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Abstract. In several application areas, Graph Transformation Systems
(GTSs) are equipped with Negative Application Conditions (NACs) that
specify �forbidden contexts�, in which the rules shall not be applied. The
extension to NACs, however, introduces inhibiting e�ects among trans-
formation steps that are not local in general, causing a severe problem
for a concurrent semantics. In fact, the relation of sequential indepen-

dence among derivation steps is not invariant under switching, as we
illustrate with an example. We �rst show that this problem disappears if
the NACs are restricted to be incremental. Next we present an algorithm
that transforms a GTS with arbitrary NACs into one with incremental
NACs only, able to simulate the original GTS. We also show that the two
systems are actually equivalent, under certain assumptions on NACs.

Keywords: graph transformation, concurrent semantics, negative application
conditions, switch equivalence

1 Introduction

Graph Transformation Systems (GTSs) are an integrated formal speci�cation
framework for modelling and analysing structural and behavioural aspects of
systems. The evolution of a system is modelled by the application of rules to the
graphs representing its states and, since typically such rules have local e�ects,
GTSs are particularly suitable for modelling concurrent and distributed systems
where several rules can be applied in parallel. Thus, it is no surprise that a large
body of literature is dedicated to the study of the concurrent semantics of graph
transformation systems [6,1,2].

The classical results include � among others � the de�nitions of parallel pro-
duction and shift equivalence [15], exploited in the Church-Rosser and Paral-
lelism theorems [7]: brie�y, derivations that di�er only in the order in which
independent steps are applied are considered to be equivalent. Several years
later, taking inspiration from the theory of Petri nets, deterministic processes
were introduced [6], which are a special kind of GTSs, endowed with a partial
order, and can be considered as canonical representatives of shift-equivalence
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classes of derivations. Next, the unfolding of a GTS was de�ned as a typically
in�nite non-deterministic process which summarises all the possible derivations
of a GTS [4]. Recently, all these concepts have been generalised to transformation
systems based on (M-)adhesive categories [8,5,3].

In this paper, we consider the concurrent semantics of GTSs that use the
concept of Negative Application Conditions (NACs) for rules [11], which is widely
used in applied scenarios. A NAC allows one to describe a sort of �forbidden
context�, whose presence around a match inhibits the application of the rule.
These inhibiting e�ects introduce several dependencies among transformation
steps that require a shift of perspective from a purely local to a more global
point of view when analysing such systems.

Existing contributions that generalise the concurrent semantics of GTSs to
the case with NACs [17,10] are not always satisfactory. While the lifted Paral-
lelism and Concurrency Theorems provide adequate constructions for composed
rules specifying the e�ect of concurrent steps, a detailed analysis of possible
interleavings of a transformation sequence leads to problematic e�ects caused
by the NACs. As shown in [12], unlike the case without NACs, the notion of
sequential independence among derivation steps is not stable under switching.
More precisely, it is possible to �nd a derivation made of three direct transfor-
mations s = (s1; s2; s3) where s2 and s3 are sequentially independent and to
�nd a derivation s′ = (s′2; s

′
3; s
′
1) that is shift equivalent to s (obtained with the

switchings (1 ↔ 2; 2 ↔ 3)), but where s′2 and s′3 are sequentially dependent
on each other. This is a serious problem from the concurrent semantics point
of view, because for example the standard colimit technique [6] used to gener-
ate the process associated with a derivation does not work properly, since the
causalities between steps do not form a partial order in general.

In order to address this problem, we introduce a restricted kind of NACs,
based on incremental morphisms [12]. We �rst show that sequential independence
is invariant under shift equivalence if all NACs are incremental. Next we analyse
to which extent systems with general NACs can be transformed into systems
with incremental NACs. For this purpose, we provide an algorithmic construction
INC that takes as input a GTS and yields a corresponding GTS with incremental
NACs only. We show that the transformation system obtained via INC simulates
the original one, i.e., each original transformation sequence induces one in the
derived system. Thus, this construction provides an over-approximation of the
original system. We also show that this simulation is even a bisimulation, if the
NACs of the original system are obtained as colimits of incremental NACs.

