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Abstract. Several formal models combine probabilistic and nondeter-
ministic features. To allow their probabilistic simulation and statistical
model checking by means of pseudo-random number sampling, all sources
of nondeterminism must first be quantified. However, current tools offer
limited flexibility for the user to define how the nondeterminism should
be quantified. In this paper, we propose an expressive probabilistic strat-
egy language that allows the user to define complex strategies for quan-
tifying the nondeterminism in probabilistic rewrite theories. We have im-
plemented PSMaude, a tool that extends Maude with a probabilistic
simulator and a statistical model checker for our language. We illustrate
the convenience of being able to define different probabilistic strategies
on top of a system by a cloud computing example, where different load
balancing policies can be specified by different probabilistic strategies.
We then use PSMaude to analyze the QoS provided by different policies.

1 Introduction

Many formal analysis tools support the modeling of systems that exhibit both
probabilistic and nondeterministic behaviors. To allow their probabilistic simula-
tion and statistical model checking using pseudo-random number sampling, the
nondeterminism must be quantified to obtain a fully probabilistic model. How-
ever, there is typically limited support for user-definable adversaries to quantify
the nondeterminism in reasonably expressive models; such adversaries are either
added by the tool or must be encoded directly into the system model.

In this paper we propose an expressive probabilistic strategy language for
probabilistic rewrite theories [18,1] that allows users to define complex adver-
saries for a model, and therefore allows us to separate the definition of the system
model from that of the adversary needed to quantify the nondeterminism in the
system model.

Rewriting logic is a simple and expressive logic for concurrent systems in
which the data types are defined by an algebraic equational specification and
where the local transition patterns are defined by conditional labeled rewrite
rules of the form [ : t — ¢’ if cond, where [ is a label and t and ¢’ are terms rep-
resenting state fragments. Maude [11] is a high-performance simulation, reacha-



bility, and LTL model checking tool for rewriting logic that has been successfully
applied to many large applications (see, e.g., [25,22] for an overview).

Rewriting logic has been extended to probabilistic rewrite theories [18,1],
where probabilities are introduced by new variables in the righthand side t’ of
a rewrite rule. These variables are instantiated according to a probability distri-
bution associated with the rewrite rule. Probabilistic rewrite theories, together
with the VESTA statistical model checker [27], have been applied to analyze
sensor network algorithms [17] and defense mechanisms against denial of service
attacks [3, 13]. However, since the probabilistic rewrite theories were highly non-
deterministic, adversaries had to be encoded into the model before any analysis
could take place.

Probabilistic model checking suffers from state space explosion which renders
it unfeasible for automated analysis of the complex concurrent systems targeted
by rewriting logic. Statistical model checking [20,28,26] trades absolute confi-
dence in the correctness of the model checking for computational efficiency, and
essentially consists of simulating a number of different system behaviors until
a certain confidence level is reached. This not only makes statistical analysis
feasible, but also makes such model checking amenable to parallelization, which
is exploited in the parallel version PVESTA [2] of the statistical model checker
VESTA. PVESTA has recently been used to analyze an adaptive system speci-
fied as a hierarchical probabilistic rewrite theory [10].

To support the analysis of probabilistic rewrite theories where our strategy
language has been used to quantify all nondeterminism, we have formalized and
integrated into (Full) Maude both probabilistic simulation and statistical model
checking. Our strategy language and its implementation, the PSMaude tool [4],
enable a Maude-based safety/QoS modeling and analysis methodology in which:

1. A non-probabilistic rewrite theory defines all possible behaviors in a simple
“uncluttered” way; this model can then be directly subjected to important
safety analyses to guarantee the absence of bad behaviors.

2. Different QoS policies and/or probabilistic environments can then be defined
as probabilistic strategies on top of the basic verified model for QoS reasoning
by probabilistic simulation and statistical model checking.

We exemplify in Section 4 the usefulness of this methodology and of the pos-
sibility to define different complex probabilistic strategies on top of the same
model with a cloud computing example, where a (non-probabilistic) rewrite the-
ory defines all the possible ways in which requested resources can be allocated on
servers in the cloud, as well as all possible environment behaviors. We can then
use standard techniques to prove safety properties of this model. However, one
could imagine a number of different policies for assigning resources to service
providers and users, such as, e.g.,

— Service providers might request virtual machines uniformly across different
regions (for fault-tolerance and omnipresence), or with higher probability at
certain locations, or with higher probability at more stable servers.



— Service users may be assigned virtual machines either closer to their loca-
tions, on physical servers with low workload, or on reliable servers, with high
probability.

Each load balancing policy can be naturally specified as a probabilistic strategy
on top of the (non-probabilistic) model of the cloud infrastructure that has been
proved to be “safe.” We then use PSMaude to perform simulation and statistical
model checking to analyze the QoS effect of the different load balancing policies.

