
HAL Id: hal-01485978
https://inria.hal.science/hal-01485978

Submitted on 9 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bounded Model Checking of Recursive Programs with
Pointers in K

Irina Măriuca Asăvoae, Frank De Boer, Marcello M. Bonsangue, Dorel
Lucanu, Jurriaan Rot

To cite this version:
Irina Măriuca Asăvoae, Frank De Boer, Marcello M. Bonsangue, Dorel Lucanu, Jurriaan Rot. Bounded
Model Checking of Recursive Programs with Pointers in K. 21th InternationalWorkshop on Algebraic
Development Techniques (WADT), Jun 2012, Salamanca, Spain. pp.59-76, �10.1007/978-3-642-37635-
1_4�. �hal-01485978�

https://inria.hal.science/hal-01485978
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Bounded Model Checking
of Recursive Programs with Pointers in K

Irina Măriuca Asăvoae1,?, Frank de Boer2,3,
Marcello M. Bonsangue3,2, Dorel Lucanu1, Jurriaan Rot3,2,??

1 Faculty of Computer Science - Alexandru Ioan Cuza University, Romania
{mariuca.asavoae, dlucanu}@info.uaic.ro

2 Centrum voor Wiskunde en Informatica, The Netherlands
frb@cwi.nl

3 LIACS — Leiden University, The Netherlands
{marcello, jrot}@liacs.nl

Abstract. We present an adaptation of model-based verification, via
model checking pushdown systems, to semantics-based verification. First
we introduce the algebraic notion of pushdown system specifications
(PSS) and adapt a model checking algorithm for this new notion. We in-
stantiate pushdown system specifications in the K framework by means
of Shylock, a relevant PSS example. We show why K is a suitable environ-
ment for the pushdown system specifications and we give a methodology
for defining the PSS in K. Finally, we give a parametric K specification
for model checking pushdown system specifications based on the adapted
model checking algorithm for PSS.

Keywords: pushdown systems, model checking, the K framework

1 Introduction

The study of computation from a program verification perspective is an effer-
vescent research area with many ramifications. We take into consideration two
important branches of program verification which are differentiated based on
their perspective over programs, namely model-based versus semantics-based
program verification.

Model-based program verification relies on modeling the program as some
type of transition system which is then analyzed with specific algorithms. Push-
down systems are known as a standard model for sequential programs with
recursive procedures. Intuitively, pushdown systems are transition systems with
a stack of unbounded size, which makes them strictly more expressive than finite

? The research of this author has been partially supported by Project POSDRU/88/
1.5/S/47646 and by Contract ANCS POS-CCE, O2.1.2, ID nr 602/12516, ctr.nr
161/15.06.2010 (DAK).

?? The research of this author has been funded by the Netherlands Organisation for
Scientific Research (NWO), CoRE project, dossier number: 612.063.920.

2 Asăvoae, de Boer, Bonsangue, Lucanu, Rot

state systems. More importantly, there exist fundamental decidability results for
pushdown systems [1] which enable program verification via model checking [17].

Semantics-based program verification relies on specification of programming
language semantics and derives the program model from the semantics spec-
ification. For example, the rewriting logic semantics project [12] studies the
unification of algebraic denotational semantics with operational semantics of
programming languages. The main incentive of this semantics unification is the
fact that the algebraic denotational semantics is executable via tools like the
Maude system [10], or the K framework [14]. As such, a programming language
(operational) semantics specification implemented with these tools becomes an
interpreter for programs via execution of the semantics. The tools come with
model checking options, so the semantics specification of a programming lan-
guage have for-free program verification capabilities.

The current work solves the following problem in the rewriting logic seman-
tics project: though the semantics expressivity covers a quite vast and interest-
ing spectrum of programming languages, the offered verification capabilities via
model checking are restricted to finite state systems. Meanwhile, the fundamen-
tal results from pushdown systems provide a strong incentive for approaching
the verification of this class of infinite transition systems from a semantics-based
perspective. As such, we introduce the notion of pushdown system specifications
(PSS), which embodies the algebraic specification of pushdown systems. Fur-
thermore, we adapt a state-of-the-art model checking algorithm for pushdown
systems [17] to work for PSS and present an algebraic specification of this al-
gorithm implemented in the K tool [15]. Our motivating example is Shylock, a
programming language with recursive procedures and pointers, introduced by
the authors in [16].

Related work. K is a rewriting logic based framework for the design, analysis,
and verification of programming languages, originating in the rewriting logic se-
mantics project. K specifies transition systems and is built upon a continuation-
based technique and a series of notational conventions to allow for more com-
pact and modular executable programming language definitions. Because of the
continuation-based technique, K specifications resemble PSS where the stack is
the continuation. The most complex and thorough K specification developed so
far is the C semantics [5].

The standard approach to model checking programs, used for K specifica-
tions, involves the Maude LTL model checker [4] which is inherited from the
Maude back-end of the K tool. The Maude LTL checker, by comparison with
other model checkers, presents a great versatility in defining the state proper-
ties to be verified (these being given as a rewrite theory). Moreover, the actual
model checking is performed on-the-fly, so that the Maude LTL checker can ver-
ify systems with states that involve data in types of infinite cardinality under
the assumption of a finite reachable state space. However, this assumption is
infringed by PSS because of the stack which is allowed to grow unboundedly,
hence the Maude LTL checker cannot be used for PSS verification.

Model Checking of Recursive Programs with Pointers in K 3

The Moped tool for model checking pushdown systems was successfully used
for a subset of C programs [17] and was adapted for Java with full recursion, but
with a fixed-size number of objects, in jMoped [6]. The WPDS++ tool [8] uses
a weighted pushdown system model to verify x86 executable code. However, we
cannot employ any of these dedicated tools for model checking pushdown systems
because we work at a higher level, namely with specifications of pushdown system
where we do not have the actual pushdown system.

Structure of the paper. In Section 2 we introduce pushdown system specifications
and an associated invariant model checking algorithm. In Section 3 we introduce
the K framework by showing how Shylock’s PSS is defined in K. In Section 4
we present the K specification of the invariant model checking for PSS and show
how a certain type of bounded model checking can be directly achieved.

2 Model Checking Specifications of Pushdown Systems

In this section we discuss an approach to model checking pushdown system
specifications by adapting an existing model checking algorithm for ordinary
pushdown systems. Recall that a pushdown system is an input-less pushdown
automaton without acceptance conditions. Basically, a pushdown system is a
transition system equipped with a finite set of control locations and a stack.
The stack consists of a non-a priori bounded string over some finite stack al-
phabet [1,17]. The difference between a pushdown system specification and an
ordinary pushdown system is that the former uses production rules with open
terms for the stack and control locations. This allows for a more compact repre-
sentation of infinite systems and paves the way for applications of model checking
to recursive programs defined by means of structural operational semantics.