In the next section we review main concepts for graph transformation sys-
tems. Sect. 3 discusses shift equivalence and the problem that sequential in-
dependence with NACs is not stable in general. Thereafter, Sect. 4 presents
incremental NACs and shows the main result on preservation of independence.
Sect. 5 presents the algorithm for transforming systems with general NACs into
those with incremental ones and shows under which conditions the resulting
system is equivalent. Finally, Sect. 6 provides a conclusion and sketches future
developments. The proofs of the main theorems are included in the paper.
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2 Basic De�nitions

In this paper, we use the double-pushout approach [9] to (typed) graph transfor-
mation, occasionally with negative application conditions [11]. However, we will
state all de�nitions and results at the level of adhesive categories [16]. A cate-
gory is adhesive if it is closed under pushouts along monomorphisms (hereafter
monos) as well as under pullbacks, and if all pushouts along a mono enjoy the
van Kampen property. That means, when such a pushout is the bottom face of
a commutative cube such as in the left of Fig. 1, whose rear faces are pullbacks,
the top face is a pushout if and only if the front faces are pullbacks. In any adhe-
sive category we have uniqueness of pushout complements along monos, monos
are preserved by pushouts and pushouts along monos are also pullbacks. As an
example, the category of typed graphs for a �xed type graph TG is adhesive [8].

A′ **
qq

qq

��
B′ **

��

C′

��

rr
rrD′

��
A **
qq

qqB ++ Cqq
qqD

L

m

��
(1)

K

(2)

ooloo // r //

��

R

m∗

��
G Dool∗oo // r∗ // H

Fig. 1. van Kampen condition (left) and DPO diagram (right)

In the rest of the paper, unless di�erently stated, all objects and arrows live
in an arbitrary but �xed adhesive category C.

A rule p = (L
l
� K

r
� R) consists of a span of two monos l and r. Given

a morphism m : L → G called the match, a direct transformation (or step)

G
p,m
=⇒ H from G to a H exists if a double-pushout (DPO) diagram can be

constructed as in the right of Fig. 1, where (1) and (2) are pushouts.

The applicability of rules can be restricted by specifying negative conditions
requiring the non-existence of certain structures in the context of the match. A
(negative) constraint on an object L is a morphism n : L → L̂. A morphism
m : L→ G satis�es n (written m |= n) i� there is no mono q : L̂� G such that
n; q = m. A negative application condition (NAC) on L is a set of constraints N .
A morphism m : L → G satis�es N (written m |= N) if and only if m satis�es
every constraint in N , i.e., ∀n ∈ N : m |= n.

All along the paper we shall consider only monic matches and monic con-
straints: possible generalisations are discussed in the concluding section.

A graph transformation system (GTS) G consists of a set of rules, pos-
sibly with NACs. A derivation in G is a sequence of direct transformations

s = (G0
p1,m1
=⇒ G1

p2,m2
=⇒ · · · pn,mn

=⇒ Gn) such that all pi are in G; we denote it
also as s = s1; s2; . . . ; sn, where sk = (Gk−1 =

pk,mk
===⇒ Gk) for k ∈ {1, . . . , n}.



4 A. Corradini, R. Heckel, F. Hermann, S. Gottmann, and N. Nachtigall

3 Independence and Shift Equivalence

Based on the general framework of adhesive categories, this section recalls the
relevant notions for sequential independence and shift equivalence and illus-
trates the problem that independence is not stable under switching in pres-
ence of NACs. In the DPO approach, two consecutive direct transformations

s1 = G0
p1,m1
=⇒ G1 and s2 = G1

p2,m2
=⇒ G2 as in Fig. 2 are sequentially independent

if there exist morphisms i : R1 → D2 and j : L2 → D1 such that j; r∗1 = m2 and
i; l∗2 = m∗1. In this case, using the local Church-Rosser theorem [8] it is possible

to construct a derivation s′ = G0
p2,m

′
2=⇒ G′1

p1,m
′
1=⇒ G2 where the two rules are

applied in the opposite order. We write s1; s2 ∼sh s
′ to denote this relation.