2 Preliminaries

Rewriting Logic and Maude. A rewrite theory [24] is a tuple R = (X, EUA, L, R),
where (X, E U A) is a membership equational logic theory, with E a set of
equations (VZ) t =t' if cond, and membership axioms (VZ) ¢ : s if cond, where
t and t' are X-terms, s is a sort, and cond is a conjunction of equalities and sort
memberships, and with A a collection of structural azioms specifying properties
of operators, like commutativity, associativity, etc., R is a set of rewrite rules
(V&) 1 : t — ¢ if cond, where | € L is a label, ¢t and ¢’ are terms of the
same kind, cond is a conjunction of equalities, memberships and rewrites, and
T = wars(t) U vars(t’) U vars(cond). Such a rule specifies a transition from an
instance of the term ¢ to the corresponding instance of #', provided that cond
is satisfied. vars(t) denotes the set of variables in a term ¢; if vars(t) = (), then
t is a ground term. If E is terminating, confluent and sort-decreasing modulo
A, then Cans g4 denotes the algebra of fully simplified ground terms, and we
denote by [t]a the A-equivalence class of a term t. An E/A-canonical ground
substitution for a set of variables & is a function [0]4 : & — Canyx g/a; we denote
by CanGSubstg/4(Z) the set of all such functions. We also denote by [0]4 the
homomorphic extension of [#]4 to X-terms. A context is a X-term with a single
hole variable ®; two contexts C and C’ are A-equivalent if A - (Vo) C(©) =
C'(®). Given [u]a € Cany; g4, its R/A-matches are triples ([C]a,, [#]4) where
C is a context, 7 € R is a rewrite rule, [f]a € CanGSubsty, (%) is such that
EUAF §(cond), and [u]a = [C(® + 0(t))] ,. We denote by M([u]4) the set of
all such triples, and define the set of rules that are enabled for a term [u] 4, the
set of walid contexts for [u]4 and a rule r, and the set of valid substitutions for
[u] 4, a rule r, and a context [C]4, in the expected way:

enabled([ua) = {r € R | J[C|a,3[0]a: ([Cla,r,[0]4) € M([u]a)}
C([u]a,r) ={[Cla € Cang p/a(®) | 3[0]a: ([Cla, 7 [0]a) € M([u]a)}
S([ua, 7, [Cla) = {[0]a € CanGSubstp/a(Z) | ([Cla,r,[0]a) € M([u]a)}

Maude [11] is a high-performance simulation, reachability analysis, and LTL
model checking tool for rewrite theories. We use Maude syntax, so that con-
ditional rules are written crl [I1: t => ¢’ if cond. In object-oriented Maude
specifications [11], the system state is a term of sort Configuration denoting a
multiset of objects and messages, with multiset union denoted by juxtaposition.



A class declaration class C' | att; : s1, ..., att, : s, declares a class C
with attributes atty,..., att, of sorts sq,..., s,, respectively. A subclass inherits
the attributes and rules of its superclass(es). Objects are represented as terms
<o:C|alty : valy, ..., att, : wal, > where o is the object’s identifier of
sort 0id, C' is the object’s class, and where wvaly, ..., val, are the values of the
object’s attributes atty, ..., att,. For example, the rule

:C |l al : x, a2 : 0°, a3 : z > =>

rl [1]: m(0, w) <O
<0:Clal:x+w, a2 :0, a3 :z> m(0’, x) .

defines a family of transitions in which a message m, with parameters 0 and w, is
read and consumed by an object 0 of class C. The transitions change the attribute
a1l of 0 and send a new message m’ (07, x). “Irrelevant” attributes (such as a3
and the righthand side occurrence of a2) need not be mentioned.

Markov Chains. Given {2 # (), a o-algebra over {2 is a collection F C P(§2) such
that 2\ F € F for all F € F, and |J,.; F; € F for all collections {F;},.; € F
indexed by a countable set I. Given a o-algebra F over {2, a function P : F —
[0,1] is a probability measure if P(2) = 1 and P (U;er F;) = ), P(F}), for all
collections {F;};cr C F of pairwise disjoint sets. We denote by PMeas ({2, F) the
set of all probability measures on F over 2. A probability mass function (pmf)
is a function p : 2 — [0,1] with >° ., p(w) = 1. A family of pmf’s can be used
to define the behavior of a (memoryless) probabilistic system. In particular, a
discrete time Markov chain (DTMC) is given by a countable set of states S, and
a transition probability matrix T : S x S — [0,1], where T'(s) : S — [0,1] is a
pmf for all states s € S, i.e., T'(s, s’) is the probability for the DTMC to make a
transition from state s to state s’.

Probabilistic Rewrite Theories. In probabilistic rewrite theories (PRTs) [18] the
righthand side ¢’ of arule [ : t — ' if cond may contain variables 7 that do not
occur in ¢, and that are instantiated according to a probability measure taken
from a family of probability measures—one for each instance of the variables in
t—associated with the rule. Formally, a PRT R, is a pair (R, 7), where R is
a rewrite theory, and m maps each rule r of R, with vars(t) = Z and vars(t’) \
vars(t) = §, to a mapping 7, : [cond(Z)] — PMeas (CanGSubstp, (%), Fr) ,
where [cond(Z)] = {[0]a € CanGSubstg/a(Z) | EUAF 0(cond) }, and F, is
a o-algebra over CanGSubstg (). That is, for each substitution [0]4 of the
variables in ¢ that satisfies cond, we get a probability measure 7, ([0]4) for in-
stantiating the variables ¢. The rule r together with =, is called a probabilistic
rewrite rule, and is written [ : ¢ — ¢’ if cond with probability w,.. We
refer to the specification of the “blackboard game” in Section 3 for an exam-
ple of the syntax used to specify probabilistic rewrite rules and the probability
measure 7. An E/A-canonical one-step rewrite of R, [18,1] is a labeled tran-

sition [u]a a7, Blalela), [v] 4 with m 4 ([Cla, r, [0]4) & R/A-match for [u]a,
[pla € CanGSubst/as(y), and [v]a = [C(® + (0 U p)(t'))]a. To quantify the
nondeterminism in the choice of m, the notion of adversary is introduced in
[18,1] that samples m from a pmf that depends on the computation history.



A memoryless adversary® is a family of pmf’s {oy,, : M([u]a) = [0,1]} 1),
where oy, (m) is the probability of picking the R/A-match m. A consequence
of a result in [18] is that executing R under {07y, }(u, is described by a DTMC.

