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Abstract. Model-driven engineering (MDE) and, in particular, the notion of do-
main-speci�c modelling languages (DSMLs) is an increasingly popular approach
to systems development. DSMLs are particularly interesting because they allow
encoding domain-knowledge into a modelling language and enable full code gen-
eration and analysis based on high-level models. However, as a result of the
domain-speci�city of DSMLs, there is a need for many such languages. This
means that their use only becomes economically viable if the development of new
DSMLs can be made ef�cient. One way to achieve this is by reusing functional-
ity across DSMLs. On this background, we are working on techniques for mod-
ularising DSMLs into reusable units. Speci�cally, we focus on DSMLs whose
semantics are de�ned through in-place model transformations. In this paper, we
present a formal framework of morphisms between graph-transformation systems
(GTSs) that allow us to de�ne a novel technique for conservative extensions of
such DSMLs. In particular, we de�ne different behaviour-aware GTS morphisms
and prove that they can be used to de�ne conservative extensions of a GTS.

1 Introduction

Model-Driven Engineering (MDE) [41] has raised the level of abstraction at which
systems are developed, moving development focus from the programming-language
level to the development of software models. Models and speci�cations of systems have
been around the software industry from its very beginning, but MDE articulates them so
that the development of information systems can be at least partially automated. Thus
models are being used not only to specify systems, but also to simulate, analyze, modify
and generate code of such systems. A particularly useful concept in MDE are domain-
speci�c modelling languages (DSMLs) [7]. These languages offer concepts speci�cally
targeted at a particular domain. On the one hand this makes it easier for domain experts
to express their problems and requirements. On the other hand, the higher amount of
knowledge embedded in each concept allows for much more complete generation of



executable solution code from a DSML model [27] as compared to a model expressed
in a general-purpose modelling language.

DSMLs can only be as effective as they are speci�c for a particular domain. This
implies that there is a need for a large number of such languages to be developed.
However, development of a DSML takes additional effort in a software-development
project. DSMLs are only viable if their development can be made ef�cient. One way of
achieving this is by allowing them to be built largely from reusable components. Con-
sequently, there has been substantial research on how to modularise language speci�ca-
tions. DSMLs are often de�ned by specifying their syntax (often separated into concrete
and abstract syntax) and their semantics. While we have reasonably good knowledge of
how to modularise DSML syntax, the modularisation of language semantics is an as yet
unsolved issue.

DSML semantics can be represented in a range of different ways�for example
using UML behavioural models [17, 20], abstract state machines [8, 2], Kermeta [34],
or in-place model transformations [33, 37]. In the context of MDE it seems natural
to describe the semantics by means of models, so that they may be integrated with
the rest of the MDE environment and tools. We focus on the use of in-place model
transformations.

Graph transformation systems (GTSs) were proposed as a formal speci�cation tech-
nique for the rule-based speci�cation of the dynamic behaviour of systems [10]. Dif-
ferent approaches exist for modularisation in the context of the graph-grammar formal-
ism [5, 40, 12]. All of them have followed the tradition of modules inspired by the notion
of algebraic speci�cation module [15]. A module is thus typically considered as given
by an export and an import interface, and an implementation body that realises what is
offered in the export interface, using the speci�cation to be imported from other mod-
ules via the import interface. For example, Große-Rhode, Parisi-Presicce, and Simeoni
introduce in [22] a notion of module for typed graph transformation systems, with inter-
faces and implementation bodies; they propose operations for union, composition, and
re�nement of modules. Other approaches to modularisation of graph transformation
systems include PROGRES Packages [42], GRACE Graph Transformation Units and
Modules [31], and DIEGO Modules [43]. See [26] for a discussion on these proposals.

For the kind of systems we deal with, the type of module we need is much sim-
pler. For us, a module is just the speci�cation of a system, a GTS, without import and
export interfaces. Then, we build on GTS morphisms to compose these modules, and
speci�cally we de�ne parametrised GTSs. The instantiation of such parameterized GTS
is then provided by an amalgamation construction. We present formal results about
graph-transformation systems and morphisms between them. Speci�cally, we provide
de�nitions for behaviour-re�ecting and -protecting GTS morphisms and show that they
can be used to infer semantic properties of these morphisms. We give a construction for
the amalgamation of GTSs, as a base for the composition of GTSs, and we prove it to
protect behaviour under certain circumstances. Although we motivate and illustrate our
approach using the e-Motions language [38, 39], our proposal is language-independent,
and all the results are presented for GTSs and adhesive HLR systems [32, 14].

Different forms of GTS morphisms have been used in the literature, taking one
form or another depending on their concrete application. Thus, we �nd proposals cen-



tered on re�nements (see., e.g., [25, 21, 22]), views (see, e.g., [19]), and substitutability
(see [18]). See [18] for a �rst attempt to a systematic comparison of the different pro-
posals and notations. None of these notions �t our needs, and none of them coincide
with our behaviour-aware GTS morphisms.

Moreover, as far as we know, parameterised GTSs and GTS morphisms, as we dis-
cuss them, have not been studied before. Heckel and Cherchago introduce parame-
terised GTSs in [24], but their notion has little to do with our parameterised GTSs. In
their case, the parameter is a signature, intended to match service descriptions. They
however use a double-pullback semantics, and have a notion of substitution morphism
which is related to our behaviour preserving morphism.

Our work is originally motivated by the speci�cation of non-functional properties
(NFPs), such as performance or throughput, in DSMLs. We have been looking for ways
in which to encapsulate the ability to specify non-functional properties into reusable
DSML modules. Troya et al. used the concept of observers in [45, 46] to model non-
functional properties of systems described by GTSs in a way that could be analysed by
simulation. In [9], we have built on this work and ideas from [48] to allow the modu-
lar encapsulation of such observer de�nitions in a way that can be reused in different
DSML speci�cations. In this paper, we present a full formal framework of such lan-
guage extensions. Nevertheless, this framework is independent of the speci�c example
of non-functional property speci�cations, but instead applies to any conservative exten-
sion of a base GTS.

The way in which we think about composition of reusable DSML modules has been
inspired by work in aspect-oriented modelling (AOM). In particular, our ideas for ex-
pressing parametrised metamodels are based on the proposals in [3, 29]. Most AOM
approaches use syntactic notions to automate the establishment of mappings between
different models to be composed, often focusing primarily on the structural parts of a
model. While our mapping speci�cations are syntactic in nature, we focus on composi-
tion of behaviours and provide semantic guarantees. In this sense, our work is perhaps
most closely related to the work on MATA [47] or semantic-based weaving of scenar-
ios [30].