We assume a countably infinite set of variables Var = {v1, v2, . . .}. A signa-
ture Σ consists of a finite set of function symbols g1, g2, . . ., each with a fixed
arity ar(g1), ar(g2), Function symbols with arity 0 are called constants. The
set of terms, denoted by TΣ(Var) and typically ranged over by s and t, is induc-
tively defined from the set of variables Var and the signature Σ. A substitution
σ replaces variables in a term with other terms. A term s can match term t if
there exists a substitution σ such that σ(t) = s. A term t is said to be closed if
no variables appear in t, and we use the convention that these terms are denoted
as “hatted” terms, i.e., t̂.

A pushdown system specification (PSS) is a tuple (Σ,Ξ,Var , ∆) where Σ and
Ξ are two signatures, Var is a set of variables, and ∆ is a finite set of production
rules (defined below). Terms in TΣ(Var) define control locations of a pushdown
system, whereas terms in TΞ(Var) define the stack alphabet. A production rule
in ∆ is defined as a formula of the form (s, γ)⇒ (s′, Γ) , where s and s′ are terms
in TΣ(Var), γ is a term in TΞ(Var), and Γ is a finite (possibly empty) sequence
of terms in TΞ(Var). The pair (s, γ) is the source of the rule, and (s′, Γ) is the
target. We require for each rule that all variables appearing in the target are
included in those of the source. A rule with no variables in the source is called

4 Asăvoae, de Boer, Bonsangue, Lucanu, Rot

an axiom. The notions of substitution and matching are lifted to sequences of
terms and to formulae as expected.

Example 1. Let Var = {s, t, γ}, let Σ = {0, a,+} with ar(0) = ar(a) = 0 and
ar(+) = 2, and let Ξ = {L,R} with ar(L) = ar(R) = 0. Moreover consider the
following three production rules, denoted as a set by ∆:

(a, γ)⇒ (0, ε) (s+ t, L)⇒ (s,R) (s+ t, R)⇒ (t, LR) .

Then (Σ,Ξ,Var , ∆) is a pushdown system specification.

Given a pushdown system specification P̄ = (Σ,Ξ,Var , ∆), a concrete configu-
ration is a pair 〈ŝ, Γ̂ 〉 where ŝ is a closed term in TΣ(Var) denoting the current
control state, and Γ̂ is a finite sequence of closed terms in TΞ(Var) representing
the content of the current stack. A transition 〈ŝ, γ̂ · Γ̂ 〉 −→ 〈ŝ′, Γ̂ ′ · Γ̂ 〉 between
concrete configurations is derivable from the pushdown system specification P̄
if and only if there is a rule r = (sr, γr) ⇒ (s′r, Γr) in ∆ and a substitution σ
such that σ(sr) = ŝ, σ(γr) = γ̂, σ(s′r) = ŝ′ and σ(Γr) = Γ̂ ′. The above notion of
pushdown system specification can be extended in the obvious way by allowing
also conditional production rules and equations on terms.

Continuing on Example 1, we can derive the following sequence of transitions:

〈a+ (a+ a), R〉 −→ 〈a+ a, LR〉 −→ 〈a,RR〉 −→ 〈0, R〉 .

Note that no transition is derivable from the last configuration 〈0, R〉.
A pushdown system specification P̄ is said to be locally finite w.r.t. a concrete

configuration 〈ŝ, Γ̂ 〉, if the set of all closed terms appearing in the configurations
reachable from 〈ŝ, Γ̂ 〉 by transitions derivable from the rules of P̄ is finite. Note
that this does not imply that the set of concrete configurations reachable from a
configuration 〈ŝ, Γ̂ 〉 is finite, as the stack is not bounded. However all reachable
configurations are constructed from a finite set of control locations and a finite
stack alphabet. An ordinary finite pushdown system is thus a pushdown system
specification which is locally finite w.r.t. a concrete initial configuration ĉ0, and
such that all rules are axioms, i.e., all terms appearing in the source and target
of the rules are closed.

For example, if we add (s, L)⇒ (s+a, L) to the rules of the pushdown system
specification P̄ defined in Example 1, then it is not hard to see that there are
infinitely many different location reachable from 〈a, L〉, meaning that P̄ is not
locally finite w.r.t. the initial configuration 〈a, L〉. However, if instead we add
the rule (s, L) ⇒ (s, LL) then all reachable configurations from 〈a, L〉 will only
use a or 0 as control locations and L as the only element of the stack alphabet.
In this case P̄ is locally finite w.r.t. the initial configuration 〈a, L〉.

2.1 A Model Checking Algorithm for PSS

Next we describe a model checking algorithm for (locally finite) pushdown system
specifications. We adapt the algorithm for checking LTL formulae against push-
down systems, as presented in [17], which, in turn, exploits the result from [1],

Model Checking of Recursive Programs with Pointers in K 5

where it is proved that for any finite pushdown system the set R(ĉ0) of all con-
figurations reachable from the initial configuration ĉ0 is regular. The LTL model
checking algorithm in [17] starts by constructing a finite automaton which rec-
ognizes this set R(ĉ0). This automaton has the property that 〈ŝ, Γ̂ 〉 ∈ R(ĉ0) if
the string Γ̂ is accepted in the automaton, starting from ŝ.

According to [17], the automaton associated to R(ĉ0), denoted by Apost∗ ,
can be constructed in a forward manner starting with ĉ0, as described in Fig. 1.
We use the notation x̂ ∈ TΣ(Var) for closed terms representing control states in
P̄, γ̂, γ̂1, γ̂2 ∈ TΞ(Var) for closed terms representing stack letters, ŷx̂,γ̂ for the
new states of the Apost∗ automaton, f for the final states in Apost∗ , while ŷ, ẑ, û

stand for any state in Apost∗ . The transitions in Apost∗ are denoted by ŷ
γ̂
 ẑ or

ŷ
ε
 ẑ. The notation ŷ

Γ̂
 ẑ, where Γ̂ = γ̂1..γ̂n, stands for ŷ

γ̂1 ..
γ̂n ẑ.

In Fig. 1 we present how the reachability algorithm in [17] for generating
Apost∗ can be adjusted to invariant model checking pushdown system specifica-
tions. We emphasize that the transformation is minimal and consists in:

(a) The modification in the lines containing the code:
“for all ẑ such that 〈x̂, γ̂〉 ↪→ 〈ẑ, 〉̂ is a rule in the pushdown system do”
i.e., lines 9, 12, 15 in Fig. 1, where instead of rules in the pushdown system we
use transitions derivable from the pushdown system specification as follows:
“for all ẑ such that 〈x̂, γ̂〉 −→ 〈ẑ, 〉̂ is derivable from P̄ do”

(b) The addition of lines 1, 10, 13, 16 where the state invariant φ is checked to
hold in the newly discovered control state y.