Given a derivation s = s1; s2; . . . si; si+1; . . . ; sn containing sequentially inde-
pendent steps si and si+1, we denote by s′ = switch(s, i, i + 1) the equivalent
derivation s′ = s1; s2; . . . s

′
i; s
′
i+1; . . . ; sn, where si; si+1 ∼sh s

′
i; s
′
i+1. Shift equiv-

alence ≡sh over derivations of G is de�ned as the transitive and �context� closure
of ∼sh, i.e., the least equivalence relation containing ∼sh and such that if s ≡sh s

′

then s1; s; s2 ≡sh s1; s
′; s2 for all derivations s1 and s2.

N1 N2

L1

OO

m1

��

K1

l1oo r1 //

k1
��

R1

m∗1 !!
i

''

L2

OO

m2

}}
j

ww

K2

l2oo r2 //

k2
��

R2

m∗2��
G0 D1

l∗1

oo
r∗1

// G1 D2
l∗2

oo
r∗2

// G2

Fig. 2. Sequential independence

The de�nitions of independence and shift equivalence carry over to trans-
formations with NACs [18] by requiring that the match for p2 in G0 given by
m′2 = j; l∗1 satis�es the NAC of p2 and the induced match of p1 into graph G′1

obtained by G0
p2,m

′
2=⇒ G′1 satis�es the NAC of p1.

Throughout the paper, we use a short notation for transformation rules in
our examples as for instance in Ex. 1 below. A rule p is depicted as (L =

p⇒ R)
showing the left and right hand sides of p. The intermediate interface graph K
containing all preserved elements can be obtained as intersection of L and R.
Numbers and positions of elements indicate the mappings. If a rule has a NAC,
then we depict it inside the left hand side and indicate the NAC-only elements
by dotted line style. If a NAC contains more than one constraint, then they are
marked by di�erent numbers. However, this situation does not appear in any
�gure of this paper.
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Example 1 (context-dependency of independence with NACs). Fig. 3 presents
three transformation sequences starting with graph G0 via rules p1, p2 and p3.
Rule p3 has a NAC, which is indicated by dotted lines (one node and two edges).

In the �rst sequence s = G0 =
p1,m1
===⇒ G1 =

p2,m2
===⇒ G2 =

p3,m3
===⇒ G3 = (s1; s2; s3)

shown in the top of Fig. 3, steps s1 and s2 are sequentially independent, and
so are s2 and s3. After switching the �rst and the second step we derive s′ =
switch(s, 1, 2) = (s′2; s

′
1; s3) (middle of Fig. 3) so that both sequences are shift

equivalent (s ≡sh s
′). Since s′1 and s3 are independent, we can perform a further

switch s′′ = switch(s′, 2, 3) = (s′2; s
′
3; s
′′
1) shown in the bottom sequence in Fig. 3.

However, steps s′2 and s
′
3 are dependent from each other in s′′, because the match

for rule p3 will not satisfy the corresponding NAC for a match into G0. Hence,
independence can change depending on the derivation providing the context,
even if derivations are shift equivalent.

Fig. 3. Independence of p2 and p3 is not preserved by switching with p1

4 Restricting to Incremental NACs

In this section we show that under certain assumptions on the NACs of the rules,
the problem identi�ed in Ex. 1 does not occur. Intuitively, for each constraint
n : L→ L̂ in a NAC we will require that it is incremental, i.e., that L̂ does not
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extend L in two (or more) independent ways. Therefore, if there are two di�erent
ways to decompose n, one has to be an extension of the other. Incremental arrows
have been considered in [12] for a related problem: here we present the de�nition
for monic arrows only, because along the paper we stick to monic NACs.

De�nition 1 (incremental monos and NACs). A mono f : A� B is called
incremental, if for any pair of decompositions g1; g2 = f = h1;h2 as in the dia-
gram below where all morphisms are monos, there is either a mediating morphism
o : O � O′ or o′ : O′ � O, such that the resulting triangles commute.

O
  g2

  o

��

A // f //
>>

g1
>>

  
h1   

B

O′
>>
h2

>>
o′

OO

A monic NAC N over L is incremental if each constraint n : L � L̂ ∈ N is
incremental.

Example 2 (Incremental NACs). The left diagram below shows that the negative
constraint n3 : L3 → L̂3 ∈ N3 of rule p3 of Ex. 1 is not incremental, because
L̂3 extends L3 in two independent ways: by the loop on 1 in O3, and by the
outgoing edge with one additional node 2 in O′3. Indeed, there is no mediating
arrow from O3 to O′3 or vice versa relating these two decompositions.