The rest of the paper begins with a presentation of a motivating example expressed
in the e-Motions language in Section 2. Section 3 introduces a brief summary of graph
transformation and adhesive HLR categories. Section 4 introduces behaviour-re�ecting
GTS morphisms, the construction of amalgamations in the category of GTSs and GTS
morphisms, and several results on these amalgamations, including the one stating that
the morphisms induced by these amalgamations protect behaviour, given appropriate
conditions. The paper �nishes with some conclusions and future work in Section 5.

2 NFP speci�cation with e-Motions

In this section, we use e-Motions [38, 39] to provide a motivating example, adapted
from [45], as well as intuitions for the formal framework developed. However, as stated
in the previous section, the framework itself is independent of such a language.

e-Motions is a Domain Speci�c Modeling Language (DSML) and graphical frame-
work developed for Eclipse that supports the speci�cation, simulation, and formal anal-



Fig. 1. Production Line (a) metamodel and (b) concrete syntax (from [45]).

ysis of DSMLs. Given a MOF metamodel (abstract syntax) and a GCS model (a graph-
ical concrete syntax) for it, the behaviour of a DSML is de�ned by in-place graph
transformation rules. Although we brie�y introduce the language here, we omit all
those details not relevant to this paper. We refer the interested reader to [36, 39] or
http://atenea.lcc.uma.es/e-Motions for additional details.

Figure 1(a) shows the metamodel of a DSML for specifying Production Line sys-
tems for producing hammers out of hammer heads and handles, which are generated
in respective machines, transported along the production line via conveyors, and tem-
porarily stored in trays. As usual in MDE-based DSMLs, this metamodel de�nes all the
concepts of the language and their interconnections; in short, it provides the language’s
abstract syntax. In addition, a concrete syntax is provided. In the case of our example,
this is suf�ciently well de�ned by providing icons for each concept (see Figure 1(b));
connections between concepts are indicated through arrows connecting the correspond-
ing icons. Figure 2 shows a model conforming to the metamodel in Figure 1(a) using
the graphical notation introduced in the GCS model in Figure 1(b).

The behavioural semantics of the DSML is then given by providing transformation
rules specifying how models can evolve. Figure 3 shows an example of such a rule.
The rule consists of a left-hand side matching a situation before the execution of the
rule and a right-hand side showing the result of applying the rule. Speci�cally, this rule
shows how a new hammer is assembled: a hammer generator a has an incoming tray
of parts and is connected to an outgoing conveyor belt. Whenever there is a handle and
a head available, and there is space in the conveyor for at least one part, the hammer
generator can assemble them into a hammer. The new hammer is added to the parts
set of the outgoing conveyor belt in time T, with T some value in the range [a.pt - 3,
a.pt + 3], and where pt is an attribute representing the production time of a machine.
The complete semantics of our production-line DSML is constructed from a number



of such rules covering all kinds of atomic steps that can occur, e.g., generating new
pieces, moving pieces from a conveyor to a tray, etc. The complete speci�cation of a
Production Line example using e-Motions can be found at http://atenea.lcc.
uma.es/E-motions/PLSExample.

For a Production Line system like this one, we may be interested in a number of
non-functional properties. For example, we would like to assess the throughput of a
production line, or how long it takes for a hammer to be produced. Figure 4(a) shows

Fig. 2. Example of production line con�guration.

Fig. 3. Assemble rule indicating how a new hammer is assembled (from [45]).



(a) Metamodel. (b) Concrete syntax.

(c) Sample response time rule.

Fig. 4. Generic model of response time observer.

the metamodel for a DSML for specifying production time. It is de�ned as a parametric
model (i.e., a model template), de�ned independently of the Production Line system. It
uses the notion of response time, which can be applied to different systems with differ-
ent meanings. The concepts of Server, Queue, and Request and their interconnections
are parameters of the metamodel, and they are shaded in grey for illustration purposes.
Figure 4(b) shows the concrete syntax for the response time observer object. When-
ever that observer appears in a behavioural rule, it will be represented by that graphical
symbol.

Figure 4(c) shows one of the transformation rules de�ning the semantics of the
response time observer. It states that if there is a server with an in queue and an out
queue and there initially are some requests (at least one) in the in queue, and the out
queue contains some requests after rule execution, the last response time should be
recorded to have been equal to the time it took the rule to execute. Similar rules need
to be written to capture other situations in which response time needs to be measured,
for example, where a request stays at a server for some time, or where a server does not
have an explicit in or out queue.



Note that, as in the metamodel in Figure 4(a), part of the rule in Figure 4(c) has been
shaded in grey. Intuitively, the shaded part represents a pattern describing transforma-
tion rules that need to be extended to include response-time accounting.4 The lower
part of the rule describes the extensions that are required. So, in addition to reading
Figure 4(c) as a ‘normal’ transformation rule (as we have done above), we can also read
it as a rule transformation, stating: �Find all rules that match the shaded pattern and
add ResponseTime objects to their left- and right-hand sides as described.� In effect,
observer models become higher-order transformations [44].

To use our response-time language to allow speci�cation of production time of ham-
mers in our Production Line DSML, we need to weave the two languages together. For
this, we need to provide a binding from the parameters of the response-time metamodel
(Figure 4(a)) to concepts in the Production Line metamodel (Figure 1(a)). In this case,
assuming that we are interested in measuring the response time of the Assemble ma-
chine, the binding might be as follows:

� Server to Assemble;
� Queue to LimitedContainer as the Assemble machine is to be connected to an arbi-

trary LimitedContainer for queuing incoming and outgoing parts;
� Request to Part as Assemble only does something when there are Parts to be pro-

cessed; and
� Associations:
� The in and out associations from Server to Queue are bound to the correspond-

ing in and out associations from Machine to Tray and Conveyor, respectively;
and

� The association from Queue to Request is bound to the association from Con-
tainer to Part.

As we will see in Section 4, given DSMLs de�ned by a metamodel plus a behaviour,
the weaving of DSMLs will correspond to amalgamation in the category of DSMLs
and DSML morphisms. Figure 5 shows the amalgamation of an inclusion morphism
between the model of an observer DSML, MObs , and its parameter sub-model MPar ,
and the binding morphism from MPar to the DSML of the system at hand, MDSML, the
Production Line DSML in our example. The amalgamation object M\DSML is obtained
by the construction of the amalgamation of the corresponding metamodel morphisms
and the amalgamation of the rules describing the behaviour of the different DSMLs.

In our example, the amalgamation of the metamodel corresponding morphisms is
shown in Figure 6 (note that the binding is only partially depicted). The weaving pro-
cess has added the ResponseTime concept to the metamodel. Notice that the weaving
process also ensures that only sensible woven metamodels can be produced: for a given
binding of parameters, there needs to be a match between the constraints expressed in
the observer metamodel and the DSML metamodel. We will discuss this issue in more
formal detail in Section 4.