This approach for producing the Apost∗ in a “breadth-first” manner is partic-
ularly suitable for specifications of pushdown systems as we can use the newly
discovered configurations to produce transitions based on ∆, the production
rules in P̄. Note that we assume, without loss of generality, that the initial stack
has one symbol on it.

Note that in the algorithm Apost* of [17], the set of states of the automaton
is determined statically at the beginning. This is clearly not possible starting
with a PSS, because this set is not known in advance, and could be infinite if the
algorithm does not terminate. Hence, the states that are generated when needed,
that is, in line 9, 12 and 15, where the derivable transitions are considered.

We give next some keynotes on the algorithm in Fig. 1. The “trans” variable
is a set containing the transitions to be processed. Along the execution of the
algorithm Apost*(φ, P̄), the transitions of the Apost∗ automaton are incremen-
tally deposited in the “rel” variable which is a set where we collect transitions in
the Apost∗ automaton. The outermost while is executed until the end, i.e., until
“trans” is empty, only if all states satisfy the control state formula φ. Hence,
the algorithm in Fig. 1 verifies the invariant �φ. In case φ is a state invariant
for the pushdown system specification, the algorithm collects in “rel” the entire
automaton Apost∗ . Otherwise, the algorithm stops at the first encountered state
x which does not satisfy the invariant φ.

Note that the algorithm in Fig. 1 assumes that the pushdown system speci-
fication has only rules which push on the stack at most two stack letters. This

6 Asăvoae, de Boer, Bonsangue, Lucanu, Rot

Algorithm Apost*(φ, P̄)
Input: a initial concrete configuration 〈x̂0, γ̂0〉.
1 if x̂0 6|= φ then return false;

2 trans := {x̂0
γ̂0 f};

3 rel := ∅;
4 while trans = {x̂ γ̂

 ŷ}∪ trans’ do
5 trans := trans’;

6 if x̂
γ̂
 ŷ 6∈ rel then

7 rel := rel ∪{x̂ γ̂
 ŷ};

8 if γ̂ 6= ε then
9 for all ẑ such that 〈x̂, γ̂〉 −→ 〈ẑ, ε〉 is derivable from P̄ do
10 if ẑ 6|= φ then return false;

11 trans := trans ∪{ẑ ε
 ŷ};

12 for all ẑ such that 〈x̂, γ̂〉 −→ 〈ẑ, γ̂1〉 is derivable from P̄ do
13 if ẑ 6|= φ then return false;

14 trans := trans ∪{ẑ γ̂1 ŷ};
15 for all ẑ such that 〈x̂, γ̂〉 −→ 〈ẑ, γ̂1γ̂2〉 is derivable from P̄ do
16 if ẑ 6|= φ then return false;

17 trans := trans ∪{ẑ γ̂1 ŷẑ,γ̂1};
18 rel := rel ∪{ŷẑ,γ̂1

γ̂2 ŷ};
19 for all û

ε
 ŷẑ,γ̂1 ∈ rel do

20 trans := trans ∪{û γ̂2 ŷ};
21 else

22 for all ŷ
γ̂1 ẑ ∈ rel do

23 trans := trans ∪{x̂ γ̂1 ẑ};
24 od;
25 return true

Fig. 1. The algorithm for obtaining Apost∗ adapted for pushdown system specifications.

assumption is inherited from the algorithm for Apost∗ in [17] where the require-
ment is imposed without loss of generality. The approach in [17] is to adopt a
standard construction for pushdown systems which consists in transforming the
rules that push on the stack more than two stack letters into multiple rules that
push at most two letters. Namely, any rule r̂ in the pushdown system, of the
form 〈x̂, γ̂〉 ↪→ 〈x̂′, γ̂1..γ̂n〉 with n ≥ 3, is transformed into the following rules:

〈x̂, γ̂〉↪→〈x̂′, ν̂r̂,n−2γ̂n〉, 〈x̂′, ν̂r̂,i〉↪→〈x̂′, ν̂r̂,i−1γ̂i+1〉, 〈x̂′, ν̂r̂,1〉↪→〈x̂′, γ̂1γ̂2〉

where 2 ≤ i ≤ n−2 and ν̂r̂,1, .., ν̂r̂,n−2 are new stack letters. This transformation
produces a new pushdown system which simulates the initial one, hence the
assumption in the Apost∗ generation algorithm does not restrict the generality.

However, the aforementioned assumption makes impossible the application
of the algorithm Apost* to pushdown system specifications P̄ for which the
stack can be increased with any number of stack symbols. The reason is that

Model Checking of Recursive Programs with Pointers in K 7

15 for all ẑ such that 〈x̂, γ̂〉 −→ 〈ẑ, γ̂1..γ̂n〉 is derivable from P̄ with n ≥ 2 do
16 if ẑ 6|= φ then return false;

17 trans := trans ∪{ẑ γ̂1 ŷẑ,γ̂1};
18 rel := rel ∪{ŷẑ,ν(r̂,i)

γ̂i+2
 ŷẑ,ν(r̂,i+1) | 0 ≤ i ≤ n− 2};

where r̂ denotes 〈x̂, γ̂〉 −→ 〈ẑ, γ̂1..γ̂n〉
and ν(r̂, i), 1 ≤ i ≤ n− 2 are new symbols
(i.e., ν is a new function symbol s.t. ar(ν) = 2)
and ŷẑ,ν(r̂,0) = ŷẑ,γ̂1 and ŷẑ,ν(r̂,n−1) = ŷ

19 for all û
ε
 ŷẑ,ν(r̂,i) ∈ rel, 0 ≤ i ≤ n− 2 do

20 trans := trans ∪{û
γ̂i+2
 ŷẑ,ν(r̂,i+1) | 0 ≤ i ≤ n− 2};

Fig. 2. The modification required by the generalization of the algorithm Apost*.

P̄ defines rule schemas and we cannot identify beforehand which rule schema
applies for which concrete configuration, i.e., we cannot identify the r̂ in νr̂,i.
Our solution is to obtain a similar transformation on-the-fly, as we apply the
Apost* algorithm and discover instances of rule schemas which increase the
stack, i.e., we discover r̂. This solution induces a localized modification of the
lines 15 through 20 of the Apost* algorithm, as described in Fig. 2. We denote
by Apost*gen the Apost* algorithm in Fig. 1 with the lines 15 through 20
replaced by the lines in Fig. 2. The correctness of the new algorithm is a rather
simple generalization of the one presented in [17].

3 Specification of Pushdown Systems in K

In this section we introduce K by means of an example of a PSS defined using
K, and we justify why K is an appropriate environment for PSS.