Instead the constraint n4 : L4 → L̂4 ∈ N4 of rule p4 of Fig. 5 is incremental:
it can be decomposed in only one non-trivial way, as shown in the top of the
right diagram, and for any other possible decomposition one can �nd a mediating
morphism (as shown for one speci�c case).

1

1

1 2

1 2

L3
L3

^

O3

O3
' 1

1 2

1 2

L4
L4

^

O4

O4
' 

1 2

Intuitively, the problem stressed in Ex. 1 is due to the fact that rules p1
and p2 delete from G0 two independent parts of the forbidden context for p3.
Therefore p3 depends on the �ring of p1 or on the �ring of p2, while p1 and p2 are
independent. This form of or-causality from sets of independent events is known
to be a source of ambiguities in the identi�cation of a reasonable causal ordering
among the involved events, as discussed in [19]. The restriction to incremental
NACs that we consider here is su�cient to avoid such problematic situations (as
proved in the main result of this section) essentially because if both p1 and p2
delete from G0 part of an incremental NAC, then they cannot be independent,
since the NAC cannot be factorized in two independent ways.
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Incrementality of monos enjoys some nice properties: it is preserved by de-
composition of arrows, and it is both preserved and re�ected by pushouts along
monos, as stated in the next propositions.

Proposition 1 (decomposition of monos preserve incrementality). Let
f : A � B be an incremental arrow and f = g;h with monos g : A � C and
h : C � B. Then both h and g are incremental.

Proposition 2 (preservation and re�ection of incrementality by POs).

In the diagram to the right, let B
f∗

� D
g∗

� C be the pushout

of the monic arrows B
g
� A

f
� C. Then f is incremental if

and only if f∗ is incremental.

A // g //
��

f

��

B
��
f∗

��
C // g

∗
// D

We come now to the main result of this section: if all NACs are incremental,
then sequential independence of direct transformations is invariant with respect
to the switch of independent steps.

Theorem 1 (invariance of independence under shift equivalence). As-

sume transformation sequences s = G0
p1,m1
=⇒ G1

p2,m2
=⇒ G2

p3,m3
=⇒ G3 and s′ =

G0
p2,m

′
2=⇒ G′1

p3,m
′
3=⇒ G′2

p1,m
′′
1=⇒ G3 using rules p1, p2, p3 with incremental NACs only

as in the diagram below, such that s ≡sh s
′ with s′ = switch(switch(s, 1, 2), 2, 3).

G0

p2,m
′
2 +3

p1,m1

��

G′1
p3,m

′
3 +3

p1,m
′
1

��

G′2

p1,m
′′
1

��
G1

p2,m2 +3 G2
p3,m3 +3 G3

Then, G1
p2,m2
=⇒ G2 and G2

p3,m3
=⇒ G3 are sequentially independent if and only if

G0
p2,m

′
2=⇒ G′1 and G′1

p3,m
′
3=⇒ G′2 are.

Proof. Let N1, N2 and N3 be the NACs of p1, p2 and p3, respectively. Due to

sequential independence of G1
p2,m2
=⇒ G2 and G2

p3,m3
=⇒ G3, match m3 : L3 → G2

extends to a match m∗3 : L3 → G1 satisfying N3. Using that both m3 and m∗3
satisfy N3, we show below that the match m′′3 : L3 → G0, that exists by the
classical local Church-Rosser, satis�es N3, too. This provides one half of the

independence of G0
p2,m

′
2=⇒ G′1 and G′1

p3,m
′
3=⇒ G′2.

By reversing the two horizontal sequences in the diagram above with the
same argument we obtain the proof for the other half, i.e., that the comatch of
p2 into G′2 satis�es the equivalent right-sided NAC of N2, which is still incre-
mental thanks to Prop. 2. Finally reversing the vertical steps yields the reverse
implication, that independence of the upper sequence implies independence of
the lower.