The binding also enables us to execute the rule transformations speci�ed in the
observer language. For example, the rule in Figure 3 matches the pattern in Figure 4(c),

4 Please, notice the use of the cardinality constraint 1::� in the rule in Figure 4(c). It is out of the
scope of this paper to discuss the syntactical facilities of the e-Motions system.



MPar

MMPar � RlsPar

Binding
BMM � BRls +3

��

MDSML

MMDSML � RlsDSML

��
MObs

MMObs � RlsObs
+3 M\DSML

(MMDSML 
 MMObs) � (RlsDSML 
 RlsObs)

Fig. 5. Amalgamation in the category of DSMLs and DSML morphisms.

Fig. 6. Weaving of metamodels (highlighting added for illustration purposes).

given this binding: In the left-hand side, there is a Server (Assemble) with an in-Queue
(Tray) that holds two Requests (Handle and Head) and an out-Queue (Conveyor). In
the right-hand side, there is a Server (Assemble) with an in-Queue (Tray) and an out-
Queue (Conveyor) that holds one Request (Hammer). Consequently, we can apply the
rule transformation from the rule in Figure 4(c). As we will explain in Section 4, the
semantics of this rule transformation is provided by the rule amalgamation illustrated
in Figure 7, where we can see how the obtained amalgamated rule is similar to the
Assemble rule but with the observers in the RespTime rule appropriately introduced.

Clearly, such a separation of concerns between a speci�cation of the base DSML
and speci�cations of languages for non-functional properties is desirable. We have used
the response-time property as an example here. Other properties can be de�ned easily



Fig. 7. Amalgamation of the Assemble and RespTime rules.

in a similar vein as shown in [45] and at http://atenea.lcc.uma.es/index.
php/Main_Page/Resources/E-motions/PLSObExample. In the following
sections, we discuss the formal framework required for this and how we can distinguish
safe bindings from unsafe ones.

The e-Motions models thus obtained are automatically transformed into Maude [4]
speci�cations [39]. See [36] for a detailed presentation of how Maude provides an accu-
rate way of specifying both the abstract syntax and the behavioral semantics of models
and metamodels, and offers good tool support both for simulating and for reasoning
about them.

3 Graph transformation and adhesive HLR categories

Graph transformation [40] is a formal, graphical and natural way of expressing graph
manipulation based on rewriting rules. In graph-based modelling (and meta-modelling),
graphs are used to de�ne the static structures, such as class and object ones, which rep-
resent visual alphabets and sentences over them. We formalise our approach using the
typed graph transformation approach, speci�cally the Double Pushout (DPO) algebraic
approach, with positive and negative (nested) application conditions [11, 23]. We how-
ever carry on our formalisation for weak adhesive high-level replacement (HLR) cate-
gories [12]. Some of the proofs in this paper assume that the category of graphs at hand



is adhesive HLR. Thus, in the rest of the paper, when we talk about graphs or typed
graphs, keep in mind that we actually mean some type of graph whose corresponding
category is adhesive HLR. Speci�cally, the category of typed attributed graphs, the one
of interest to us, was proved to be adhesive HLR in [16].

3.1 Generic notions

The concepts of adhesive and (weak) adhesive HLR categories abstract the foundations
of a general class of models, and come together with a collection of general semantic
techniques [32, 14]. Thus, e.g., given proofs for adhesive HLR categories of general
results such as the Local Church-Rosser, or the Parallelism and Concurrency Theorem,
they are automatically valid for any category which is proved an adhesive HLR cat-
egory. This framework has been a break-through for the DPO approach of algebraic
graph transformation, for which most main results can be proved in these categorical
frameworks, and then instantiated to any HLR system.

De�nition 1. (Van Kampen square) Pushout (1) is a van Kampen square if, for any
commutative cube with (1) in the bottom and where the back faces are pullbacks, we
have that the top face is a pushout if and only if the front faces are pullbacks.

A0f 0

rr m 0

$$a

��

C0

n 0 $$
c

��

Af

rr
m ##(1)

B0
g0

rr

b

��

C

n ##

D0

d

��

B
grr

Af

rr
m $$

D C

n $$
B

grrD

De�nition 2. (Adhesive HLR category) A category C with a morphism class M is
called adhesive HLR category if

� M is a class of monomorphisms closed under isomorphisms and closed under com-
position and decomposition,

� C has pushouts and pullbacks along M -morphisms, i.e., if one of the given mor-
phisms is in M , then also the opposite one is in M , and M -morphisms are closed
under pushouts and pullbacks, and

� pushouts in C along M -morphisms are van Kampen squares.

In the DPO approach to graph transformation, a rule p is given by a span (L l K r! R)
with graphs L, K, and R, called, respectively, left-hand side, interface, and right-hand
side, and some kind of monomorphisms (typically, inclusions) l and r. A graph transfor-
mation system (GTS) is a pair (P; �) where P is a set of rule names and � is a function
mapping each rule name p into a rule L l � K r�! R.



An application of a rule p : L l � K r�! R to a graph G via a match m : L! G
is constructed as two gluings (1) and (2), which are pushouts in the corresponding graph
category, leading to a direct transformation G p;m

=) H .

p : L

m
��

(1)

Kloo r //

��
(2)

R

��
G Doo // H

We only consider injective matches, that is, monomorphisms. If the matching m is un-
derstood, a DPO transformation step G p;m

=) H will be simply written G p
=) H . A

transformation sequence � = �1 : : : �n : G)� H via rules p1; : : : ; pn is a sequence of
transformation steps �i = ( Gi

pi ;m i==) Hi ) such that G1 = G, Hn = H , and consecutive
steps are composable, that is, Gi +1 = Hi for all 1 � i < n. The category of transfor-
mation sequences over an adhesive category C, denoted by Trf(C), has all graphs in jCj
as objects and all transformation sequences as arrows.

Transformation rules may have application conditions. We consider rules of the
form (L l � K r�! R; ac), where (L l � K r�! R) is a normal rule and ac is a
(nested) application condition on L. Application conditions may be positive or negative
(see Figure 8). Positive application conditions have the form 9a, for a monomorphism
a : L ! C, and demand a certain structure in addition to L. Negative application
conditions of the form @a forbid such a structure. A match m : L ! G satis�es a
positive application condition 9a if there is a monomorphism q : C ! G satisfying
q � a = m. A matching m satis�es a negative application condition @a if there is no
such monomorphism.

C

q ��

Laoo

m

��

Kloo r //

��

R

��
G Doo // H

(a) Positive application condition

C

=
q ��

Laoo

m

��

Kloo r //

��

R

��
G Doo // H

(b) Negative application condition

Fig. 8. Positive and negative application conditions.