A K specification evolves around its configuration, a nested bag of labeled
cells denoted as 〈content〉label, which defines the state of the specified transition
system. The movement in the transition system is triggered by the K rules
which define transformations made to the configuration. A key component in
this mechanism is introduced by a special cell, labeled k, which contains a list
of computational tasks that are used to trigger computation steps. As such, the
K rules that specify transitions discriminate the modifications made upon the
configuration based on the current computation task, i.e., the first element in the
k-cell. This instills the stack aspect to the k-cell and induces the resemblance
with a PSS. Namely, in a K configuration we make the conceptual separation
between the k-cell, seen as the stack, and the rest of the cells which form the
control location. Consequently, we promote K as a suitable environment for PSS.

In the remainder of this section we describe the K definition of Shylock by
means of a PSS that is based on the operational semantics of Shylock introduced
in [16]. In Section 3.1 we present the configuration of Shylock’s K implementation
with emphasis on the separation between control locations and stack elements.
In Section 3.2 we introduce the K rules for Shylock, while in Section 3.3 we

8 Asăvoae, de Boer, Bonsangue, Lucanu, Rot

point out a methodology of defining in K production rules for PSS. We use this
definition to present K notations and to further emphasize and standardize a K
style for defining PSS.

3.1 Shylock’s K Configuration

The PSS corresponding to Shylock’s semantics is given in terms of a program-
ming language specification. First, we give a short overview of the syntax of Shy-
lock as in [16], then describe how this syntax is used in Shylock’s K-configuration.

A Shylock program is finite set of procedure declarations of the form pi :: Bi,
where Bi is the body of procedure pi and denotes a statement defined by the
grammar:

B ::= a.f := b | a := b.f | a := new | [a = b]B | [a 6= b]B | B +B | B; B | p

We use a and b for program variables ranging over G ∪ L, where G and L are
two disjoint finite sets of global and local variables, respectively. Moreover we
assume a finite set F of field names, ranged over by f . G,L, F are assumed to
be defined for each program, as sets of Ids, and we assume a distinguished initial
program procedure main.

Hence, the body of a procedure is a sequence of statements that can be: as-
signments or object creation denoted by the function “ := ” where ar(:=) = 2
(we distinguish the object creation by the “new” constant appearing as the
second argument of “:=”); conditional statements denoted by “[] ”; nondeter-
ministic choice given by “ + ”; and function calls. Note that K proposes the
BNF notation for defining the language syntax as well, with the only difference
that the variables are replaced by their respective sorts.

A K configuration is a nested bag of labeled cells where the cell content
can be one of the predefined types of K, namely K ,Map,Set ,Bag ,List . The K
configuration used for the specification of Shylock is the following:

〈K〉k 〈〈Map〉var 〈〈Map〉fld?〉h〉heap 〈〈Set〉G 〈Set〉L 〈Set〉F 〈Map〉P〉pgm 〈K〉kAbs

The pgm-cell is designated as a program container where the cells G, L,F
maintain the above described finite sets of variables and fields associated to a
program, while the cell P maintains the set of procedures stored as a map, i.e.,
a set of map items p 7→ B.

The heap-cell contains the current heap H which is formed by the variable
assignment cell var and the field assignment cell h. The var cell contains the
mapping from local and global variables to their associated identities ranging
over N⊥ = N ∪ {⊥}, where ⊥ stands for “not-created”. The h cell contains a
set of fld cells, each cell associated to a field variable from F . The mapping
associated to each field contains items of type n 7→m, where n,m range over the
object identities space N⊥. Note that any fld-cell always contains the item ⊥7→⊥
and ⊥ is never mapped to another object identity.

Intuitively, the contents of the heap-cell form a directed graph with nodes
labeled by object identities (i.e., values from N⊥) and arcs labeled by field names.

Model Checking of Recursive Programs with Pointers in K 9

Moreover, the contents of the var-cell (i.e., the variable assignment) define entry
nodes in the graph. We use the notion of visible heap, denoted as R(H), for the
set of nodes reachable in the heap H from the entry nodes.

The k-cell maintains the current continuation of the program, i.e., a list of
syntax elements that are to be executed by the program. Note that the sort K is
tantamount with an associative list of items separated by the set-aside symbol
“y”. The kAbs-cell is introduced for handling the heap modifications required
by the semantics of certain syntactic operators. In this way, we maintain in the
cell k only the “pure” syntactic elements of the language, and move into kAbs
any additional computational effort used by the abstract semantics for object
creation, as well as for procedure call and return.

In conclusion, the k-cell stands for the stack in a PSS P̄, while all the other
cells, including kAbs, form together the control location. Hence the language
syntax in K practically gives a sub-signature of the stack signature in P̄, while
the rest of the cells give a sub-signature, the control location signature in P̄.

3.2 Shylock’s K Rules

We present here the K rules which implement the abstract semantics of Shylock,
according to [16]. Besides introducing the K notation for rules, we also emphasize
on the separation of concerns induced by viewing the K definitions as PSS.

In K we distinguish between computational rules that describe state tran-
sitions, and structural rules that only prepare the current state for the next
transition. Rules in K have a bi-dimensional localized notation that stands for
“what is above a line is rewritten into what is bellow that line in a particular
context given by the matching with the elements surrounding the lines”. Note
that the solid lines encode a computational rule in K which is associated with
a rewrite rule, while the dashed lines denote a structural rule in K, which is
compiled by the K-tool into a Maude equation.

The production rules in PSS are encoded in K by computational rules which
basically express changes to the configuration triggered by an atomic piece of
syntax matched at the top of the stack, i.e., the k-cell. An example of such
encoding is the following rule:

rule 〈a.f := b

·
···〉k 〈··· v(a) 7→

v(b)

···〉fld(f) 〈v〉var when v(a) 6=Bool ⊥

which reads as: if the first element in the cell k is the assignment a.f := b then
this is consumed from the stack and the map associated to the field f , i.e., the
content of the cell fld(f), is modified by replacing whatever object identity was
pointed by v(a) with v(b), i.e., the object identity associated to the variable b
by the current variable assignment v, only when a is already created, i.e., v(a)
is not ⊥. Note that this rule is conditional, the condition being introduced by
the keyword “when”.

We emphasize the following notational elements in K that appear in the
above rule: “ ” which stands for “anything” and the ellipses “···”. The meaning

10 Asăvoae, de Boer, Bonsangue, Lucanu, Rot

of the ellipses is basically the same as “ ” the difference being that the ellipses
appear always near the cell walls and are interpreted according to the contents
of the respective cell. For example, given that the content of the k-cell is a list of
computational tasks separated by “y”, the ellipses in the k-cell from the above
rule signify that the assignment a.f := b is at the top of the stack of the PSS.
On the other hand, because the content of a fld cell is of sort Map which is a
commutative sequence of map items, the ellipses appearing by both walls of the
cell fld denote that the item v(a) 7→ may appear “anywhere” in the fld-cell.
Meanwhile, the notation for the var cell signifies that v is the entire content of
this cell, i.e., the map containing the variable assignment. Finally, “·” stands for
the null element in any K sort, hence “·” replacing a.f := b at the top of the
k-cell stands for ε from the production rules in P̄.