The diagram in Fig. 4(a) shows a decomposition of the transformations

G0
p1,m1
=⇒ G1

p2,m2
=⇒ G2 and G0

p2,m
′
2=⇒ G′1

p1,m
′
1=⇒ G2 according to the proof of the
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G0 G′1

p1,m
′
1��

G1
p2,m2 +3 G2

↓

L1m′1
oovv

(3)

K1

l1

OO

r1
��

oovv

(6)

R1
oovv

L3

m3

cc

``

ee

kk

G′1

(2)

D′2

OO

��
(5)

G2

(8)

R2

OO

FF

D′1 //oo

(1)

D∗2 //

��

oo

OO

(4)

D2
//oo

(7)

K2 l2 //r2oo

OO

FF

G0

D1

��

OO

G1

L2

m2

OO

EE

(a) Match m′′3 : L3 → G0

O∗

|| ((

��

O

��

e1

((

i 11 O′

e2}}

��

L̂3

��

q

��

L3
//

n

//

o∗

22

m′′3
22

D∗2

}} ((
(1)D1

((

D′1

}}
G0

(b) Induced morphism L̂3 → D′1

Fig. 4. Constructions for proof of Thm. 1

local Church-Rosser theorem ([8], Thm. 3.20). Hence D′2G2D2D
∗
2 is a pullback

while all other squares are pushouts, and all morphisms are monos.

The matchm3 is also shown. Let us assume that G1
p2,m2
=⇒ G2 and G2

p3,m3
=⇒ G3

are independent. Then, there exists L3 → D2 commuting with m3 such that

m∗3 = L3 → D2 → G1 satis�es N3. Also, G
′
1

p1,m
′
1=⇒ G2 and G2

p3,m3
=⇒ G3 are

independent because equivalence of s and s′ requires to switch them, so there
exists L3 → D′2 commuting with m3 such that m′3 = L3 → D′2 → G′1 satis�es
N3.

There exists a morphism L3 → D∗2 commuting the resulting triangles induced
by pullback (5). Matches L3 → D∗2 → D1 and L3 → D∗2 → D′1 satisfyN3 because
they are pre�xes of matches m∗3 and m′3, respectively; indeed, it is easy to show
that m;m′ |= n⇒ m |= n for injective matches m, m′ and constraint n.

To show that m′′3 = L3 → D∗2 → D1 → G0 = L3 → D∗2 → D′1 → G0 sat-
is�es N3, by way of contradiction, assume n : L3 → L̂3 ∈ N3 with morphism
q : L̂3 → G0 commuting with m′′3 . We can construct the cube in Fig. 4(b) as fol-
lows. The bottom face is pushout (1), faces front left (FL), front right (FR) and
top (TOP) are constructed as pullbacks. The commutativity induces unique mor-
phism O∗ → D∗2 making the back faces commuting and thus, all faces in the cube
commute. Back left face (BL) is a pullback by pullback decomposition of pullback
(TOP+FR) via (BL+(1)) and back right face (BR) is a pullback by pullback
decomposition of pullback (TOP+FL) via (BR+(1)). We obtain o∗ : L3 → O∗ as
induced morphism from pullback (BL+FL) and using the assumptionm′′3 = n; q.
Further, by the van Kampen property, the top face is a pushout. Since the con-
straint is incremental and L3 → O → L̂3 = L3 → O′ → L̂3, without loss of
generality we have a morphism i : O → O′ commuting the triangles.
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We show that e2 : O
′ ↔ L̂3 is an isomorphism. First of all, e2 is a mono by

pullback (FR) and mono D′1 → G0. Pushout (TOP) implies that the morphism
pair (e1, e2) with e1 : O → L̂3 and e2 : O

′ → L̂3 is jointly epimorphic. By com-
mutativity of i; e2 = e1, we derive that also (i; e2, e2) is jointly epi. By de�nition
of jointly epi, we have that for arbitrary (f, g) it holds that i; e2; f = i; e2; g and
e2; f = e2; g implies f = g. This is equivalent to e2; f = e2; g implies f = g. Thus,
e2 is an epimorphism. Together with e2 being a mono (see above) we conclude
that e2 is an isomorphism, because adhesive categories are balanced [16]. This
means, there exists a mediating morphism L̂3 → O′ → D′1 which contradicts the
earlier assumption that L3 → D∗2 → D′1 satis�es N3. ut

Example 3. If in Fig. 3 we replace rule p3 by rule p4 of Fig. 5 that has an in-
cremental NAC, so that s = G0 =

p1,m1
===⇒ G1 =

p2,m2
===⇒ G2 =

p4,m4
===⇒ G3 = (s1; s2; s4),

then the problem described in Ex. 1 does not hold anymore, because s2 and s4
are not sequentially independent, and they remain dependent in the sequence
s′′ = s′2; s

′
4; s
′′
1 .