Given an application condition 9a or @a, for a monomorphism a : L! C, another
application condition ac can be established on C, giving place to nested application
conditions [23]. For a basic application condition 9(a; acC ) on L with an application
condition acC on C, in addition to the existence of q it is required that q satis�es acC .
We write m j= ac if m satis�es ac. acC

�= ac0
C denotes the semantical equivalence of

acC and ac0
C on C.

To improve readability, we assume projection functions ac, lhs and rhs, returning,
respectively, the application condition, the left-hand side and the right-hand side of a
rule. Thus, given a rule r = ( L l � K r�! R; ac), ac(r) = ac, lhs(r) = L, and
rhs(r) = R.



Given an application condition acL on L and a monomorphism t : L ! L0, then
there is an application condition Shift(t; acL ) on L0 such that for all m0 : L0 ! G,
m0 j= Shift(t; acL ) $ m = m0� t j= acL .

acL B L t //

m ��

L0

m 0
��

Shift(t; acL )C

G

Parisi-Presicce proposed in [35] a notion of rule morphism very similar to the one
below, although we consider rules with application conditions, and require the commut-
ing squares to be pullbacks.

De�nition 3. (Rule morphism) Given transformation rules pi = ( Li
l i Ki

r i! Ri ; aci ),
for i = 0 ;1, a rule morphism f : p0 ! p1 is a tuple f = ( fL ; fK ; fR ) of graph mono-
morphisms fL : L0 ! L1, fK : K0 ! K1, and fR : R0 ! R1 such that the squares
with the span morphisms l0, l1, r0, and r1 are pullbacks, as in the diagram below, and
such that ac1 ) Shift(fL ;ac0).

p0 :

f

��

ac0 B L0

f L

��
pb

K0
l 0oo r 0 //

f K

��
pb

R0

f R

��
p1 : ac1 B L1 K1l 1

oo
r 1

// R1

The requirement that the commuting squares are pullbacks is quite natural from
an intuitive point of view: the intuition of morphisms is that they should preserve the
�structure� of objects. If we think of rules not as a span of monomorphisms, but in terms
of their intuitive semantics (i.e., LnK is what should be deleted from a given graph,
RnK is what should be added to a given graph and K is what should be preserved), then
asking that the two squares are pullbacks means, precisely, to preserve that structure.
I.e., we preserve what should be deleted, what should be added and what must remain
invariant. Of course, pushouts also preserve the created and deleted parts. But they
re�ect this structure as well, which we do not want in general.

Fact 1 With componentwise identities and composition, rule morphisms de�ne the cat-
egory Rule :

Proof Sketch. Follows trivially from the fact that ac �= Shift(idL ; ac), pullback com-
position, and that given morphisms f0� f such that

p0 :

f

��

ac0 B L0

f L

��
pb

K0
l 0oo r 0 //

��
pb

R0

��
p1 :

f 0

��

ac1 B L1

f 0
L

��
pb

K1

��

l 1

oo
r 1

//

pb

R1

��
p2 : ac2 B L2 K2l 2

oo
r 2

// R2



then we have Shift(f0
L ;Shift(fL ; ac0)) �= Shift(f0

L � fL ; ac0). ut

A key concept in the constructions in the following section is that of rule amalga-
mation [1, 12]. The amalgamation of two rules p1 and p2 glues them together into a
single rule ~p to obtain the effect of the original rules. I.e., the simultaneous application
of p1 and p2 yields the same successor graph as the application of the amalgamated
rule ~p. The possible overlapping of rules p1 and p2 is captured by a rule p0 and rule
morphisms f : p0 ! p1 and g : p0 ! p2.

De�nition 4. (Rule amalgamation) Given transformation rules pi : (Li
l i Ki

r i! Ri ; aci ),
for i = 0 ;1;2, and rule morphisms f : p0 ! p1 and g : p0 ! p2, the amalgamated
production p1 + p0 p2 is the production (L l K r! R; ac) in the diagram below, where
subdiagrams (1), (2) and (3) are pushouts, l and r are induced by the universal prop-
erty of (2) so that all subdiagrams commute, and ac = Shift( bfL ; ac2) ^Shift(bgL ; ac1).

ac0 B L0

f L

||

gL

""

(1)

K0

}}

""

l 0oo r 0 //

(2)

R0

~~

!!

(3)
ac2 B L2

bf L||

K2

}}

l 2oo
r 2

// R2

}}
ac1 B L1

bgL
""

K1

!!
l 1

oo
r 1

// R1

  
ac B L K

l
oo

r
// R

Notice that in the above diagram all squares are either pushouts or pullbacks (by the
van Kampen property) which means that all their arrows are monomorphisms (by being
an adhesive HLR category).

We end this section by introducing the notion of rule identity.

De�nition 5. (Rule-identity morphism) Given graph transformation rules
pi = ( Li

l i � Ki
r i�! Ri ; aci ), for i = 0 ;1, and a rule morphism f : p0 ! p1, with

f = ( fL ; fK ; fR ), p0 and p1 are said to be identical, denoted p0 � p1, if fL , fK , and
fR are identity morphisms and ac0 �= ac1.

3.2 Typed graph transformation systems

A (directed unlabeled) graph G = ( V;E; s; t) is given by a set of nodes (or ver-
tices) V , a set of edges E, and source and target functions s; t : E ! V . Given
graphs Gi = ( Vi ; Ei ; si ; ti ), with i = 1 ;2, a graph homomorphism f : G1 ! G2
is a pair of functions (fV : V1 ! V2; fE : E1 ! E2) such that fV � s1 = s2 � fE and
fV � t1 = t2 � fE . With componentwise identities and composition this de�nes the
category Graph.

Given a distinguished graph TG, called type graph, a TG-typed graph (G; gG ), or
simply typed graph if TG is known, consists of a graph G and a typing homomorphism
gG : G ! TG associating with each vertex and edge of G its type in TG. However, to
enhance readability, we will use simply gG to denote a typed graph (G; gG ), and when
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g2

��
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g1 $$
TG

f
// TG0

(a) Forward retyping functor.

G2
g2

��

// G0
2

g0
2

��
G1

k ::

g1 $$
// G0

1

k 0 ::

g0
1

$$
TG

f
// TG0

(b) Backward retyping functor.

Fig. 9. Forward and backward retyping functors.

the typing morphism gG can be considered implicit, we will often refer to it just as G.
A TG-typed graph morphism between TG-typed graphs (Gi ; gi : Gi ! TG), with i =
1;2, denoted f : (G1; g1) ! (G2; g2) (or simply f : g1 ! g2), is a graph morphism
f : G1 ! G2 which preserves types, i.e., g2 � f = g1. GraphTG is the category of
TG-typed graphs and TG-typed graph morphisms, which is the comma category Graph
over TG.

