]. S. Basu, R. Pollack, and M. Roy, I)/(50 * Pi^3-30 * Pi^2-3 * Pi) Real part is 0; Going for a recursive call Newton polygon is [[0 1] [1 0]] xi is (see below) real part is non zero. We're done. It took 3.596 seconds References, Algorithms in Real Algebraic Geometry, 2006.

R. E. Bellman and K. L. Cooke, Differential-Difference Equations, The Rand Corporation, 1963.

Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier, Separating linear forms and Rational Univariate Representations of bivariate systems, Journal of Symbolic Computation, vol.68, pp.84-119, 2015.
DOI : 10.1016/j.jsc.2014.08.009

URL : https://hal.archives-ouvertes.fr/hal-00977671

Y. Bouzidi, S. Lazard, G. Moroz, M. Pouget, F. Rouillier et al., Solving bivariate systems using Rational Univariate Representations, Journal of Complexity, vol.37, pp.34-75, 2016.
DOI : 10.1016/j.jco.2016.07.002

URL : https://hal.archives-ouvertes.fr/hal-01342211

Y. Bouzidi, A. Poteaux, and A. Quadrat, Computer algebra methods for the stability analysis of differential systems with commensurate time-delays, Proceedings of the 13th IFAC Workshop on Time Delay Systems, pp.22-24, 2016.
DOI : 10.1016/j.ifacol.2016.07.528

URL : https://hal.archives-ouvertes.fr/hal-01415282

G. E. Collins and A. G. Akritas, Polynomial real root isolation using Descarte's rule of signs, Proceedings of the third ACM symposium on Symbolic and algebraic computation , SYMSAC '76, pp.272-275, 1976.
DOI : 10.1145/800205.806346

D. Cox, J. Little, and D. Shea, Ideals, Varieties, and Algorithms, ser. Undergraduate Texts in Mathematics, 2007.

D. N. Daouda, B. Mourrain, and O. Ruatta, On the computation of the topology of a non-reduced implicit space curve, Proceedings of the twenty-first international symposium on Symbolic and algebraic computation, ISSAC '08, pp.47-54, 2008.
DOI : 10.1145/1390768.1390778

D. Duval, Rational Puiseux expansions, Compositio Math, vol.70, issue.2, pp.119-154, 1989.

J. K. Hale, Theory of Functional Differential Equations, 1977.
DOI : 10.1007/978-1-4612-9892-2

A. Kobel, F. Rouillier, and M. Sagraloff, Computing Real Roots of Real Polynomials ... and now For Real!, Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '16, 2016.
DOI : 10.1145/2930889.2930937

URL : https://hal.archives-ouvertes.fr/hal-01363955

H. T. Kung and J. F. Traub, All Algebraic Functions Can Be Computed Fast, Journal of the ACM, vol.25, issue.2, pp.245-260, 1978.
DOI : 10.1145/322063.322068

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA032345&Location=U2&doc=GetTRDoc.pdf

X. Li, S. Niculescu, A. Çela, H. Wang, and T. Cai, On Computing Puiseux Series for Multiple Imaginary Characteristic Roots of LTI Systems With Commensurate Delays, IEEE Transactions on Automatic Control, vol.58, issue.5, pp.1338-1343, 2013.
DOI : 10.1109/TAC.2012.2226102

URL : https://hal.archives-ouvertes.fr/hal-00935428

X. Li, S. Niculescu, and A. Çela, Analytic Curve Frequency-Sweeping Stability Tests for Systems with Commensurate Delays, 2015.
DOI : 10.1007/978-3-319-15717-7

URL : https://hal.archives-ouvertes.fr/hal-01284722

X. Li, S. Niculescu, A. Çela, and L. Zhang, Characterizing invariance property of uniformly distributed delay systems

J. E. Marshall, H. Gorecki, A. Korytowski, and K. Walton, Time-Delay. Systems: Stability and Performance Criteria with Applications, 1992.

S. Niculescu, Delay Effects on Stability: A Robust Control Approach, ser. Lecture Notes in Control and Information Sciences, 2001.

N. Olgac and R. Sipahi, An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems, IEEE Transactions on Automatic Control, vol.47, issue.5, pp.793-796, 2002.
DOI : 10.1109/TAC.2002.1000275

A. Poteaux, Computing monodromy groups defined by plane algebraic curves, Proceedings of the 2007 International Workshop on Symbolic-Numeric Computation, pp.36-45, 2007.

A. Poteaux, Calcul de développements de puiseux et application au calcul de groupe de monodromie d'une courbe algébrique plane, 2008.

A. Poteaux and M. Rybowicz, Complexity bounds for the rational Newton-Puiseux algorithm over finite fields, Applicable Algebra in Engineering, Communication and Computing, vol.69, issue.1???2, pp.187-217, 2011.
DOI : 10.1007/s00200-011-0144-6

URL : https://hal.archives-ouvertes.fr/hal-00601438

Z. V. Rekasius, A stability test for systems with delays, Proc. Joint Automatic Control Conf, 1980.

F. Rouillier, Solving Zero-Dimensional Systems Through the Rational Univariate Representation, Applicable Algebra in Engineering, Communication and Computing, vol.9, issue.5, pp.433-461, 1999.
DOI : 10.1007/s002000050114

URL : https://hal.archives-ouvertes.fr/inria-00073264

F. Rouillier and P. Zimmermann, Efficient isolation of polynomial's real roots, Journal of Computational and Applied Mathematics, vol.162, issue.1, pp.33-50, 2003.
DOI : 10.1016/j.cam.2003.08.015

F. Rouillier, Algorithmes pour l'étude des solutions rélles des systèmes polynomiaux

F. Rouillier, RS: Real Roots isolation for algebraic systems with rational coefficients with a finite number of complex roots

R. J. Walker, Algebraic Curves, 1950.

R. N°-9044 and R. Centre-lille-?-nord-europe-parc-scientifique-de-la-haute, Borne 40 avenue Halley -Bât A -Park Plaza 59650 Villeneuve d'Ascq Publisher Inria Domaine de Voluceau -Rocquencourt BP 105 -78153 Le Chesnay Cedex inria