1 1 3⇒ 
p4

Fig. 5. Rule p4 with incremental NAC

5 Transforming General NACs into Incremental NACs

In this section we show how to compile a set of rules P with arbitrary NACs
into a (usually much larger) set of rules INC (P ) having incremental NACs only.
The construction guarantees that every derivation using rules in P can be trans-
formed into a derivation over INC (P ). Additionally, we show that P and INC (P )
are actually equivalent if all constraints in P are obtained as colimits of incre-
mental constraints.

The example shown in Fig. 6 can help getting an intuition about the trans-
formation. It shows one possible outcome (indeed, the algorithm we shall present
is non-deterministic) of the application of the transformation to rule p3, namely
the set INC ({p3}) = {p31, p32} containing rules with incremental NACs only. It
is not di�cult to see that p3 can be applied to a match if and only if either p31
or p32 can be applied to the same match (determined by the image of node 1),
and the e�ect of the rules is the same (adding a new node). In fact, if either p31
or p32 can be applied, then also p3 can be applied to the same match, because at
least one part of its NAC is missing (the loop if p31 was applied, otherwise the
edge). Viceversa, if p3 can be applied, then either the loop on 1 is missing, and
p31 is applicable, or the loop is present but there is no non-looping edge from 1,
and thus p32 can be applied. As a side remark, notice that the NACs p31 or p32
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1 1 3
⇒ 
p3 1 1 3⇒ 

p31

1 1 3
⇒ 
p32

Fig. 6. Rule p3 (left) and the set INC ({p3}) = {p31, p32} (right)

�cover� the non-incremental NAC of p3, which is possible because the left-hand
side of p32 is larger.

Let us start with some auxiliary technical facts that hold in adhesive cate-
gories and that will be exploited to show that the compilation algorithm termi-
nates, which requires some ingenuity because sometimes a single constraint can
be compiled into several ones.

De�nition 2 (�nitely decomposable monos). A mono A
f
� B is called at

most k-decomposable, with k ≥ 0, if for any sequence of arrows f1; f2; · · · ; fh =
f where for all 1 ≤ i ≤ h arrow fi is a mono and it is not an iso, it holds
h ≤ k. Mono f is called k-decomposable if it is at most k-decomposable and
either k = 0 and f is an iso, or there is a mono-decomposition like the above
with h = k. A mono is �nitely decomposable if it is k-decomposable for some
k ∈ N. A 1-decomposable mono is called atomic.

From the de�nition it follows that all and only the isos are 0-decomposable.
Furthermore, any atomic (1-decomposable) mono is incremental, but the con-
verse is false in general. For example, in Graph the mono {•} � {• → •} is
incremental but not atomic. Actually, it can be shown that in Graph all incre-
mental monos are at most 2-decomposable, but there exist adhesive categories
with k-decomposable incremental monos for any k ∈ N.

Furthermore, every �nitely decomposable mono f : A� B can be factorized

as A� K
g
� B where g is incremental and �maximal� in a suitable sense.

Proposition 3 (decomposition and incrementality). Let f : A � B be

�nitely decomposable. Then there is a factorization A� K
g
� B of f such that

g is incremental and there is no K ′ such that f = A � K ′ � K
g
� B, where

K ′ � K is not an iso and K ′ � K
g
� B is incremental. In this case we call g

maximally incremental w.r.t. f .

Proposition 4 (preservation and re�ection of k-decomposability).

Let the square to the right be a pushout and a be a mono.
Then b is a k-decomposable mono if and only if d is a k-
decomposable mono.

A

(1)

//a //
��

b ��

B
��
d��

C // c // D
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In the following construction of incremental NACs starting from general ones,
we will need to consider objects that are obtained starting from a span of monos,
like pushout objects, but that are characterised by weaker properties.

B ''

d′ ''

..