If the underlying graph category is adhesive (resp., adhesive HLR, weakly adhe-
sive) then so are the associated typed categories [12], and therefore all de�nitions
in Section 3.1 apply to them. A TG-typed graph transformation rule is a span p =

L l K r! R of injective TG-typed graph morphisms and a (nested) application con-
dition on L. Given TG-typed graph transformation rules pi = ( Li

l i Ki
r i! Ri ; aci ),

with i = 1 ;2, a typed rule morphism f : p1 ! p2 is a tuple (fL ; fK ; fR ) of TG-typed
graph monomorphisms such that the squares with the span monomorphisms li and ri ,
for i = 1 ;2, are pullbacks, and such that ac2 ) Shift(fL ; ac1). TG-typed graph trans-
formation rules and typed rule morphisms de�ne the category RuleTG, which is the
comma category Rule over TG.

Following [5, 22], we use forward and backward retyping functors to deal with
graphs over different type graphs. A graph morphism f : TG! TG0 induces a for-
ward retyping functor f> : Graph TG ! Graph TG0, with f> (g1) = f � g1 and
f> (k : g1!g2) = k by composition, as shown in the diagram in Figure 9(a). Similarly,
such a morphism f induces a backward retyping functor f< : Graph TG0!Graph TG,
with f< (g0

1) = g1 and f< (k0 : g0
1 ! g0

2) = k : g1 ! g2 by pullbacks and mediating
morphisms as shown in the diagram in Figure 9(b). Retyping functors also extends to
application conditions and rules, so we will write things like f> (ac) or f< (p) for some
application condition ac and production p. Notice, for example, that given a graph mor-
phism f : TG! TG0, the forward retyping of a production p = ( L l K r! R; ac)

over TG is a production f>
TG(p) = ( f>

TG(L)
f >

TG(l )
 �� f>

TG(K)
f >

TG(r )
��! f>

TG(R); f>
TG(ac)) over

TG0, de�ning an induced morphism fp : p! f>
TG(p) in Rule. Since fp is a morphism

between rules in jRuleTGj and jRuleTG0j, it is de�ned in Rule, forgetting the typing.
Notice also that f>

TG(ac) �= Shift(fp
L ; ac).

As said above, to improve readability, if G ! TG is a TG-typed graph, we some-
times refer to it just by its typed graph G, leaving TG implicit. As a consequence, if
f : TG! TG0 is a morphism, we may refer to the TG0-typed graph f> (G), even if this
may be considered an abuse of notation.



The following results will be used in the proofs in the following section.

Proposition 1. (From [22]) (Adjunction) Forward and backward retyping functors are
left and right adjoints; i.e., for each f : TG! TG0 we have f> a f< : TG! TG0.

Remark 1. Given a graph monomorphism f : TG ! TG0, for all k0 : G0
1 ! G0

2 in
Graph TG 0, the following diagram is a pullback:

f< (G0
1)

f < (k 0) //

�� pb

f< (G0
2)

��
G0

1 k 0
// G0

2

This is true just by pullback decomposition.

Remark 2. Given a graph monomorphism f : TG ! TG0, and given monomorphisms
k0 : G0

0 ! G0
1 and h0 : G0

0 ! G0
2 in Graph TG 0, if the following diagram on the left

is a pushout then the diagram on the right is also a pushout:

G0
0

k 0 //
h0 �� po

G0
1
bh0��

f< (G0
0)

f < (k 0) //
f < (h0) �� po

f< (G0
1)

f < ( bh0)��
G0

2 bk 0

// bG f< (G0
2)

f < ( bk 0)
// f< ( bG)

Notice that since in an adhesive HLR category all pushouts along M -morphisms are
van Kampen squares, the commutative square created by the pullbacks and induced
morphisms by the backward retyping functor imply the second pushout.

f< (G0
1) //





��

G0
1





��
f< (G0

0) //

��

44

��

G0
0

��

44

��
f< ( bG0) //

||

cG0

||

f< (G0
2) //

��

55

G0
2

��

55

TG // TG0

Remark 3. Given a graph monomorphism f : TG ! TG0, and given monomorphisms
k : G0 ! G1 and h : G0 ! G2 in Graph TG , if the diagram on the left is a pushout
(resp., a pullback) then the diagram on the right is also a pushout (resp., a pullback):

G0
k //

h

��

G1

bh
��

f> (G0)
f > (k) //

f > (h)
��

f> (G1)

f > (bh)
��

G2
bk

// bG f> (G2)
f > (bk)

// f> ( bG)

Remark 4. Given a graph monomorphism f : TG! TG0, and a TG0-typed graph trans-
formation rule p = ( L l K r! R; ac), if a matching m : L ! C satis�es ac, that is,
m j= ac, then, f< (m) j= f< (ac).



4 GTS morphisms and preservation of behaviour

A typed graph transformation system over a type graph TG, is a graph transformation
system where the given graph transformation rules are de�ned over the category of TG-
typed graphs. Since in this paper we deal with GTSs over different type graphs, we will
make explicit the given type graph. This means that, from now on, a typed GTS is a
triple (TG; P; �) where TG is a type graph, P is a set of rule names and � is a function
mapping each rule name p into a rule (L l K r! R; ac) typed over TG.

The set of transformation rules of each GTS speci�es a behaviour in terms of the
derivations obtained via such rules. A GTS morphism de�nes then a relation between
its source and target GTSs by providing an association between their type graphs and
rules.

De�nition 6. (GTS morphism) Given typed graph transformation systems GTSi =
(TGi ; Pi ; �i ), for i = 0 ;1, a GTS morphism f : GTS0!GTS1, with f = ( fTG; fP ; fr ),
is given by a morphism fTG : TG0!TG1, a surjective mapping fP : P1!P0 between
the sets of rule names, and a family of rule morphisms fr = ffp : f>

T G (�0(fP (p))) !
�1(p)gp2 P1 .

Given a GTS morphism f : GTS0 ! GTS1, each rule in GTS1 extends a rule in
GTS0. However if there are internal computation rules in GTS1 that do not extend any
rule in GTS0, we can always consider that the empty rule is included in GTS0, and
assume that those rules extend the empty rule.

Please note that rule morphisms are de�ned on rules over the same type graph (see
De�nition 3). To deal with rules over different type graphs we retype one of the rules to
make them be de�ned over the same type graph.

Typed GTSs and GTS morphisms de�ne the category GTS . The GTS amalgama-
tion construction provides a very convenient way of composing GTSs.

