modification in the preprocessing phase. Specifically, in the
case of the predefined encoding method, the alert message format is defined and
stored in the codepage during the preprocessing phase. ERAlert and ERApp
use the prescribed message format to encode and decode the alert message,
respectively. The encoding phase proceeds as described for the just-in-time
encoding.

4. Experimental Evaluation

In order to evaluate performance, alert information is classified as either
static or dynamic. Static data fields contain predefined values that emergency

182 CRITICAL INFRASTRUCTURE PROTECTION VI

Table 1. Performance evaluation summary.

Encoding Alert Encoding Base64
Algorithm Time Length Length

WBXML 179 ms 267 bytes 356 bytes
Prime Power Infeasible N/A N/A
MXML (Predefined) 160 ms 98 bytes 132 bytes
MXML (Just-in-Time) 158 ms 118 bytes 160 bytes

operators can select based on the situation; examples include category, urgency,
severity, certainty and event. Dynamic data fields contain values that cannot
be predefined due to intractable uncertainty; examples include event location,
expiration time and description.

We revisit the tornado example to illustrate the encoding of static and dy-
namic data. The data element, category, represents the static environment and
is specified as <category>Met</category>. Let s be the description of the
category data field and let D(s) be its length such that the normal value of
D(s) is 24 characters.

All the tokens and their values are defined in the tag repository for CMAS
alerts. Each token is represented by an integer value starting at zero. The cat-
egory field and MET values are encoded as 0 and 2 (bytes, not integer values),
respectively. Therefore, the CMAS encoding requires only two bytes instead of
the eight bytes needed to represent two integers; thus, the corresponding D(s)
value is two bytes.

For the dynamic data category, data fields and values are encoded according
to their data types. For example, the expiration time may be encoded as a string
representing the timestamp, which requires up to 20 characters. However, the
data field also can be encoded as a long value for milliseconds or an integer value
for seconds. Because the number of milliseconds provides more detail than is
necessary, the expiration time is encoded as an integer value that requires only
four bytes.

The WBXML, prime power, MXML just-in-time and MXML predefined
algorithms were executed for CMAS mobile alert messages corresponding to
the tornado example. A Dell Latitude E6400 with dual core processors was
used as the computing platform. Because CMAS only allows 90 characters per
broadcast, the tornado alert was segmented into two broadcast messages and
reconstructed by the receiving ERApp. Table 1 shows the results for the aver-
age alert time, encoding length and the Base64 encoding length. The MXML
predefined encoding provides the shortest length for readable text (i.e., Base64
encoding length). The MXML just-in-time and MXML predefined encodings
used less bytes to encode the message than the original CMAS encoding scheme
while also minimizing the alert time. Note that the prime power encoding was
declared to be infeasible because it exhausted the CPU utilization rate and was
unable to encode the alert message even after several hours of processing.

Ngo & Wijesekera 183

5. Conclusions

The CMAS extension described in this paper enables detailed emergency
information to be incorporated in alert messages while complying with the 90-
character message specification. The utility of the approach is demonstrated by
the ability to install the ERApp emergency response application on an Android
platform and receive detailed emergency alert messages.

References

[1] Alliance for Telecommunications Industry Solutions, Implementation
Guidelines and Best Practices for GSM/UMTS Cell Broadcast Service,
ATIS-0700007, Washington, DC, 2009.

[2] Alliance for Telecommunications Industry Solutions, Commercial Mobile
Alert Service (CMAS) via GSM/UMTS Cell Broadcast Service Specifica-
tion, ATIS-0700006, Washington, DC, 2010.

[3] Federal Communications Commission, Common Mobile Alert System
(CMAS), Washington, DC (www.fcc.gov/cgb/consumerfacts/cmas.ht
ml), 2011.

[4] National Institute of Standards and Technology, Federal Information Pro-
cessing Standards Publications, Gaithersburg, Maryland (www.itl.nist.
gov/fipspubs/index.htm).

[5] National Public Safety Telecommunications Council, Commercial Mo-
bile Alert Service Architecture and Requirements, Version 0.6, Littleton,
Colorado (www.npstc.org/download.jsp?tableId=37&column=217&id=
703&file=PMG-0035_Final_Recommendations_v0_6.pdf), 2007.

[6] P. Ngo and D. Wijesekera, Using ontological information to enhance re-
sponder availability in emergency response, Proceedings of the Semantic
Technology for Intelligence, Defense and Security Conference, 2010.

[7] P. Ngo and D. Wijesekera, Enhancing the usability of the Commercial
Mobile Alert System, in Critical Infrastructure Protection V, J. Butts and
S. Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 137–149, 2011.

[8] Northern Virginia Resource Center for Deaf and Hard of Hear-
ing Persons, Emergency Preparedness and Emergency Communication
Access Lessons Learned Since 9/11 and Recommendations, Fairfax,
Virginia (tap.gallaudet.edu/emergency/nov05conference/Emergency
Reports/DHHCANEmergencyReport.pdf), 2004.

184 CRITICAL INFRASTRUCTURE PROTECTION VI

[9] Organization for the Advancement of Structured Information Standards,
Emergency Data Exchange Language (EDXL) Distribution Element,
v1.0, OASIS Standard EDXL-DE v1.0, Burlington, Massachusetts (docs.
oasis-open.org/emergency/edxl-de/v1.0/EDXL-DE_Spec _v1.0.pdf),
2006.

[10] Organization for the Advancement of Structured Information Stan-
dards, Common Alerting Protocol Version 1.1 (Approved Errata),
Burlington, Massachusetts (docs.oasis-open.org/emergency/cap/v1.
1/errata/CAP-v1.1-errata.html), 2007.

[11] U.S. Department of Justice, AMBER Alert, Washington, DC (www.amber
alert.gov).