All the other rules for assignment, conditions, and sequence are each imple-
mented by means of a single computational rule which considers the associated
piece of syntax at the top of the k-cell. The nondeterministic choice is imple-
mented by means of two computational rules which replace B1 +B2 at the top
of a k-cell by either B1 or B2.

Next we present the implementation of one of the most interesting rules in
Shylock namely object creation. The common semantics for an object creation
is the following: if the current computation (the first element in the cell k) is
”a:=new”, then whatever object was pointed by a in the var-cell is replaced with
the “never used before” object ”oNew” obtained from the cell 〈 〉kAbs. Also, the
fields part of the heap, i.e., the content of h-cell, is updated by the addition of
a new map item ”oNew 7→ ⊥”. However, in the semantics proposed by Shylock,
the value of oNew is the minimal address not used in the current visible heap
which is calculated by the function min(R(H)c) that ends in the normal form
oNew(n). This represents the memory reuse mechanism which is handled in our
implementation by the kAbs-cell. Hence, the object creation rules are:

rule 〈a := new ···〉k 〈H〉heap 〈 ·
min(R(H)c)

〉kAbs

rule 〈a := new ···〉k 〈Hh〉h 〈oNew(n) y ·
update Hh with n 7→⊥

〉kAbs

rule 〈a := new

·
···〉k 〈··· x 7→

n

···〉var 〈 Hh

H ′h

〉h 〈oNew(n)yupdated(H ′h)

·
〉kAbs

where “min(R(H)c)” finds n, the first integer not in R(H), and ends in oNew(n),
then “update Bag with MapItem” adds n 7→ ⊥ to the map in each cell fld
contained in the h-cell and ends in the normal form updated(Bag). Note that all
the operators used in the kAbs-cell are implemented equationally, by means of
structural K-rules. In this manner, we ensure that the computational rule which
consumes a := new from the top of the k-cell is accurately updating the control
location with the required modification.

The rules for procedure call/return are presented in Fig. 3. They follow the
same pattern as the one proposed in the rules for object creation. The renaming

Model Checking of Recursive Programs with Pointers in K 11

rule 〈p ···〉k 〈H〉heap〈L〉L〈G〉G〈F 〉F 〈··· p 7→ B ···〉P 〈 ·
processingCall(H,L,G, F)

〉kAbs

rule 〈 p

B y restore(H)

···〉k 〈 H
H ′
〉heap 〈··· p 7→ B ···〉P 〈processedCall(H ′)

·
〉kAbs

rule 〈restore(H ′) ···〉k 〈H〉heap〈L〉L〈G〉G〈F 〉F 〈 ·
processingRet(H,H ′, L,G, F)

〉kAbs

rule 〈restore()

·
···〉k 〈 H

H ′
〉heap 〈processedRet(H ′)

·
〉kAbs

Fig. 3. K-rules for the procedure’s call and return in Shylock

scheme defined for resolving name clashes induced by the memory reuse for
object creation is based in Shylock on the concept of cut points as introduced in
[13]. Cut points are objects in the heap that are referred to from both local and
global variables, and as such, are subject to modifications during a procedure call.
Recording cut points in extra logical variables allows for a sound return in the
calling procedure, enabling a precise abstract execution w.r.t. object identities.
For more details on the semantics of Shylock we refer to [16].

3.3 Shylock as PSS

The benefit of a Shylock’s K specification lies in the rules for object creation,
which implement the memory reuse mechanism, and for procedure call/return,
which implement the renaming scheme. Each element in the memory reuse mech-
anism is implemented equationally, i.e., by means of structural K rules which
have equational interpretation when compiled in Maude. Hence, if we interpret
Shylock as an abstract model for the standard semantics, i.e., with standard
object creation, the K specification for Shylock’s abstract semantics renders an
equational abstraction. As such, Shylock is yet another witness to the versatility
of the equational abstraction methodology [11].

Under the assumption of a bounded heap, the K specification for Shylock is
a locally finite PSS and compiles in Maude into a rewriting system. Obviously,
in the presence of recursive procedures, the stack grows unboundedly and, even
if Shylock produces a finite pushdown system, the equivalent transition system
is infinite and so is the associated rewriting system. We give next a relevant
example for this idea.

Example 2. The following Shylock program, denoted as pgm0, is the basic ex-
ample we use for Shylock. It involves a recursive procedure p0 which creates an
object g.

gvars: g main :: p0 p0 :: g:=new; p0

12 Asăvoae, de Boer, Bonsangue, Lucanu, Rot

In a standard semantics, because the recursion is infinite, so is the set of
object identities used for g. However, Shylock’s memory reuse guarantees to pro-
duce a finite set of object identities, namely ⊥, 0, 1. Hence, the pushdown system
associated to pgm0 Shylock program is finite and has the following (ground) rules:

(g:⊥, main) ↪→ (g:⊥, p0; restore(g:⊥))
(g:⊥, p0) ↪→ (g:⊥, g := new; p0; restore(g:⊥)) (g:⊥, g := new) ↪→ (g:0, ε)
(g:0, p0) ↪→ (g:0, g := new; p0; restore(g:0)) (g:0, g := new) ↪→ (g:1, ε)
(g:1, p0) ↪→ (g:1, g := new; p0; restore(g:1)) (g:1, g := new) ↪→ (g:0, ε)

Note that we cannot obtain the pushdown system by the exhaustive execu-
tion of Shylock[pgm0] because the exhaustive execution is infinite due to recursive
procedure p0. For the same reason, Shylock[pgm0] specification does not com-
ply with Maude’s LTL model checker prerequisites. Moreover, we cannot use
directly the dedicated pushdown systems model checkers as these work with the
pushdown system automaton, while Shylock[pgm0] is a pushdown system speci-
fication. This example creates the premises for the discussion in the next section
where we present a K-specification of a model checking procedure amenable for
pushdown systems specifications.

4 Model Checking K Definitions

We recall that the PSS perspective over the K definitions enables the verification
by model checking of a richer class of programs which allow (infinite) recursion.
In this section we focus on describing kApost∗(φ, P̄), the K specification of the
algorithm Apost*gen. Note that kApost∗(φ, P̄) is parametric, where the two
parameters are P̄, the K specification of a pushdown system, and φ a control state
invariant. We describe kApost∗(φ, P̄) along justifying the behavioral equivalence
with the algorithm Apost*gen.