PCTL. The probabilistic computation tree logic (PCTL) [16] extends CTL with
an operator P to express properties of DTMCs. We use a subset of PCTL, with-
out time-bounded and steady-state operators. If AP is a set of atomic proposi-

tions, ¢ is a state formula, and ¥ is a path formula, PCTL formulas over AP are
defined by:

pu=true|a| ¢ | oA | Pop())  bu=0U¢|[Xe

where a € AP, = € {<,<,>,>1}, and p € [0,1]. PCTL satisfaction is defined
over DTMCs, e.g., the meaning of M, s = P<g.o5(true U ¢) is that ¢ eventually
becomes true in less than 5% of all the runs of the DTMC M from state s.

Statistical Model Checking and VESTA. Traditional model checking suffers from
state space explosion problem, whereas statistical model checking [20,28, 26|
trades complete confidence for efficiency, allowing the analysis of large-scale
probabilistic systems. This technique is based on simulating the model, and on
performing statistical hypothesis testing to control the generation of execution
traces. The simulation is stopped when a given level of confidence is reached for
answering the model checking problem. The VESTA tool [27] supports statistical
model checking and quantitative analysis of executable specifications in which
all nondeterminism is quantified probabilistically. In VESTA, system properties
are given in PCTL (or its continuous-time extension CSL), while quantitative
analysis queries are given in the QUATEX logic [1] and ask for the average val-
ues of quantities associated with the model—VESTA simulates the model and
provides estimates for these averages.

3 A Language for Specifying Memoryless Adversaries

The source of nondeterminism in a probabilistic rewrite theory is picking an
R/A-match from a set of possible ones in each state. This section introduces a
probabilistic strategy language that can be used to quantify this nondeterminism,
i.e., for specifying memoryless adversaries of PRTs.

The probability distribution associated with picking a certain R/A-match
([Cla,m,[0)a) can be specified using the individual (conditional) distributions
for picking the rule r, the context [C] 4, and the substitution [f] 4, which is more
convenient than specifying their joint distribution. That is, by probability theory,
any memoryless adversary {1, , }ju, of a PRT R, can be decomposed as:

14 ([Cla, 7, [0]4) =
P {pick rule r | state is [u]4} - P{pick context [C]4 | state is [u]a, rule is r}

A

- P {pick substitution [#]4 | state is [u]4, rule is r, context is [C]4}

% This is a slightly modified version of the definition of adversaries in [18, 1].



We denote the factors in this product by Ap,, (1), AT, ([C]4), and AP (0] ),

uja ujA
respectively. They give the probabilities of picking E"t]ﬂe r in state [u][A], of using
context [C]4 to match [u] 4 with the lefthand side of r, and of using substitution
[0]4 to match [u]4 with the lefthand side of r in context [C] 4, respectively. We
call {A[U]A : enabled([u]A) — [O, 1]}[U]A, {A?U]A : O([U]A,T) — [0, 1]}[U]A7T, and

{A[TQH?A([H]A) 0 S([u)a,m, [Cla) = [0,1]}u)a,n[c]a> TeSD., the underlying rule,
context, and substitution adversaries of the memoryless adversary {07y), }u]4-

It is cumbersome to define absolute probabilities for each choice (so that they
add up to 1 in each state). If we have rules 71, 79, and r3, and want r; to be
applied with 3 times as high probability as ro (when both are enabled), which
should be twice as likely as taking rule r3, then, for a state [u]4 where all rules
are enabled, the probabilities would be {r; — 6/9, ro — 2/9, r3 — 1/9}, and for
a state [u'] 4 where 73 is not enabled, the distribution would be {r; — 6/7, r3 —
1/7}, etc. This can soon become inconvenient. In our language one therefore
instead defines relative weights for each rule, context, and substitution. That
is, for any state [u]4 in our example, the “weights” of the rules r1, ro and r3
could be 6, 2, and 1, respectively. Relative weights are therefore needed since the
set of possible R/A-matches in a state, whose nondeterministic choice we want
to quantify, is only available during the model execution. We therefore build
the concrete probability distributions on-the-fly in each state during execution,
which we sample to obtain the next state.

Language. The language we propose allows specifying memoryless rule, context,
and substitution adversaries, using strategy expressions of the following forms:

psdrule (Identifier) := given state: (StatePattern)
is: (Rule WeightDist) [if (Condition)] [[owise]]

psdcontext (Identifier) := given state: (StatePattern)
rule: (RulePattern)
is: (ContextWeightDist) [if (Cond)] [[owise]]

psdsubst (Identifier) := given state: (StatePattern)
rule: (RulePattern)
context: (ContextPattern)
is: (SubstWeightDist) [if (Condition)] [[owise]]

with (StatePattern) a term (&), (RulePattern) a rule label or a variable over rule
labels, and ( ContextPattern) a term c(¥) with ® € §and y\{®} C &, or a variable
over contexts. The weight expression (Rule WeightDist) is either uniform, or a list
of “;”-separated weight assignments of the form (RuleLabel) — ( Weight), where
(Weight) is a term w(Z) of sort Rat; (Context WeightDist) and (Subst WeightDist)
have similar forms. {Condition) (abbreviated to (Cond) in the context adversary
syntax above) specifies the condition under which the strategy can be applied,
and [owise] specifies that it should be applied if no other strategy can be applied.
We refer to [5] for the detailed syntax and semantics of our language, i.e., how
each strategy expression defines an adversary. Our implementation also provides
an executable rewriting logic semantics of our language.



PSMaude. Our tool PSMaude [4] extends Maude by adding support for specify-
ing probabilistic rules with fixed-size probability distributions and our strategy
language, a probabilistic rewrite command and a statistical PCTL model checker
that can analyze a given PRT controlled by given probabilistic strategies.