((
A // h //88

a

88

&&

b &&

A′
OOa′

OO

��
b′ ��

D′ // g // G

C
77

c′
77

00

66

Fig. 7. Quasi-pushout of monos in an adhesive category

De�nition 3 (quasi-pushouts of monos). Let B � A � C be a span of
monos as in Fig. 7, and let A � A′ be a mono such that there are monos
A′ � B and A′ � C making the triangles commute. Let B � D′ � C be the
pushout of B � A′ � C. Then B � D′ � C is a quasi-pushout (based on A′)
of B � A � C, and D′ is the quasi-pushout object. If A � A′ is not an iso,
the quasi-pushout is called proper.

Proposition 5 (properties of quasi-pushouts).

1. Let B � A � C be a span of monos, and let B � G � C be a cospan of
monos such that the square B � A� C � G� B commutes. Then there
is a quasi-pushout B � D′ � C of B � A � C such that the mediating
morphism g : D′ → G is mono.

2. Let B � A � C be a span of monos. If objects B and C are �nite (i.e.,
they have a �nite number of subobjects), then the number of non-isomorphic
distinct quasi-pushouts of the span is �nite.

3. In span B � A
b
� C, suppose that mono b is k-decomposable, and that

B
d′

� D′ � C is a quasi-pushout based on A′, where h : A � A′ is not an
iso. Then mono d′ : B � D′ is at most (k − 1)-decomposable.

4. Quasi-pushouts preserve incrementality: if B
d′

� D′ � C is a quasi-pushout

of B � A
b
� C and b is incremental, then also d′ : B � D′ is incremental.

We describe now how to transform a rule p with arbitrary �nitely decompos-
able constraints into a set of rules with simpler constraints: this will be the basic
step of the algorithm that will compile a set of rules with �nitely decomposable
NACs into a set of rules with incremental NACs only.

De�nition 4 (compiling a rule with NAC). Let p = 〈L� K � R,N〉 be
a rule with NAC, where the NAC N = {ni : L � Li | i ∈ [1, s]} is a �nite set
of �nitely decomposable monic constraints and at least one constraint, say nj, is
not incremental. Then we de�ne the set of rules with NACs INC (p, nj) in the
following way.
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(a) If K � L
nj

� Lj has no pushout complement, then INC (p, nj) = {p′}, where
p′ if obtained from p by dropping constraint nj.

(b) Otherwise, let L
n′j
� Mj

k
� Lj be a decomposition of nj such that k is

maximally incremental w.r.t. nj (see Prop. 3). Then INC (p, nj) = {p′, pj},
where:

1. p′ is obtained from p by replacing constraint nj : L� Lj with constraint
n′j : L�Mj.

2. pj = 〈Mj � K ′ � R′, N ′〉, where Mj � K ′ � R′ is obtained by apply-
ing rule 〈L� K � R〉 to match n′j : L�Mj, as in the next diagram.

L
��

n′j ��
(1)

K

(2)

ooloo // r //
��
��

R
��
��

Mj K ′ool∗oo // r∗ // R′

Furthermore, N ′ is a set of constraints N ′ = N ′1 ∪ · · · ∪N ′s obtained as
follows. (1) N ′j = {k :Mj � Lj}. (2) For all i ∈ [1, s] \ {j}, N ′i = {nih :
Mj � Lih | Li � Lih �Mj is a quasi-pushout of Li � L�Mj}.

Before exploring the relationship between p and INC (p, nj) let us show
that the de�nition is well given, i.e., that in Def. 4(b).2 the applicability of
〈L� K � R〉 to match n′j : L�Mj is guaranteed.

K
55 ((

��
��

// //

(1)

X
(2)

// //
��
��

•
��
��

L // n′j //((
nj

55Mj
// // Lj

In fact, by the existence of a pushout comple-

ment of K � L
nj

� Lj we can build a pushout
that is the external square of the diagram on the
right; next we build the pullback (2) and obtain
K � X as mediating morphism. Since (1) + (2)
is a pushout, (2) is a pullback and all arrows are mono, from Lemma 4.6 of
[16] we have that (1) is a pushout, showing that K � L � Mj has a pushout
complement.

The following result shows that INC (p, nj) can simulate p, and that if the
decomposition of constraint nj has a pushout complement, then also the converse
is true.