De�nition 7. (GTS Amalgamation). Given transformation systems GTSi = ( TGi ; Pi ; �i ),
for i = 0 ;1;2, and GTS morphisms f : GTS0 ! GTS1 and g : GTS0 ! GTS2, the
amalgamated GTS dGTS = GTS1 + GTS0 GTS2 is the GTS ( cTG; bP ; b�) constructed as
follows. We �rst construct the pushout of typing graph morphisms fTG : TG0 ! TG1
and gTG : TG0 ! TG2, obtaining morphisms bfTG : TG2 ! cTG and bgTG : TG1 ! cTG.
The pullback of set morphisms fP : P1 ! P0 and gP : P2 ! P0 de�nes morphisms
bfP : bP ! P2 and bgP : bP ! P1. Then, for each rule p in bP , the rule b�(p) is de�ned
as the amalgamation of rules bf>

TG(�2( bfP (p))) and bg>
TG(�1(bgP (p))) with respect to the

kernel rule bf>
TG(g>

TG(�0(gP ( bfP (p))))) .

GTS0
g

##

f

{{
GTS1

bg ##

GTS2

bf{{
dGTS



Among the different types of GTS morphisms, let us now focus on those that re�ect
behaviour. Given a GTS morphism f : GTS0 ! GTS1, we say that it re�ects behaviour
if for any derivation that may happen in GTS1 there exists a corresponding derivation
in GTS0.

De�nition 8. (Behaviour-re�ecting GTS morphism) Given graph transformation sys-
tems GTSi = ( TGi ; Pi ; �i ), for i = 0 ;1, a GTS morphism f : GTS0 ! GTS1 is behaviour-
re�ecting if for all graphs G, H in jGraph TG1 j, all rules p in P1, and all matches

m : lhs(�1(p)) ! G such that G p;m
=) H , then f<

TG(G)
f P (p);f <

TG(m )
====== ) f<

TG(H) in GTS0.

Morphisms between GTSs that only add to the transformation rules elements not in
their source type graph are behaviour-re�ecting. We call them extension morphisms.

De�nition 9. (Extension GTS morphism) Given graph transformation systems GTSi =
(TGi ; Pi ; �i ), for i = 0 ;1, a GTS morphism f : GTS0 ! GTS1, with f = ( fTG; fP ; fr ),
is an extension morphism if fTG is a monomorphism and for each p 2 P1, �0(fP (p)) �
f<

TG(�1(p)) .

That an extension morphism is indeed a behaviour-re�ecting morphism is shown by
the following lemma.

Lemma 1. All extension GTS morphisms are behaviour-re�ecting.

Proof Sketch. Given graph transformation systems GTSi = ( TGi ; Pi ; �i ), for i = 0 ;1,
let a GTS morphism f : GTS0 ! GTS1 be an extension morphism. Then, we have
to prove that for all graphs G, H in jGraph TG1 j, all rules p in P1, and all matches

m : lhs(�1(p)) ! G, if G p;m
=) H then f<

TG(G)
f P (p);f <

TG(m )
====== ) f<

TG(H).
Assuming transformation rules �1(p) = ( L1

l 1 � K1
r 1�! R1; ac1) and �0(fP (p)) =

(L0
l 0 � K0

r 0�! R0; ac0), and given the derivation

ac1 B L1

m
��

po

K1
l 1oo r 1 //

��
po

R1

��
G Doo // H

since f is an extension morphism, and therefore fTG is a monomorphism, and l1 and
m are also monomorphisms, by Remark 2 and De�nition 8, we have the diagram

ac0

�=

B L0 K0
l 1oo r 1 // R0

f<
TG(ac1) B f<

TG(L1)

f <
TG(m )

��
po

f<
TG(K1)

f <
TG(l 1 )oo f <

TG(r 1 )//

��
po

f<
TG(R1)

��
f<

TG(G) f<
TG(D)oo // f<

TG(H)



Then, given the pushouts in the above diagram and Remark 4, we have the derivation

f<
TG(G)

f P (p);f <
TG(m )

====== ) f<
TG(H). ut

Notice that De�nition 9 provides speci�c checks on individual rules. In the concrete
case we presented in Section 2, the inclusion morphism between the model of an ob-
server DSML, MObs , and its parameter sub-model MPar , may be very easily checked
to be an extension, by making sure that the features �added� in the rules will be re-
moved by the backward retyping functor. In this case the check is particularly simple
because of the subgraph relation between the type graphs, but for a morphism as the
binding morphism between MPar and the DSML of the system at hand, MDSML, the
check would also be relatively simple. Basically, the backward retyping of each rule
in MDSML, i.e., the rule resulting from removing all elements not target of the binding
map, must coincide with the corresponding rule, and the application conditions must be
equivalent.

Since the amalgamation of GTSs is the basic construction for combining them, it
is very important to know whether the re�ection of behaviour remains invariant under
amalgamations.

Proposition 2. Given transformation systems GTSi = ( TGi ; Pi ; �i ), for i = 0 ;1;2,
and the amalgamation dGTS = GTS1 + GTS0 GTS2 of GTS morphisms f : GTS0 ! GTS1
and g : GTS0 ! GTS2, if fTG is a monomorphism and g is an extension morphism, then
bg is also an extension morphism.

GTS0
f //

g

��

GTS1

bg
��

GTS2
bf

// dGTS

Proof Sketch. Let it be dGTS = ( cTG; bP ; b�). We have to prove that for each p 2 bP ,
�1(bgP (p)) � bg<

TG(b�(p)) . By construction, rule b�(p) is obtained from the amalgamation
of rules bg>

TG(�1(bgP (bp))) and bf>
TG(�2( bfP (bp))) . More speci�cally, without considering

application conditions by now, the amalgamation of such rules is accomplished by con-
structing the pushouts of the morphisms for the left-hand sides, for the kernel graphs,
and for the right-hand sides.

By Remark 2, we know that if the diagram

bf>
TG(g>

TG(L0)) �= bg>
TG(f>

TG(L0))

bf >
TG(g

bf P ( p )
L )

��

bg>
TG(f

bg P ( p )
L ) // bg>

TG(L1)

bgp
L

��
bf>
TG(L2)

bf p
L

// bL



is a pushout, then if we apply the backward retyping functor bg<
T G to all its components

(graphs) and morphisms, the resulting diagram is also a pushout.

bg<
TG(bg>

TG(f>
TG(L0)))

bg<
TG( bf >

TG(g
bf P ( p )

L ))
��

bg<
TG(bg>

TG(f
bg P ( p )
L ))// bg<

TG(bg>
TG(L1))

bg<
TG(bgp

L )
��

bg<
TG( bf>

TG(L2))
bg<

TG( bf p
L )

// bg<
TG( bL)

Because, by Proposition 1, for every f : TG ! TG0 and every TG-type graph G
and morphism g, since fT G is assumed to be a monomorphism, f< (f> (G)) = G and
f< (f> (g)) = g, we have bg<

TG(bg>
TG(f>

TG(L0)) = f>
TG(L0), bg<

TG(bg>
TG(fbgP (p)

L )) = fbgP (p)
L ,

and bg<
TG(bg>

TG(L1)) = L1. By pullback decomposition in the corresponding retyping
diagram, bg<

TG( bf>
TG(L2)) = f>

TG(g<
TG(L2)) .