Given a probabilistic module SYSTEM-SPEC that specifies a PRT, probabilistic
strategies can be written in modules of the form:

(psmod PSTRAT is protecting SYSTEM-SPEC . --- import system specification
state StateSort . --- sort for system states
psdrule RuleStratID = RuleStratEzpr . --- rule strategy
psdcontext ContextStratID := ContextStratExzpr . --- context strategy
psdsubst SubstStratID := SubstStratEzpr . --- substitution strategy
psd StratID := < RuleStratID | ContextStratID | SubstStratID > . --- strategy

endpsm)

A strategy definition, introduced with psd, associates strategies for rules, con-
texts, and substitutions with a strategy identifier stratip, that can be used in a
probabilistic strategy rewrite command (prew [n] s using StratID .), which ex-
ecutes n one-step (probabilistic) rewrites from the state s using the strategy
stratID. The unbounded version (uprew s using StratID .) rewrites until a dead-
lock occurs. The strategies for rules, contexts, and substitutions are introduced
with psdrule, psdcontext, and psdsubst, respectively; they can be conditional,
with keywords cpsdrule, cpsdcontext, and cpsdsubst, respectively. There may
be several definitions for the same strategy identifier, but they should refer to
disjoint cases of the arguments. [owise]-annotated strategy expressions can be
used to specify how the nondeterminism is resolved when no other strategy def-
inition is applicable. It can thus be easily ensured that a probabilistic strategy
resolves all nondeterminism in a given system specification.

Our statistical model checking command (smc s |= ¢ using StratID .) al-
lows for further analysis of a specification with given strategies, where ¢ is a
PCTL formula, and satisfaction of atomic propositions is defined in a state pred-
icate module:

(spmod SYSTEM-PRED is protecting SYSTEM-SPEC . --- import system specification
smcstate StateSort . --- sort for system states
pPSp ©1 ... pn : Sortl ... SortK . --- parametric state predicates
var S : StateSort .
csat S |= ¢1(s1, ..., sg) if f(S, (s1, ..., Sk)) . —--— define their semantics
endspm)
For instance, the parametric state predicate ¢1(s1,...,Sk) holds in a state s if
and only if the condition f(S,s1,...,sk) in the above csat declaration is true,

where the operator f is defined by means of (possibly conditional) equations.

The command (set typel error b; .) sets the bound on type I errors (the
algorithm returns “false” when the property holds), and (set type2 error bs .)
sets the bound on type II errors (vice versa). By lowering these bounds, a higher
confidence on the model checking result is achieved, but more execution samples
are generated.



Ezample. In each step in a probabilistic version of the blackboard game [23], in
which some numbers are on a blackboard, two arbitrary numbers = and y are
replaced by (22 + y) quo 2 with probability 3/4, and by (z* + y) quo 2 with
probability 1/4, where quo denotes integer division. The goal of the game is to
obtain the highest possible number at the end. This game is formalized in the
following probabilistic module, that also defines an initial state:

(pmod BLACKBOARD is protecting RAT .
sort Blackboard . subsort Nat < Blackboard .
op empty : -> Blackboard [ctor] .
op __ : Blackboard Blackboard -> Blackboard [ctor assoc comm id: empty] .
vars M N K : Nat .
prl [play]l : M N => (K + N) quo 2
with probability K := (M*M -> 3/4 ; M*xMx*xM -> 1/4) .
op initState : -> Blackboard .
eq initState = 2 3 5 7 11 13 17 .
endpm)

Since the multiset union __ is associative and commutative (declared with the

keywords assoc and comm), the choice of the numbers z and y from the blackboard
is nondeterministic. The choice of the substitution, {M +— z, N — y} or {M —
y, N +— x }, is then also nondeterministic. We define the following probabilistic
strategy BlackboardStrat to quantify this nondeterminism:

(psmod BLACKBOARD-PROB-STRAT is protecting BLACKBOARD . state Blackboard .
var B : Blackboard . vars X Y : Nat .
psdrule RuleStrat := given state: B is: (play) -> 1 .
psdcontext CtxStrat := given state: XY B rule: play

is: (0 B) -> (1 / (X *Y)) .

given state: XYB rule: play context: [] B

is: {M <- X, N <= Y} > 9 ;

M<-¥Y,N<-X}>1if X <=Y .
< RuleStrat | CtxStrat | SubStrat > .

psdsubst SubStrat :

psd BlackboardStrat :
endpsm)

The rule strategy RuleStrat assigns weight 1 to the only rule play. The context
strategy CtxStrat, selecting in which context the rule play applies, assigns for
each pair of numbers z and y on the blackboard, the relative weight 1/(z - y)
to the context that implies that the numbers xz and y are replaced by the rule
play; i.e., it gives a higher weight to contexts corresponding to picking small
numbers to replace. The substitution strategy SubStrat selects the rule match
{M+— z, N— y} with 9 times as high probability as {M — y, N — 2} when z < y.

We now explain the strategy BlackboardStrat in more detail. For a state
[Wlacuy = [2 3 57 11 13 17]4¢cv, CtxStrat assigns weights to each valid con-
text as follows, where ACU refers to the structural axioms for multiset union
(Associativity, Commutativity, and Unit (identity)). It first matches the state
[u] acy with the state pattern X Y B (where B can be empty), which gives several
matches 61, ...,0x. Then all valid contexts are generated, which in this exam-
ple have the form [® tJacy, with ®@ identifying the fragment of [u]4cy that
matches the lefthand side of rule play, and ¢ is the rest of the state. Next, the



weight of each valid context is computed. Each context [® t]acy is unified with
the context pattern [1 B, giving a unique match {B — ¢}. Of all the matches
01,...,0n obtained above, only those with B — ¢ are kept. The weight associ-
ated to [® t]4cp is then computed by instantiating the weight pattern 1/ (X = Y)
with either one of these last substitutions. (For well-definedness, 6;(1/ (X * Y))
and 6;(1/ (X * Y)) should be the same, for all §; and 6; with 6;(B) = 6,(B).) For
example, for the context [Clacy = [® 3 7 11 13 17]acp two such matches 0
with 0;(B) =3 7 11 13 17 exist: §; = {X — 2, Y— 5, B+ 3 7 11 13 17} and
O = {X— 5, Y— 2, B3 7 11 13 17}. The weight of the context [Clacy is
then computed as 61(1/ (X * Y)) = 1/10. Similarly, the weight of the context
[® 25 7 11 17]a0p is 1/(3 - 13) = 1/39. After computing the weights of all
contexts, they are normalized to obtain a distribution, from which a context is
picked.

