F. Baader, B. Sertkaya, and A. Y. Turhan, Computing the least common subsumer w.r.t. a background terminology, Journal of Applied Logic, vol.5, issue.3, 2007.
DOI : 10.1016/j.jal.2006.03.002

URL : http://doi.org/10.1016/j.jal.2006.03.002

J. Baget, M. Croitoru, A. Gutierrez, M. Lecì-ere, and M. Mugnier, Translations between RDF(S) and Conceptual Graphs, p.ICCS, 2010.
DOI : 10.1007/978-3-642-14197-3_7

URL : https://hal.archives-ouvertes.fr/lirmm-00537334

M. Chein and M. Mugnier, Graph-based Knowledge Representation -Computational Foundations of Conceptual Graphs, 2009.
URL : https://hal.archives-ouvertes.fr/lirmm-00355336

W. W. Cohen, A. Borgida, and H. Hirsh, Computing least common subsumers in description logics, p.AAAI, 1992.

S. Colucci, F. Donini, S. Giannini, and E. D. Sciascio, Defining and computing Least Common Subsumers in RDF, Web Semantics: Science, Services and Agents on the World Wide Web, vol.39, issue.0, 2016.
DOI : 10.1016/j.websem.2016.02.001

S. Colucci, F. M. Donini, and E. D. Sciascio, Common Subsumbers in RDF, 2013.
DOI : 10.1007/978-3-319-03524-6_30

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, p.OSDI, 2004.
DOI : 10.1145/1327452.1327492

E. Hassad, S. Goasdoué, F. Jaudoin, and H. , Learning commonalities in RDF and SPARQL (research report). https, 2016.

H. Garcia-molina, J. D. Ullman, and J. Widom, Database systems -the complete book, 2009.

F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-ruiz, and S. Zampetakis, CliqueSquare: Flat plans for massively parallel RDF queries, 2015 IEEE 31st International Conference on Data Engineering, p.ICDE, 2015.
DOI : 10.1109/ICDE.2015.7113332

R. Küsters, Non-Standard Inferences in Description Logics, LNCS, vol.2100, 2001.
DOI : 10.1007/3-540-44613-3

J. Lehmann and L. Bühmann, AutoSPARQL: Let Users Query Your Knowledge Base, p.ESWC, 2011.
DOI : 10.1007/11926078_3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Meier, Towards Rule-Based Minimization of RDF Graphs under Constraints, In: RR, 2008.
DOI : 10.1007/978-3-540-88737-9_8

T. Neumann and G. Weikum, The RDF-3X engine for scalable management of RDF data, The VLDB Journal, vol.29, issue.3, 2010.
DOI : 10.1007/s00778-009-0165-y

N. Papailiou, D. Tsoumakos, I. Konstantinou, P. Karras, and N. Koziris, RDF+, Proceedings of the 2014 ACM SIGMOD international conference on Management of data, SIGMOD '14, p.SIGMOD, 2014.
DOI : 10.1145/2588555.2594535

R. Pichler, A. Polleres, S. Skritek, and S. Woltran, Complexity of redundancy detection on RDF graphs in the presence of rules, constraints, and queries, Semantic Web, vol.4, issue.4, 2013.

G. D. Plotkin, A note on inductive generalization, Machine Intelligence, vol.5, 1970.

G. D. Plotkin, A further note on inductive generalization, Machine Intelligence, vol.6, 1971.

R. Ramakrishnan and J. Gehrke, Database management systems, 2003.

J. A. Robinson, A machine-oriented logic based on the resolution principle, J. ACM, vol.12, issue.1, 1965.

J. A. Robinson and A. Voronkov, Handbook of Automated Reasoning, 2001.

J. Urbani, S. Kotoulas, J. Maassen, F. Van-harmelen, and H. E. Bal, WebPIE: A Web-scale Parallel Inference Engine using MapReduce, Web Semantics: Science, Services and Agents on the World Wide Web, vol.10, 2012.
DOI : 10.1016/j.websem.2011.05.004

B. Zarrieß and A. Turhan, Most specific generalizations w.r.t. general EL-TBoxes, p.IJCAI, 2013.