H. J. Abel, J. C. Lee, J. C. Callaway, and R. C. Foehring, Relationships between intracellular neocortical pyramidal neurons calcium and afterhyperpolarizations in neocortical pyramidal neurons, J Neurophysiol, 2004.
DOI : 10.1152/jn.00583.2003

URL : http://jn.physiology.org/content/jn/91/1/324.full.pdf

V. Arnold, Geometrical methods in the theory of ordinary differential equations, 1988.

P. Y. Burgi and N. M. Grzywacz, Model for the Pharmacological Basis of Spontaneous Synchronous Activity in Developing Retinas, J. Neurosci, vol.14, pp.7426-7439, 1994.

A. Butts, M. B. Feller, C. J. Shatz, and D. S. Rokhsar, Retinal Waves Are Governed by Collective Network Properties, J. Neurosci, vol.19, pp.3580-3593, 1999.

R. Clewley, Hybrid Models and Biological Model Reduction with PyDSTool, PLoS Computational Biology, vol.8, issue.8, 2012.
DOI : 10.1371/journal.pcbi.1002628.s004

URL : https://doi.org/10.1371/journal.pcbi.1002628

A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, MATCONT, ACM Transactions on Mathematical Software, vol.29, issue.2, pp.141-164, 2003.
DOI : 10.1145/779359.779362

B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students SIAMPublished, 2002.
DOI : 10.1137/1.9780898718195

M. B. Feller, D. A. Butts, H. L. Aaron, D. S. Rokhsar, and C. J. Shatz, Dynamic Processes Shape Spatiotemporal Properties of Retinal Waves, Neuron, vol.19, issue.2, pp.293-306, 1997.
DOI : 10.1016/S0896-6273(00)80940-X

URL : https://doi.org/10.1016/s0896-6273(00)80940-x

K. J. Ford and M. B. Feller, Abstract, Visual Neuroscience, vol.10, issue.01, pp.61-71
DOI : 10.1016/j.neuron.2010.01.035

URL : https://hal.archives-ouvertes.fr/hal-01375359

K. J. Ford, A. L. Félix, and M. B. Feller, Cellular Mechanisms Underlying Spatiotemporal Features of Cholinergic Retinal Waves The Journal of Neuroscience, pp.32850-863, 2012.

M. I. Fredlin and A. Wentzell, D Random Perturbations of Dynamical Systems Springer, Grundlehren der mathematischen Wissenschaften, 1998.

S. Fried, T. Münch, and F. Werblin, Mechanisms and circuitry underlying directional selectivity in the retina, Nature, vol.321, issue.6914, 2002.
DOI : 10.1038/35069068

K. Godfrey and S. Eglen, Theoretical models of spontaneous activity generation and propagation in the developing retina Molecular BioSystems, 2009.

K. Godfrey and N. B. Swindale, Retinal Wave Behavior through Activity-Dependent Refractory Periods, PLoS Computational Biology, vol.14, issue.11, p.245, 2007.
DOI : 10.1371/journal.pcbi.0030245.sv001

URL : https://doi.org/10.1371/journal.pcbi.0030245

M. Graupner, A theory of Plasma Membrane calcium pump function and its consequences for presynaptic calcium dynamics, 2003.

M. Graupner, F. Erler, M. , and M. , A Theory of Plasma Membrane Calcium Pump Stimulation and Activity, Journal of Biological Physics, vol.263, issue.2, pp.183-206, 2005.
DOI : 10.1042/bj3310763

J. Guckenheimer and P. Ph, Non linear oscillations, dynamical systems, and bifurcation of vector fields, 1983.

J. M. Han, A. Tanimura, V. Kirk, and J. Sneyd, A mathematical model of calcium dynamics in HSY cells, PLOS Computational Biology, vol.321, issue.5885, p.2017
DOI : 10.1371/journal.pcbi.1005275.s002

M. Hennig, C. Adams, D. Willshaw, and E. Sernagor, Early-Stage Waves in the Retinal Network Emerge Close to a Critical State Transition between Local and Global Functional Connectivity, Journal of Neuroscience, vol.29, issue.4, 2009.
DOI : 10.1523/JNEUROSCI.4880-08.2009

M. Iwata and S. Shinichi, Theoretical analysis for critical fluctuations of relaxation trajectory near a saddle-node bifurcation Phys, Rev. E, vol.82, p.11127, 2010.