The substitution strategy SubStrat solves the same matching and unification
problems as above, but further refines the set of matches to those that satisfy
the condition X <= Y. For the context [C]acy above the only such match is 6;.
The weight distribution pattern associated with SubStrat is then instantiated by
0, to obtain a concrete weight distribution over the matches of the lefthand side
of rule play: {M — 2, N — 5} — 9 ; {M — 5 N — 2} — 1. By normalizing the
associated weights, a probability distribution is obtained, from which a match
is picked, e.g., n = {M+— 2, N — 5} with probability 9/10.

Finally, a match for the probabilistic variable K of rule play is sampled from
the distribution 7. ([n]acv)-

We run two simulations using unbounded probabilistic rewriting to show pos-
sible final states under the above strategy (the outputs are shown as comments):

(uprew initState using BlackboardStrat .) --- 276
(uprew initState using BlackboardStrat .) --- 4457

We then define a state predicate sumGreaterThan (i), which is true in a state
S if the sum of all numbers in § is larger than :

(spmod BLACKBOARD-PRED is protecting BLACKBOARD . protecting NAT .
smcstate Blackboard .

psp sumGreaterThan : Nat . --- declare a parametric state predicate
var B : Blackboard . var N : Nat .
csat B |= sumGreaterThan(N) if sum(B) > N . --- define its semantics

op sum : Blackboard -> Nat .
eq sum(empty) = 0 . eq sum(N B) = N + sum(B) .
endspm)

We first set a bound of 0.01 on both error probabilities, and then check
that the sum on the blackboard never exceeds 10000 with high probability. This
returns a positive result, and the estimated probability for the property to hold:

(set typel error 0.01 .)
(set type2 error 0.01 .)
(smc initState [= P>= 0.9 [G ~ sumGreaterThan(10000)] using BlackboardStrat .)

Result Bool: true Number of samples used: 11176
Confidence: 99% Estimated probability: 79/87



4 Formalizing and Analyzing Cloud Computing Policies

In this section we use cloud computing to illustrate the usefulness of defining
different adversaries for the same rewrite theory. The “base” rewrite theory
defines all possible behaviors of the cloud and its environment, and each proba-
bilistic strategy corresponds to a particular load balancing policy (and assump-
tions about the environment). We prove the safety of the “base” model, and use
simulation and statistical model checking to analyze the QoS of different load
balancing policies.

Cloud Computing Scenario. We model a cloud computing system that delivers
services to service users and service providers. A service provider runs web ap-
plications on one or more virtual machines (VMs) hosted on physical servers in
the cloud. Service users then use these applications via the cloud service. An
example of a user is a person who uses an email application of a provider via a
cloud infrastructure.

Servers are grouped into data centers, which are grouped into geographical
regions. Since running applications in regions closer to the users may prove
beneficial, we have included a region selection filter in our cloud architecture
in Fig. 1. A load balancer distributes traffic across the data centers in a region.
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Fig. 1. A cloud computing architecture.

When a user sends an application request, the cloud service forwards it to
one of the VMs of the provider that owns the application. When a provider sends
a request to launch a VM in a region, the cloud service forwards it to the region’s



load balancer, which chooses a server to host the new VM. Providers may launch
a limited number of VMs, and users have a limited number of requests that the
cloud can process simultaneously.

Formalization. We model the cloud system as a hierarchical object-oriented
system. Service users, providers, and cloud services are declared as follows:

class Node | priority : Nat .

class SUser | location : Location .

class SProvider .

subclass SUser SProvider < Node .

class CService | status : CServiceDataSet, subscr : CServiceDataSet .

where status and subscr contain status and subscription information data about
users and providers, of the forms: noReq(u, k): the number of unresolved requests
of user u is k; noVM(p, [): the number of VMs of provider p is [; maxReq(u, k): the
maximum number of requests that the cloud service may simultaneously process
for user u is k; maxVM(p, [): the maximum number of VMs that provider p can
run is [. A region has a location, and a dataCenters attribute with the data
center objects in that region. The pservers attribute of a data center object
denotes the set of physical server objects in the data center:

class Region | location : Location, dataCenters : Configuration .
class DCenter | pservers : Configuration .
class PServer | load : Nat, maxLoad : Nat, nextVMID : Nat, vms : Configuration .

with load the number of VMs on the server; maxLoad the server’s capacity;
nextVMID for generating fresh IDs for new VMs; and vms a set of VM objects
of the class:

class VMachine | owner : 0id, vmReq : 0idMSet, vmMaxReq : Nat, running : Bool .

with owner the ID of the provider that owns the VM; vmReq the object IDs of all
users whose requests are running on the VM; vmMaxReq the maximum number
of requests that can be resolved on the VM simultaneously; and running says
whether the VM is running. We model two types of messages: i) user requests
req(u,p) from user u to the application of provider p; ii) provider requests
launch(p,r) from provider p to the cloud service, to launch a new VM in region 7.