The while loop in Apost*gen, in Fig. 1, is maintained in kApost∗ by the
application of rewriting, until the term reaches the normal form, i.e. no other rule
can be applied. This is ensured by the fact that from the initial configuration:

Init ≡ 〈·〉traces〈·〉traces′〈〈x0
γ0 f〉trans〈·〉rel〈·〉memento〈φ〉formula〈true〉return〉collect

the rules keep applying, as long as trans-cell is nonempty.
We assume that the rewrite rules are applied at-random, so we need to di-

rect/pipeline the flow of their application via matching and conditions. The nota-
tion rulei [label] in the beginning of each rule hints, via [label], towards which
part of the Apost*gen algorithm that rule is handling. In the followings we
discuss each rule and justify its connection with code fragments in Apost*gen.

The last rule, ruleP, performs the exhaustive unfolding for a particular
configuration in cell trace. We use this rule in order to have a parametric def-
inition of the kApost∗ specification, where one of the parameters is P̄, i.e., the
K specification of the pushdown system. Recall that the other parameter is
the specification of the language defining the control state invariant properties

Model Checking of Recursive Programs with Pointers in K 13

Init ≡ 〈·〉traces〈·〉traces′〈〈x0
γ0 f〉trans〈·〉rel〈·〉memento〈φ〉formula〈true〉return〉collect

rule1 [if x̂
γ̂
 ŷ 6∈ rel else] :

〈·〉traces〈·〉traces′〈··· 〈··· x
γ
 y

·
···〉trans〈··· x

γ
 y ···〉rel〈·〉memento ···〉collect

rule2 [if (x̂
γ̂
 ŷ 6∈ rel then...if γ̂ 6= ε else] :

〈·〉traces〈·〉traces′〈··· 〈··· x
ε
 y

(x Rel[y
−
])

···〉trans〈 ·

x
ε
 y

Rel〉rel〈·〉memento ···〉collect

when x
ε
 y 6∈ Rel

rule3 [if x̂
γ̂
 ŷ 6∈ rel then...if γ̂ 6= ε then] :

〈 ·
〈〈x〉ctrl〈γ〉k〉trace

〉traces〈·〉traces′〈··· 〈··· x
γ
 y

·
···〉trans〈 ·

x
γ
 y

Rel〉rel〈 ·

x
γ
 y

〉memento ···〉collect

when x
γ
 y 6∈ Rel andBool γ 6= ε

rule4 [for all ẑ s.t. 〈x̂, γ̂〉−→〈ẑ, ε|γ̂|γ̂1..γ̂n〉 is derivable from P̄ do if ẑ 6|=φ then] :

〈·〉traces〈〈〈z〉ctrl ···〉trace

·
〉traces′〈〈

·
〉trans〈

·
〉rel〈

·
〉memento〈φ〉formula〈 true

false

〉return〉collect

when z 6|= φ

rule5 [for all ẑ s.t. 〈x̂, γ̂〉−→〈ẑ, ε|γ̂1〉 is derivable from P̄ do] :

〈·〉traces〈··· 〈〈z〉ctrl〈Γ ′〉k〉trace

·
···〉traces′〈··· 〈··· ·

z
Γ ′
 y

···〉trans〈x
γ
 y〉memento〈φ〉formula ···〉collect

when |Γ ′| ≤ 1 andBool z |= φ

rule6 [for all ẑ s.t. 〈x̂, γ̂〉−→〈ẑ, γ̂1..γ̂n〉 is derivable from P̄ do] :

〈·〉traces〈··· 〈〈z〉ctrl〈γ′ y Γ ′〉k〉trace

·
···〉traces′

〈··· ·

z
γ′
 new(z, γ′) (Rel[

ε
 new(z, γ′), news(x, γ, z, γ′, Γ ′)]

Γ ′
 news(x, γ, z, γ′, Γ ′), y)

···〉trans

〈Rel ·

new(z, γ′), news(x, γ, z, γ′, Γ ′)
Γ ′
 news(x, γ, z, γ′, Γ ′), y

〉rel〈x
γ
 y〉memento〈φ〉formula

when |Γ ′| ≥ 1 andBool z |= φ

rule7 [for all ẑ s.t. 〈x̂, γ̂〉−→〈ẑ, ε|γ̂|γ̂1..γ̂n〉 is derivable from P̄ do] :

〈·〉traces〈·〉traces′〈··· 〈x
γ
 y

·
〉memento ···〉collect

ruleP [all ẑ s.t. 〈x̂, γ̂〉−→〈ẑ, Γ̂ 〉 is derivable from P̄] :

〈··· 〈〈x〉ctrl〈γyΓ 〉k〉trace

·
···〉traces〈··· ·

〈〈z0〉ctrl〈Γ0yΓ 〉k〉trace..〈〈zn〉ctrl〈ΓnyΓ 〉k〉trace

···〉traces′

Fig. 4. kApost∗(φ, P̄)

14 Asăvoae, de Boer, Bonsangue, Lucanu, Rot

φ which are to be verified on the produced pushdown system. ruleP takes
〈x〉ctrl〈γ y Γ 〉k a configuration in P̄ and gives, based on the rules in P̄, all the
configurations 〈zi〉ctrl〈Γi y Γ 〉k, 0 ≤ i ≤ n obtained from 〈x〉ctrl〈γ y Γ 〉k after
exactly one rewrite.

The pipeline stages are the following sequence of rules’ application:

rule3ruleP(rule4 + rule5 + rule6)∗rule7

The cell memento is filled in the beginning of the pipeline, rule3, and is emptied
at the end of the pipeline, rule7. We use the matching on a nonempty memento
for localizing the computation in Apost*gen at the lines 7 − 20. We explain
next the pipeline stages.

Firstly, note that when no transition derived from P̄ is processed by kApost∗

we enforce cells traces, traces′ to be empty (with the matching 〈·〉traces〈·〉traces′).
This happens in rules 1 and 2 because the respective portions in Apost*gen
do not need new transitions derived from P̄ to update “trans” and “rel”.

The other cases, namely when the transitions derived from P̄ are used for
updating “trans” and “rel”, are triggered in rule3 by placing the desired config-
uration in the cell traces, while the cell traces′ is empty. At this point, since all the
other rules match on either traces empty, or traces′ nonempty, only ruleP can
be applied. This rule populates traces′ with all the next configurations obtained
by executing P̄.

After the application of ruleP, only one of the rules 4, 5, 6 can apply
because these are the only rules in kApost∗ matching an empty traces and a
nonempty traces′.