Thus, we are left with this other pushout:

f>
TG(L0)

f >
TG(g<

TG(g
bf P ( p )

L ))
��

f
bg P ( p )
L // L1

bg<
TG(bgp

L )
��

f>
TG(g<

TG(L2))
bg<

TG( bf p
L )

// bg<
TG( bL)

Since g is an extension, L0 �= g<
TG(L2), which, because fTG is a monomorphism,

implies f>
TG(L0) �= f>

TG(g<
TG(L2)) . This implies that bg<

TG( bL) �= L1.
Similar diagrams for kernel objects and right-hand sides lead to similar identity

morphisms for them. It only remains to see that ac(�1(bgP (p))) �= ac(bg<
TG(b�(p))) .

By the rule amalgamation construction, bac = bf>
TG(ac2) ^ bg>

TG(ac1). Since g is an
extension morphism, ac2 �= g>

TG(ac0). Then, bac �= bf>
TG(g>

TG(ac0)) ^ bg>
TG(ac1). For f ,

as for any other rule morphism, we have ac1 ) f>
TG(ac0). By the Shift construction,

for any match m1 : L1 ! C1, m1 j= ac1 iff bg>
TG(m1) j= bg>

TG(ac1) and, similarly,
for any match m0 : L0 ! C0, m0 j= ac0 iff f>

TG(m0) j= f>
TG(ac0). Then, ac1 )

f>
TG(ac0) �= bg>

TG(ac1) ) bg>
TG(f>

TG(ac0)) �= bg>
TG(ac1) ) bf>

TG(g>
TG(ac0)) . And therefore,

since bac = bf> (g>
TG(ac0)) ^ bg>

TG(ac1) and bg>
TG(ac1) ) bf>

TG(g>
TG(ac0)) , we conclude

bac �= bg>
TG(ac1). ut

When a DSL is extended with observers and other alien elements whose goal is to
measure some property, or to verify certain invariant property, we need to guarantee
that such an extension does not change the semantics of the original DSL. Speci�cally,
we need to guarantee that the behaviour of the resulting system is exactly the same, that
is, that any derivation in the source system also happens in the target one (behaviour
preservation), and any derivation in the target system was also possible in the source one
(behaviour re�ection). The following de�nition of behaviour-protecting GTS morphism
captures the intuition of a morphism that both re�ects and preserves behaviour, that is,
that establishes a bidirectional correspondence between derivations in the source and
target GTSs.



De�nition 10. (Behaviour-protecting GTS morphism) Given typed graph transforma-
tion systems GTSi = ( TGi ; Pi ; �i ), for i = 0 ;1, a GTS morphism f : GTS0 ! GTS1 is
behaviour-protecting if for all graphs G and H in jGraph TG1 j, all rules p in P1, and
all matches m : lhs(�1(p)) ! G,

g<
TG(G)

gP (p);g<
TG(m )

====== ) g<
TG(H) () G p;m

=) H

We �nd in the literature de�nitions of behaviour-preserving morphisms as mor-
phisms in which the rules in the source GTS are included in the set of rules of the target
GTS. Although these morphisms trivially preserve behaviour, they are not useful for
our purposes. Works like [25] or [22], mainly dealing with re�nements of GTSs, only
consider cases in which GTSs are extended by adding new transformation rules. In our
case, in addition to adding new rules, we are enriching the rules themselves.

The main result in this paper is related to the protection of behaviour, and more
precisely on the behaviour-related guarantees on the induced morphisms.

Theorem 1. Given typed transformation systems GTSi = ( TGi ; Pi ; �i ), for i = 0 ;1;2,
and the amalgamation dGTS = GTS1 + GTS0 GTS2 of GTS morphisms f : GTS0 ! GTS1
and g : GTS0 ! GTS2, if f is a behaviour-re�ecting GTS morphism, fTG is a monomor-
phism, and g is an extension and behaviour-protecting morphism, then bg is behaviour-
protecting as well.

GTS0
f //

g

��

GTS1

bg
��

GTS2
bf

// dGTS

Proof Sketch. Since g is an extension morphism and fTG is a monomorphism, by
Proposition 2, bg is also an extension morphism, and therefore, by Lemma 1, also
behaviour-re�ecting. We are then left with the proof of behaviour preservation.

Given a derivationG1
p1 ;m 1==) H1 in GTS1, with �1(p1) = ( L1

l 1 � K1
r 1�! R1; ac1),

since f : GTS0 ! GTS1 is a behaviour-re�ecting morphism, there is a corresponding
derivation in GTS0. Speci�cally, the rule fP (p1) can be applied on f<

TG(G1) with match
f<

TG(m1) satisfying the application condition of production �0(fP (p1)) , and resulting
in a graph f<

TG(H1).

f<
TG(G1)

f P (p1 );f <
TG(m 1 )

======= ) f<
TG(H1)

Moreover, since g is a behaviour-protecting morphism, this derivation implies a corre-
sponding derivation in GTS2.

By the amalgamation construction in De�nition 7, the set of rules of dGTS includes,
for each p in bP , the amalgamation of (the forward retyping of) the rules �1(bgP (p)) =

(L1
l 1 � K1

r 1�! R1; ac1) and �2( bfP (p)) = ( L2
l 2 � K2

r 2�! R2; ac2), with kernel
rule �0(fP (bgP (p))) = �0(gP ( bfP (p))) = ( L0

l 0 � K0
r 0�! R0; ac0).

First, notice that for any cTG graphG,G is the pushout of the graphs bg<
TG(G), bf<

TG(G)
and f<

TG(bg<
TG(G)) (with the obvious morphisms). This can be proved using a van Kam-

pen square, where in the bottom we have the pushout of the type graphs, the vertical



faces are the pullbacks de�ning the backward retyping functors and on top we have that
pushout.