The following rule models how the cloud service handles a service request
from user 0 to the web application of provider 0’ when 0 does not exceed her
limit (A < B). This request can be forwarded to any VM in the system (since
dataCenter, pservers, and vms denote sets of objects). The user’s status is up-
dated and the selected VM updates its vmReq attribute by adding the user’s
object ID 0 to the set 0IDSET*:

crl [processUserReq]:
req(0, 0%)
< CSO : CService | status : (noReq(0, A), AS1), subscr : (maxReq(0, B), AS2) >

4 We do not show the declaration of variables, but follow the Maude convention that
variables are in capital letters.



<R : Region | dataCenters : (< DCO : DCenter |
pservers : (< PSO : PServer |
vms : (< VMO : VMachine | owner : 07,
running : true, vmReq : OIDSET, vmMaxReq : D >
VM) > PS) > DC) >
=>< CS0 : CService | status : (noReq(0, A + 1), AS1) >
<R : Region | dataCenters : (< DCO : DCenter |
pservers : (< PSO : PServer |
vms : (< VMO : VMachine | vmReq: (0 OIDSET) > VM) >PS) > DC) >
if A < B /\ size(OIDSET) < D .

The next rule models how the cloud service handles launch requests from a
provider 0 for a new VM in a region R by launching a VM on any server in R.

crl [processProviderReq]:
launch(0, R)
< CSO : CService | status : (noVM(O, A), AS1), subscr : (maxVM(O, B), AS2) >
<R : Region | dataCenters : (< DCO : DCenter |
pservers : (< PSO : PServer |
load : M, maxLoad : N, nextVMID : NEXTID, vms : VM >
PS) > DC) >
=> < CS0 : CService | (status : (noVM(O, (A + 1)), AS1)) >
<R : Region | dataCenters : (< DCO : DCenter |
pservers : (< PSO: PServer | load: (M+1), nextVMID : (NEXTID+1),
vms : (< vm(PSO, NEXTID) : VMachine | owner : 0, running : true,
vmReq : notd, vmMarReq : MAXREQ > VM) > PS) > DC) >
if A<KB/\M<N.

Model Checking Safety Properties. To ensure the “safety” of our system we
use Maude’s search command to verify that the cloud is never processing more
requests from a user than allowed. For the search to terminate, we use an initial
state with two users that can generate 6 and 7 requests. The following Maude
command searches for a “bad” state where some user 0° has more requests
running (M) than allowed (N):

(search [1] : initState =>*

CONFIG < CSO : CService | status : (noReq(0, M), AS1), subscr: (mazReq(0, N), AS2) >
such that M > N .)

rewrites: 11312174 in 279134ms cpu (283262ms real) (40525 rewrites/second)
No solution.

Load Balancing Policies as Probabilistic Strategies. The above model describes
all possible treatments of user and provider requests. For better system perfor-
mance, one could think of different load balancing policies, so that, e.g., users
may get with high probability a VM closer to their location, or get VMs on
servers with the least workload, etc. Likewise, a provider might want VMs uni-
formly across the regions, or in regions with least workload, etc. Within a region,
better-paying providers could be assigned VMs with high probability on stable
servers, or on servers with small workload. These policies are specified by differ-
ent strategies on top of our verified model.

We have defined three strategies: i) a strategy that does not take locations
or geographical regions into account, i.e., the region to which a user request is



forwarded is chosen uniformly at random; i) a strategy that forwards high pri-
ority user requests to the region closest to the user with high probability, and
furthermore, treats requests from high priority providers with high probability;
and #4) a strategy that forwards high priority user requests to a region with
small VM load with high probability, and processes requests from high prior-
ity providers with high probability. For each of these policies, we define two
“subcases”: a) distribute requests uniformly within the region, and b) with high
probability, distribute requests to VMs/physical servers with small workload for
the high-priority providers/users.

We first quantify the nondeterministic choices related to general/environment
assumptions about the cloud system, using the following rule strategy:

psdrule RuleStrat := given state: CF
is: (resolveUserReq) -> 10 ;
(processUserReq) -> 1000 ; (processProviderReq) -> 100 ;
(failVM) -> 1 ; (migrateVM) -> 1 ;
(newUserReq) -> 100 ; (newProviderReq) -> 10

Our load balancing policies are specified by different context strategies for
rules processUserReq and processProviderReq. They resolve the nondeterministic
choice of which request to process next, and on which VM /server the request is
resolved. We only specify the policy 4i(b), and refer to [5] for the definitions of
the other policies. The rule processUserReq selects any user request req(u, p),
and assigns any VM to handle the request, in any region. For policy #i(b), the
context strategy for rule processUserReq models that user requests with high
priorities P are selected with probability proportional to P2, that the probability
of selecting region R is inversely proportional to the distance distance(LOC, LOC?)
between the user and R, and that requests are sent to the VMs/servers with small
load size(0IDSET) with high probability:

psdcontext CtxStrat2b :=
given state: CF req(0, 0°) < 0 : SUser | location : LOC, priority : P >
< CSO : CService | ATTRSET >
<R : Region | location : LOC’,
dataCenters : (< DCO : DCenter |
pservers : (< PSO : PServer | ATTRSET’,
vms : (< VMO : VMachine | vmReq : OIDSET, ATTRSET’’ >
VM) > PS) > DC) >
rule: processUserReq
is: (CF < 0 : SUser | location : LOC, priority : P > [1)
-> ((P * P) / ((1 + size(OIDSET)) * (1 + distance(LOC, LOC’)))) .