Among the rules 4,5,6 the differentiation is made via conditions as follows:

rule4 handles all the cases when the new configuration has a control location
z which does not verify the state invariant φ (i.e., lines 10, 13, 16 in Apost*gen).
In this case we close the pipeline and the algorithm by emptying all the cells
traces, traces, trans. Note that all the rules handling the while loop match on at
least a nonempty cell traces, traces, or trans, with a pivot in a nonempty trans.

rules 5 and 6 are applied disjunctively of rule4 because both have the
condition z |= φ. Next we describe these two rules. rule5 handles the case when
the semantic rule in P̄ which matches the current < x̂, γ̂ > does not increase
the size of the stack. This case is associated with the lines 9 and 11, 12 and
14 in Apost*gen. rule6 handles the case when the semantic rule in P̄ which
matches the current < x̂, γ̂ > increases the stack size and is associated with lines
15 and 17− 20 in Apost*gen.

Both rules 5 and 6 use the memento cell which is filled upon pipeline initial-
ization, in rule3. The most complicated rule is rule6, because it handles a for
all piece of code, i.e., lines 17−20 in Fig. 2. This part is reproduced by matching
the entire content of cell rel with Rel, and using the projection operator:

Rel[
γ
 z1, .., zn] := {u | (u, γ, z1) ∈ Rel}, .., {u | (u, γ, zn) ∈ Rel}

Model Checking of Recursive Programs with Pointers in K 15

where z1, .., zn in the left hand-side is a list of z-symbols, while in the right
hand-side we have a list of sets. Hence, the notation:

(Rel[
ε
 new(z, γ′), news(x, γ, z, γ′, Γ ′)]

Γ ′

 news(x, γ, z, γ′, Γ ′), y)

in rule6 cell trans stands for the lines 17 and 19−20 in Fig. 2. (Note that instead
of notation r̂ for rule < x̂, γ̂ >−→< ẑ, γ̂′Γ̂ ′ > we use the equivalent unique
representation (x̂, γ̂, ẑ, γ̂′, Γ̂ ′) and that instead of ŷẑ,ν(r̂,0) we use directly ŷẑ,γ̂′ ,
i.e., new(z, γ′), while instead of ŷẑ,ν(r̂,n−1) in Fig. 2 we use directly ŷ.) Also, the

notation in cell rel: “new(z, γ′), news(x, γ, z, γ′, Γ ′)
Γ ′

 news(x, γ, z, γ′, Γ ′), y”
stands for line 18 in Fig. 2.

rules 4, 5, 6 match on a nonempty traces′-cell and an empty traces, and
no other rule matches alike. rule7 closes the pipeline when the traces′ cell
becomes empty by making the memento cell empty. Note that traces′ empties
because rules 4, 5, 6 keep consuming it.

Example 3. We recall that the Shylock program pgm0 from Example 2 was not
amenable by semantic exhaustive execution or Maude’s LTL model checker,
due to the recursive procedure p0. Likewise, model checkers for pushdown sys-
tems which can handle the recursive procedure p0 cannot be used because
Shylock[pgm0], the pushdown system obtained from Shylock’s PSS, is not avail-
able. However, we can employ kApost∗ for Shylock’s K-specification in order to
discover the reachable state space, the Apost∗ automata, as well as the push-
down system itself. In the Fig. 5 we describe the first steps in the execution
of kApost∗(true,Shylock[pgm0]) and the reachability automaton generated auto-
matically by kApost∗(true,Shylock[pgm0]).

4.1 Bounded Model Checking for Shylock

One of the major problems in model checking programs which manipulate dy-
namic structures, such as linked lists, is that it is not possible to bound a pri-
ori the state space of the possible computations. This is due to the fact that
programs may manipulate the heap by dynamically allocating an unbounded
number of new objects and by updating reference fields. This implies that the
reachable state space is potentially infinite for Shylock programs with recursive
procedures. Consequently for model checking purposes we need to impose some
suitable bounds on the model of the program.

A natural bound for model checking Shylock programs, without necessarily
restricting their capability of allocating an unbounded number of objects, is to
impose constraints on the size of the visible heap [2]. Such a bound still allows
for storage of an unbounded number of objects onto the call-stack, using local
variables. Thus termination is guaranteed with heap-bounded model checking of
the form |=k �φ meaning |= �φ ∧ le(k), where le(k) verifies if the size of the
visible heap is smaller than k.

16 Asăvoae, de Boer, Bonsangue, Lucanu, Rot

〈·〉traces 〈·〉traces′ 〈 〈〈〈g7→⊥〉var〈·〉h〉heap
main
 fin〉trans〈·〉rel〈·〉memento〈true〉formula〈true〉return 〉collect

rule3

V 〈〈〈〈g7→⊥〉var〈·〉h〉heap〉ctrl〈main〉k〉traces

〈·〉trans 〈〈〈g7→⊥〉var〈·〉h〉heap
main
 fin〉rel 〈〈〈g7→⊥〉var〈·〉h〉heap

main
 fin〉memento

ruleP
V 〈·〉traces 〈〈〈〈g 7→⊥〉var〈·〉h〉heap〉ctrl〈p0yrestore(〈〈g7→⊥〉var〈·〉h〉heap)〉k〉traces′

rule6

V 〈·〉traces 〈·〉traces′ 〈〈〈g 7→⊥〉var〈·〉h〉heap
main
 fin〉memento

〈 〈〈g7→⊥〉var〈·〉h〉heap
p0
 new(〈〈g7→⊥〉var〈·〉h〉heap, p0) 〉trans

〈 〈〈g7→⊥〉var〈·〉h〉heap
main
 fin new(〈〈g 7→⊥〉var〈·〉h〉heap, p0)

restore(...)
 fin 〉rel

rule7

V 〈·〉traces 〈·〉traces′ 〈·〉memento
rule3

V 〈〈〈〈g 7→⊥〉var〈·〉h〉heap〉ctrl〈p0〉k〉traces

〈·〉trans 〈〈〈g7→⊥〉var〈·〉h〉heap
p0
 new(〈〈g7→⊥〉var〈·〉h〉heap, p0)〉memento

〈 〈〈g7→⊥〉var〈·〉h〉heap
main
 fin new(〈〈g 7→⊥〉var〈·〉h〉heap, p0)

restore(...)
 fin

〈〈g7→⊥〉var〈·〉h〉heap
p0
 new(〈〈g7→⊥〉var〈·〉h〉heap, p0) 〉rel

ruleP
V 〈·〉traces〈〈〈〈g7→⊥〉var〈·〉h〉heap〉ctrl〈g := newyp0yrestore(〈〈g7→⊥〉var〈·〉h〉heap)〉k〉traces′

rule6

V 〈·〉traces 〈·〉traces′ 〈〈〈g7→⊥〉var〈·〉h〉heap
p0
 new(〈〈g7→⊥〉var〈·〉h〉heap, p0)〉memento

〈 〈〈g 7→⊥〉var〈·〉h〉heap
g:=new
 new(〈〈g7→⊥〉var〈·〉h〉heap, g := new) 〉trans

〈 〈〈g 7→⊥〉var〈·〉h〉heap
main
 fin new(〈〈g7→⊥〉var〈·〉h〉heap, p0)

restore(...)
 fin

〈〈g7→⊥〉var〈·〉h〉heap
p0
 new(〈〈g 7→⊥〉var〈·〉h〉heap, p0)

new(〈〈g7→⊥〉var〈·〉h〉heap, g := new)
p0
 news(〈〈g 7→⊥〉var〈·〉h〉heap, p0, 〈〈g7→⊥〉var〈·〉h〉heap, g:=new, p0yrestore(...), 1)
restore(...)
 new(〈〈g7→⊥〉var〈·〉h〉heap, p0) 〉rel

rule7

V 〈·〉traces 〈·〉traces′ 〈·〉memento

rule3

V ...