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, 2007.

M. Kaneda, K. Ito, Y. Morishima, Y. Shigematsu, and Y. Shimoda, Characterization of Voltage-Gated Ionic Channels in Cholinergic Amacrine Cells in the Mouse Retina, Journal of Neurophysiology, vol.97, issue.6, 2007.
DOI : 10.1152/jn.01022.2006

D. Karvouniari, L. Gil, O. Marre, S. Picaud, and B. Cessac, Modeling the spontaneous emergence of stage II retinal waves Areadne Conference, 2016.

D. Karvouniari, L. Gil, O. Marre, S. Picaud, and B. Cessac, Following stage II retinal waves during development with a biophysical model Bernstein Conference, 2017.

B. Lansdell, K. Ford, and J. Kutz, A Reaction-Diffusion Model of Cholinergic Retinal Waves, PLoS Computational Biology, vol.19, issue.12, pp.1-14, 2014.
DOI : 10.1371/journal.pcbi.1003953.s006

A. Maccione, M. Hennig, M. Gandolfo, O. Muthmann, J. V. Coppenhagen et al., Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse, The Journal of Physiology, vol.20, issue.7, pp.1545-156325, 2014.
DOI : 10.1113/jphysiol.2013.262840

E. Marder and J. M. Goaillard, Variability, compensation and homeostasis in neuron and network function, Nature Reviews Neuroscience, vol.15, issue.7, pp.563-574, 2006.
DOI : 10.1016/j.neuint.2005.12.029

C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophysical Journal, vol.35, issue.1, pp.193-213, 1981.
DOI : 10.1016/S0006-3495(81)84782-0

A. Ozaita, J. Petit-jacques, B. Volgy, C. S. Ho, H. Joho et al., A unique role for kv 3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina, The Journal of Neuroscience, issue.24, pp.337335-7343, 2004.

C. Park and R. J. , Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-B??tzinger complex neurons, Journal of Computational Neuroscience, vol.95, issue.4, 2013.
DOI : 10.1152/jn.01308.2005

K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara, and H. Kawakami, Bifurcations in Morris???Lecar neuron model, Neurocomputing, vol.69, issue.4-6, pp.293-316, 2006.
DOI : 10.1016/j.neucom.2005.03.006

E. Sernagor, S. J. Eglen, O. Donovan, and M. J. , Differential effects of acetylcholine and glutamate blockade on the spatiotemporal dynamics of retinal waves, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.20, p.56, 2000.

E. Sernagor and M. Hennig, Retinal Waves, 2012.
DOI : 10.1016/B978-0-12-397266-8.00151-4

E. Sernagor and N. Grzywacz, Spontaneous activity in developing turtle retinal ganglion cells: Pharmacological studies, J Neuroscience, vol.19, 1999.

D. Warland, A. Huberman, and L. Chalupa, Dynamics of Spontaneous Activity in the Fetal Macaque Retina during Development of Retinogeniculate Pathways, Journal of Neuroscience, vol.26, issue.19, 2006.
DOI : 10.1523/JNEUROSCI.0328-06.2006

H. Xu, T. J. Burbridge, M. Ye, M. Chen, X. X. Ge et al., Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits, The Journal of Neuroscience, vol.36, issue.13, pp.36-3871, 2016.
DOI : 10.1523/JNEUROSCI.3549-15.2016

K. Yoshida, D. Watanabe, H. Ishikane, M. Tachibana, I. Pastan et al., A Key Role of Starburst Amacrine Cells in Originating Retinal Directional Selectivity and Optokinetic Eye Movement, Neuron, vol.30, issue.3, 2001.
DOI : 10.1016/S0896-6273(01)00316-6

J. Zheng, S. Lee, and Z. J. Zhou, A Developmental Switch in the Excitability and Function of the Starburst Network in the Mammalian Retina, Neuron, vol.44, issue.5, pp.851-864, 2004.
DOI : 10.1016/j.neuron.2004.11.015

J. Zheng, S. Lee, and Z. J. Zhou, A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves, Nature Neuroscience, vol.94, issue.3, pp.363-371, 2006.
DOI : 10.1113/jphysiol.1987.sp016653

Z. J. Zhou, Direct Participation of Starburst Amacrine Cells in Spontaneous Rhythmic Activities in the Developing Mammalian Retina, J. Neurosci, vol.18, issue.11, pp.4155-4165, 1998.