The context strategy for rule processProviderReq models that requests from
providers with high priorities P are selected with high probability proportional
to P2, and resolved by allocating VMs on servers with small load M with high
probability:

psdcontext CtxStrat2b :=
given state: CF < CSO : CService | ATTRSET >
launch(0, R) < 0 : SProvider | priority : P >
<R : Region | location : LOC’,



dataCenters : (< DCO : DCenter |
pservers : (< PSO : PServer | load : M, ATTRSET > PS)
>DC) >
rule: processProviderReq
is: (CF < 0 : SProvider | priority : P> [1) -> ((P * P) / (1 + M)) .

The resulting probabilistic strategy is denoted Strat2b.

Sitmulation. We simulate our system using the strategies Strat2b and Strat3b
(specifying policies 7i(b) and i7i(b) above). To analyze the QoS from a user U’s
perspective, we define a QoS measure of a request R as a function of the relative
workload of the server S handling the request, and the distance between the user
and S:

#tasksRunning(S)
capacity(S)

cost(U,R,S) =k - + q - distance(U, R)

The total user QoS is the sum of all such single QoS measures in the system.
We simulate the cloud system using Strat2b and Strat3b, from an initial
state with 2 regions, 4 users, and 2 providers in different locations and with dif-

ferent priorities. Users can generate 3, 5, 8, and 3 requests, respectively, whereas
providers can generate 20 requests.

(prew [200] initState using Strat2b .) (prew [200] initState using Strat3b .)

Fig. 2 shows the total cumulative cost over 200 probabilistic rewrite steps (the
horizontal axis), for the two strategies (using the same random seed). The smaller
values correspond to Strat2b, which suggests that Strat2b is a better policy in
terms of the total user QoS. We next use statistical model checking to show that,
with high confidence, this is the case.
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Fig. 2. Comparison of the total cloud cost with each rewrite step, for the two policies.



Statistical Model Checking. We use the same initial state as for the simulation,
and define a parametric state predicate effortGreaterThan as follows:

psp effortGreaterThan : Nat . var CF : Configuration . var N : Nat .
csat CF |= effortGreaterThan(N) if costCloud(CF) > N .

such that effortGreaterThan(/N) is true if the cumulative cost of the cloud ex-
ceeds N in the current state. We verify that, with confidence 0.9, under the
strategy Strat2b, the effort always stays below 13000 with high probability:

(sme initState [= P> 0.9 [G ~ effortGreaterThan(13000)] using Strat2b .)

rewrites: 36338205 in 1024184ms cpu (1024339ms real) (35480 rewrites/second)
Result Bool: true Number of samples used: 3520
Confidence: 90 % Estimated probability: 1

and that the effort under Strat3b will exceed 15000, with high probability:

(sme initState [= P> 0.9 [F effortGreaterThan(15000)] using Strat3b .)

rewrites: 128202820 in 2927619ms cpu (2928049ms real) (43790 rewrites/second)
Result Bool: true Number of samples used: 7150
Confidence: 90 % Estimated probability: 1

5 Related Work

A number of tools support models that are both probabilistic and nondetermin-
istic, including Markov automata [14], generalized stochastic Petri nets [21], or
uniform labeled transition systems [6].

In probabilistic automaton-based models one can use synchronous parallel
composition to quantify nondeterministic choices by composing the system with
a new “scheduler” component. For example, if the model allows us to nonde-
terministically select action a or action b, we can quantify this nondetermin-

ism by composing the model with a “scheduler” automaton with transitions

{s0 M do-a, sg ﬂ do-b, do-a LN S0, do-b LN So}; the composed sys-

tem will then do action a with probability 1/3 and action b with probability
2/3. Such “scheduler” components are supported by tools like MODEST [7] and
PRISM [19]. Our approach contrasts with this one by: (7) having a more explicit
separation between model and strategy, since in the above approach the strategy
is just another “system” component; (7)) supporting a more expressive underly-
ing specification language with unbounded data types, dynamic object/message
creation and deletion, and arbitrary complex data types; and (i) providing a
more expressive and convenient way of specifying the strategies themselves. It
is also unclear to what extent automaton-based approaches can support hierar-
chical systems.

In Uppaal-SMC [12] the nondeterminism concerning which component should
be executed next is implicitly resolved by assigning a stochastic delay to each
component; the one with the shortest remaining delay is then scheduled for
execution. If multiple transitions are enabled for a component, then one is chosen



uniformly at random. In contrast, our language allows the user to specify the
probability distributions that quantify the nondeterminism in the model.

Maude itself has a non-probabilistic strategy language [15] to guide the ex-
ecution of non-probabilistic rewrite theories; i.e., there is no support for quan-
tifying the nondeterminism either in the model or in the strategy. VESTA [27]
can analyze fully probabilistic actor PMAUDE specifications. For flat object-
oriented systems nondeterminism is typically removed by letting each action
be triggered by a message, and letting probabilistic rules add a stochastic de-
lay to each message [1,3]. The probability of two messages being scheduled at
the same “time” is then zero, and this therefore resolves nondeterminism. This
method was recently extended to hierarchical object-oriented systems [13,10].
The differences with our work are: (i) whereas we have a clear separation be-
tween system model and adversary, the above approach encodes the adversary in
the model, and hence clutters it with fictitious clocks and schedulers to obtain a
fully probabilistic model; (ii) our implementation supports not only a subset of
object-oriented specifications, but the entire class of PRTs with fixed-size prob-
ability distributions; and (iii) we add a simulator and statistical model checker
to Maude instead of using an external tool.

ELAN [8] is a rewriting language where strategies are first class citizens that
can appear in rewrite rules, so there is no separation between system model
and strategies. The paper [9] adds a “probabilistic choice” operator PC(sy :
Diy---58n : pn) to ELAN’s strategy language, where p; defines the probabil-
ity of applying strategy s;. This approach is different from ours in the following
ways: there is no separation between “system” and “strategy;” the definition
of context and substitution adversaries is not supported and therefore not all
nondeterminism in a system can be quantified; and there is no support for prob-
abilistic model checking analysis.