Fig. 5. The first pipeline iteration for kApost∗(true, Shylock[pgm0]) and the automati-
cally produced reachability automaton at the end of kApost∗(true, Shylock[pgm0]). Note
that for legibility reasons we omit certain cells appearing in the control state, like
〈〈g〉G〈·〉L〈·〉F〈main 7→p0 p07→g := new; p0〉P〉pgm, which do not change along the execu-
tion. Hence, for example, the ctrl-cell is filled in rule3 with both cells heap and pgm.

Model Checking of Recursive Programs with Pointers in K 17

To this end, we define the set of atomic propositions (φ ∈) Rite as the smallest
set defined by the following grammar:

r ::= ε | x | ¬x | f | r.r | r + r | r∗

where x ranges over variable names (to be used as tests) and f over field names
(to be used as actions). The atomic proposition in Rite are basically expressions
from the Kleene algebra with tests [9], where the global and local variables
are used as nominals while the fields constitute the set of basic actions. The
K specification of Rite is based on the circularity principle [7,3] to handle the
possible cycles in the heap. We employ Rite with kApost∗(φ, P̄), i.e., φ ∈ Rite, for
verifying heap-shape properties for Shylock programs. For the precise definition
of the interpretation of these expressions in a heap we refer to the companion
paper [16]. We conclude with an example showing a simple invariant property
of a Shylock program.

Example 4. The following Shylock program pgmList creates a potentially infi-
nite linked list which starts in object first and ends with object last.

gvars: first, last lvars: tmp flds: next

main :: last:=new; last.next:=last; first:=last; p0

p0 :: tmp:=new; tmp.next:=first; first:=tmp; (p0 + skip)

This is an example of a program which induces, on some computation path,
an unbounded heap. When we apply the heap-bounded model checking spec-
ification, by instantiating φ with the property le(10), we collect all lists with
a length smaller or equal than 10. We can also check the heap-shape property
“(¬first+first.next∗.last)”. This property says that either the first object
is not defined or the last object is reached from first via the next field.

5 Conclusions

In this paper we introduced pushdown system specifications (PSS) with an as-
sociated invariant model checking algorithm Apost*gen. We showed why the
K framework is a suitable environment for pushdown systems specifications, but
not for their verification via the for-free model checking capabilities available in
K. We gave a K specification of invariant model checking for pushdown system
specifications, kApost∗ , which is behaviorally equivalent with Apost*gen. To
the best of our knowledge, no other model checking tool has the flexibility of
having structured atomic propositions and working with the generation of the
state space on-the-fly.

Future work includes the study of the correctness of our translation of Shylock
into the K framework as well as of the translation of the proposed model checking
algorithm and its generalization to any LTL formula. From a more practical point
of view, future applications of pushdown system specifications could be found in
semantics-based transformation of real programming languages like C or Java
or in benchmark-based comparisons with existing model-based approaches for
program verification.

18 Asăvoae, de Boer, Bonsangue, Lucanu, Rot

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful comments and suggestions.

References

1. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Au-
tomata: Application to Model Checking. In: Mazurkiewicz, A.W., Winkowski, J.
(eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150, Springer (1997)

2. Bouajjani, A., Fratani, S., Qadeer, S.: Context-Bounded Analysis of Multithreaded
Programs with Dynamic Linked Structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 207–220, Springer (2007)

3. Bonsangue, M., Caltais, G., Goriac, E., Lucanu, D., Rutten, J., Silva, A.: A De-
cision Procedure for Bisimilarity of Generalized Regular Expressions. In: Davies,
J., Silva, L., da Silva Simão, A. (eds.) SBM 2010. LNCS, vol. 6527, pp. 226–241,
Springer (2010)

4. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL Model Checker.
Electr. Notes Theor. Comput. Sci. 71, 162–187 (2002)

5. Ellison, C., Roşu, G.: An Executable Formal Semantics of C with Applications.
In: Field, J., Hicks, M. (eds.) POPL 2012, pp. 533–544, ACM (2012)

6. Esparza, J., Schwoon, S.: A BDD-Based Model Checker for Recursive Programs.
In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–
336, Springer (2001)

7. Goguen, J., Lin, K., Roşu, G.: Circular Coinductive Rewriting. In: ASE 2000, pp.
123–132. IEEE (2000)

8. Kidd, N., Reps, T., Melski, D., Lal, A.: WPDS++: A C++ Library for Weighted
Pushdown Systems, http://www.cs.wisc.edu/wpis/wpds++ (2005)

9. Kozen, D.: Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19,
427–443 (1997)

10. Maude, http://maude.cs.uiuc.edu/
11. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational Abstractions. Theor.

Comput. Sci. 403(2-3), 239–264 (2008)
12. Meseguer, J., Roşu, G.: The Rewriting Logics Semantics Project. Theor. Comput.

Sci. 373(3), 213–237 (2007)
13. Rinetzky, N., Bauer, J., Reps, T.W, Sagiv, S., Wilhelm, R.: A Semantics for

Procedure Local Heaps and its Abstractions. In: Palsberg, J., Abadi, M. (eds.)
POPL 2005, pp. 296–309, ACM (2005)

14. Roşu, G., Şerbănuţă, T.F.: An Overview of the K Semantic Framework. J. Log.
Algebr. Program. 79(6), 397–434 (2010)

15. Roşu, G., Şerbănuţă, T.F.: K-Maude: A Rewriting Based Tool for Semantics of
Programming Languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381,
pp.104–122, Springer (2010)

16. Rot, J., Asavoae, I.M., de Boer, F., Bonsangue, M., Lucanu, D.: Interacting via
the Heap in the Presence of Recursion. In: Carbone, M., Lanese, I., Silva, A.,
Sokolova, A. (eds.) ICE 2012. EPTCS, vol. 104, pp. 99-113 (2012)

17. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sität München (2002)