Thus, for each graph G in dGTS, if a transformation rule in GTS1 can be applied on
bg<

TG(G), the corresponding transformation rule should be applicable on G in dGTS. The
following diagram focus on the lefthand sides of the involved rules.

bf>
TG(g>

TG(L0)) = bg>
TG(f>

TG(L0))

gp 2
L

tt

f p 1
L

**
bf >

TG(g>
TG(m 0 ))=bg>

TG(f >
TG(m 0 ))

��
bf>
TG(L2)

bf p
L **

f >
TG(m 2 )

��

bf>
TG(g>

TG(g<
TG( bf<

TG(G)))) = bg>
TG(f>

TG(f<
TG(bg<

TG(G))))

tt **

bg>
TG(L1)

bgp
Ltt

bg>
TG(m 1 )

��
bf>
TG( bf<

TG(G))

g2

++

bL
bm

��

bg>
TG(bg<

TG(G))

g1

ssG

As we have seen above, rules bgP (p), bfP (p), and bfP (gP (p)) = bgP (fP (p)) are applica-
ble on their respective graphs using the matchings depicted in the above diagram. Since,
by the amalgamation construction, the top square is a pushout, and g1�bg>

TG(m1)�fp1
L =

g2� bf>
TG(m2)�gp2

L , then there is a unique morphism bm : bL! Gmaking g1�bg>
TG(m1) =

bm � bgp
L and g2 � bf>

TG(m2) = bm � bfp
L . This bm will be used as matching morphism in the

derivation we seek.
By construction, the application condition bac of the amalgamated rule p is the con-

junction of the shiftings of the application conditions of bgP (p) and bfP (p). Then, since

m1 j= ac1 () bm j= Shift(bgp
L ; ac1)

and
m2 j= ac2 () bm j= Shift( bfp

L ; ac2);

and therefore
m1 j= ac1 ^m2 j= ac2 () bm j= bac:

We can then conclude that rule p is applicable on graph G with match bm satisfying its

application condition bac. Indeed, given the rule �(p) = ( bL
bl � bK br�! bR; bac) we have

the following derivation:

bac B bL

bm
��

po

bK
l 1oo r 1 //

��
po

bR

��
G Doo // H

Let us �nally check then that D and H are as expected. To improve readability, in
the following diagrams we eliminate the retyping functors. For instance, for the rest of
the theorem L0 denotes bf>

TG(g>
TG(L0)) = bg>

TG(f>
TG(L0)) , L1 denotes bg>

TG(L1), etc.



First, let us focus on the pushout complement of bl : bK ! bL and bm : bL! G. Given
rules bgP (p), bfP (p), and bfP (gP (p)) = bgP (fP (p)) and rule morphisms between them
as above, the following diagram shows both the construction by amalgamation of the
morphism bl : bK ! bL, and the construction of the pushout complements for morphisms
li and mi , for i = 0 : : : 2.

L0

vv

��
m 0

��

K0

vv

��

��

l 0oo

L2

m 2

��

��

K2

��

��

l 2

oo

L1

vv

m 1

��

K1

vv

��

l 1oo

bL

bm

��

��

bK

��

bloo

G0

vv

��

D0

vv

��

bl 0oo

G2

��

D2

��

bl 2oo

G1

vv

D1

uu

bl 1oo

G D
bbloo

rrX

By the pushout of D0 ! D1 and D0 ! D2, and given the commuting subdiagram

D0

vv

��
G2

��

D2

��

oo

G1

xx
D1

uu

oo

G Doo

there exists a unique morphismD ! Gmaking the diagram commute. ThisD is indeed
the object of the pushout complement we were looking for. By the pushout ofK0 ! K1
andK0 ! K2, there is a unique morphism from bK toD making the diagram commute.
We claim that these morphisms bK ! D and D ! G are the pushout complement of
bK ! bL and bL ! G. Suppose that the pushout of bK ! bL and bK ! D were bL ! X
and D ! X for some graph X different from G. By the pushout of K1 ! D1 and
K1 ! L1 there is a unique morphism G1 ! X making the diagram commute. By the
pushout of K2 ! D2 and K2 ! L2 there is a unique morphism G2 ! X making
the diagram commute. By the pushout of G0 ! G1 and G0 ! G2, there is a unique
morphism G ! X . But since bL ! X and D ! X are the pushout of bK ! bL and
bK ! D, there is a unique morphismX ! Gmaking the diagram commute. Therefore,
we can conclude that X and G are isomorphic.



By a similar construction for the righthand sides we get the pushout

bK

��

//

po

bR

��
D //H

and therefore the derivation bG bp; bm
=) bH . ut

Theorem 1 provides a checkable condition for verifying the conservative nature
of an extension in our example, namely the monomorphism MPar ! MObs being a
behaviour-protecting and extension morphism,MPar !MDSML a behaviour-re�ecting
morphism, and MMPar ! MMDSML a monomorphism.

In the concrete application domain we presented in Section 2 this result is very
important. Notice that the parameter speci�cation is a sub-speci�cation of the observers
DSL, making it particularly simple to verify that the inclusion morphism is an extension
and also that it is behaviour-protecting. The check may possibly be reduced to checking
that the extended system has no terminal states not in its parameter sub-speci�cation.
Application conditions should also be checked equivalent. Forbidding the speci�cation
of application conditions in rules in the observers DSL may be a practical shortcut.

The morphism binding the parameter speci�cation to the system to be analysed
can very easily be veri�ed behaviour-re�ecting. Once the morphism is checked to be
a monomorphism, we just need to check that the rules after applying the backward
retyping morphism exactly coincide with the rules in the source GTS. Checking the
equivalence of the application conditions may require human intervention. Notice that
with appropriate tools and restrictions, most of these restrictions, if not all, can be au-
tomatically veri�ed. We may even be able to restrict editing capabilities so that only
correct bindings can be speci�ed.

Once the observers DSL are de�ned and checked, they can be used as many times
as wished. Once they are to be used, we just need to provide the morphism binding the
parameter DSL and the target system. As depicted in Figures 6 for the metamodels the
binding is just a set of pairs, which may be easily supported by appropriate graphical
tools. The binding must be completed by similar correspondences for each of the rules.
Notice that once the binding is de�ned for the metamodels, most of the rule bindings
can be inferred automatically.

Finally, given the appropriate morphisms, the speci�cations may be merged in ac-
cordance to the amalgamation construction in De�nition 7. The resulting system is guar-
anteed to both re�ect and preserve the original behaviour by Theorem 1.

5 Conclusions and future work

In this paper, we have presented formal notions of morphisms between graph transfor-
mation systems (GTSs) and a construction of amalgamations in the category of GTSs
and GTS morphisms. We have shown that, given certain conditions on the morphisms
involved, such amalgamations re�ect and protect behaviour across the GTSs. This re-
sult is useful because it can be applied to de�ne a notion of conservative extensions



of GTSs, which allow adding spectative behaviour (cf. [28]) without affecting the core
transformation behaviour expressed in a GTS.

There are of course a number of further research steps to be taken�both in ap-
plying the formal framework to particular domains and in further development of the
framework itself. In terms of application, we need to provide methods to check the pre-
conditions of Theorem 1, and if possible automatically checkable conditions that imply
these, so that behaviour protection of an extension can be checked effectively. This will
enable the development of tooling to support the validation of language or transforma-
tion compositions. On the part of the formal framework, we need to study relaxations of
our de�nitions so as to allow cases where there is a less than perfect match between the
base DSML and the DSML to be woven in. Inspired by [28], we are also planning to
study different categories of extensions, which do not necessarily need to be spectative
(conservative), and whether syntactic characterisations exist for them, too.
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