6 Concluding Remarks

In this paper we define what is, to the best of our knowledge, the first language
for defining complex probabilistic strategies to quantify the nondeterminism in
infinite-state systems with both probabilities and nondeterminism, and that in-
cludes the object-oriented systems with dynamic object creation. We propose
a modular safety/QoS analysis methodology in which a simple (typically non-
probabilistic) “base” model that defines all possible system behaviors can be
easily verified for safety, and where different probabilistic refinements can be
specified on top of the verified base model. QoS properties of the refinements
can then be analyzed by statistical and exact probabilistic model checking.

We have implemented a probabilistic simulator and statistical PCTL model
checker for our strategies for all probabilistic rewrite theories with discrete prob-
ability distributions. We show the usefulness of our language and methodology
on a cloud computing example, where different probabilistic strategies on top of
the verified base model define different load balancing policies for the cloud, and
show how our tool PSMaude can be used to compare the QoS provided by dif-



ferent policies. This example indicates that we need to integrate timed modeling
and analysis into our framework.

We also plan to extend PSMaude to allow the statistical analysis of quanti-
tative temporal expressions specified in the QuaTEx logic [1]. This would allow,
e.g., the statistical estimation of expected values of particular numerical quan-
tities associated with a probabilistic rewrite theory whose nondeterminism is
quantified by a given probabilistic strategy. Another direction for future work
is to investigate algorithms for the exact (vs. statistical) probabilistic model
checking of probabilistic rewrite theories for which some, but not necessarily all
nondeterminism is quantified by a “partial” probabilistic strategy. Finally, since
our proposed probabilistic strategy language only allows defining memoryless
adversaries, we also aim to extend its syntax and semantics to allow defining
history-dependent adversaries.

Acknowledgments. We thank José Meseguer and Roy Campbell for discus-
sions on probabilistic strategies, and gratefully acknowledge partial support for
this work by AFOSR Grant FA8750-11-2-0084. We also thank the anonymous
reviewers for very useful comments on a previous version of the paper.

References

1. Agha, G.A., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. ENTCS 153(2) (2006)

2. AlTurki, M., Meseguer, J.: PVeStA: A parallel statistical model checking and quan-
titative analysis tool. In: CALCO. LNCS, vol. 6859. Springer (2011)

3. AlTurki, M., Meseguer, J., Gunter, C.A.: Probabilistic modeling and analysis of
DoS protection for the ASV protocol. ENTCS 234 (2009)

4. Bentea, L.: The PSMaude tool home page: http://folk.uio.no/lucianb/
prob-strat/

5. Bentea, L., Olveczky, P.C.: A probabilistic strategy language for probabilistic
rewrite theories and its application to cloud computing. Manuscript: http://folk.
uio.no/lucianb/publications/2012/pstrat-cloud.pdf

6. Bernardo, M., Nicola, R., Loreti, M.: Uniform labeled transition systems for non-
deterministic, probabilistic, and stochastic processes. In: Wirsing, M., Hofmann,
M., Rauschmayer, A. (eds.) Trustworthly Global Computing, LNCS, vol. 6084, pp.
35-56. Springer Berlin Heidelberg (2010)

7. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.. MODEST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812-830 (2006)

8. Borovansky, P., Kirchner, C., Kirchner, H., Moreau, P.E., Ringeissen, C.: An
overview of ELAN. Electronic Notes in Theoretical Computer Science 15 (1998)

9. Bournez, O., Kirchner, C.: Probabilistic rewrite strategies. Applications to ELAN.
In: RTA. LNCS, vol. 2378. Springer (2002)

10. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with Maude. In: WRLA. LNCS,
vol. 7571, pp. 118-138. Springer (2012)

11. Clavel, M., Duréan, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, LNCS, vol. 4350. Springer (2007)



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: CAV. LNCS, vol. 6806. Springer (2011)
Eckhardt, J., Miithlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable avail-
ability under denial of service attacks through formal patterns. In: FASE. LNCS,
vol. 7212. Springer (2012)

Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Logic in Computer Science. pp. 342-351 (2010)

Eker, S., Marti-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and
rewriting. Electronic Notes in Theoretical Computer Science 174(11), 3-25 (2007)
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6 (1994)

Katelman, M., Meseguer, J., Hou, J.C.: Redesign of the LMST wireless sensor
protocol through formal modeling and statistical model checking. In: FMOODS.
LNCS, vol. 5051. Springer (2008)

Kumar, N., Sen, K., Meseguer, J., Agha, G.: Probabilistic rewrite theories: Unifying
models, logics and tools. Technical report UITUCDCS-R-2003-2347, Department of
Computer Science, University of Illinois at Urbana-Champaign (2003)
Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: CAV. LNCS, vol. 6806. Springer (2011)

Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94(1), 1-28 (1991)

Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with generalized stochastic Petri nets. SIGMETRICS Performance Evaluation Re-
view 26(2), 2 (1998)

Marti-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theo-
retical Computer Science 285(2) (2002)

Marti-Oliet, N., Meseguer, J., Verdejo, A.: Towards a strategy language for Maude.
Electronic Notes in Theoretical Computer Science 117, 417-441 (2005)

Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96(1) (1992)

Meseguer, J.: A rewriting logic sampler. In: ICTAC. LNCS, vol. 3722. Springer
(2005)

Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: CAV. LNCS, vol. 3576. Springer (2005)

Sen, K., Viswanathan, M., Agha, G.A.: VeStA: A statistical model-checker and
analyzer for probabilistic systems. In: QEST’05. IEEE Computer Society (2005)
Younes, H.LL.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: CAV. LNCS, vol. 2404. Springer (2002)