{Li}
��
/

q ))

Loo
{ni}oo

��
m
��

(1)

K

(2)

ooloo // r //

��

R
��
m∗
��

G Dool∗oo //r
∗
// H

Fig. 8. DPO diagram with NAC

Proposition 6 (relationship between p and INC (p, nj)). In the hypotheses

of Def. 4, if G
p

=⇒ H then G
INC (p,nj)

=⇒ H. Furthermore, if the decomposition



Transformation Systems with Incremental NACs 13

of nj (L
n′j
� Mj

k
� Lj) has a pushout complement, then G

INC (p,nj)
=⇒ H implies

G
p

=⇒ H.

Example 4. Fig. 6 shows one possible outcome of INC ({p3}), as discussed at the
beginning of this section. As the NAC of p3 is a colimit of incremental arrows,
{p3} and INC ({p3}) are equivalent.

Instead, let p = 〈id{•1}, n : {•1}� {•1 → •2 → •3}〉 be a rule (the iden-
tity rule on graph {•1}) with a single negative constraint n, which is not in-
cremental. Then according to Def. 4 we obtain INC (p, n) = {p′, p1} where
p′ = 〈id{•1}, n′ : {•1}� {•1 → •2}〉 and p1 = 〈id{•1→•2}, n′′ : {•1 → •2} �
{•1 → •2 → •3}〉. Note that all constraints in INC (p, n) are incremental, but
the splitting of n as n′;n′′ does not have a pushout complement. Indeed, we can
�nd a graph to which p1 is applicable but p is not, showing that the condition we
imposed on NACs to prove that p and INC (p, nj) are equivalent is necessary. In

fact, let G = {•2 ← •1 → •2′ → •3′}, and let x be the inclusion morphism from

{•1 → •2} to G. Then G p1,x
=⇒ G, but the induced inclusion match m : {•1} → G

does not satisfy constraint n.

Starting with a set of rules with arbitrary (but �nitely decomposable) NACs,
the construction of Def. 4 can be iterated in order to get a set of rules with
incremental NACs only, that we shall denote INC (P ). As expected, INC (P )
simulates P , and they are equivalent if all NACs are obtained as colimits of
incremental constraints.

De�nition 5 (compiling a set of rules). Let P be a �nite set of rules with
NACs, such that all constraints in all NACs are �nitely decomposable. Then the
set INC (P ) is obtained by the following procedure.

INC (P ) := P
while (there is a rule in INC (P ) with a non-incremental constraint) do

let k̂ = max{k | there is a k-decomposable non-incremental
constraint in INC (P )}

let n̂ be a k̂-decomposable non-incremental constraint of p̂ ∈ INC (P )
Set INC (P ) := (INC (P ) \ {p̂}) ∪ INC (p̂, n̂)

endwhile
return INC (P )

Theorem 2 (correctness and conditional completeness of compilation).

1. The algorithm of Def. 5 terminates.
2. INC (P ) contains rules with incremental NACs only.

3. INC (P ) simulates P , i.e., G
P
=⇒ H implies G

INC (P )
=⇒ H for all G.

4. Suppose that each constraint of each rule in P is the colimit of incremen-
tal monos, i.e., for each constraint L � L′, L′ is the colimit object of a
�nite diagram {L� Li}i∈I of incremental monos. Then P and INC (P ) are

equivalent, i.e., we also have that G
INC (P )
=⇒ H implies G

P
=⇒ H.
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Proof. Point 2 is obvious, given the guard of the while loop, provided that it
terminates. Also the proofs of points 3 and 4 are pretty straightforward, as they
follow by repeated applications of Prop. 6. The only non-trivial proof is that of
termination.

To this aim, let us use the following lexicographic ordering, denoted 〈Nk,v〉
for a �xed k ∈ N, that is obviously well-founded. The elements of Nk are se-
quences of natural numbers of length k, like σ = σ1σ2 . . . σk. The ordering is
de�ned as σ < σ′ i� σh < σ′h, where h ∈ [1, k] is the highest position at which σ
and σ′ di�er.

Now, let k be the minimal number such that all non-incremental constraints
in P are at most k-decomposable, and de�ne the degree of a rule p, deg(p), as
the sequence σ ∈ Nk given by

σi = |{n | n is an i-decomposable non-incremental constraint of p}|

De�ne deg(Q) for a �nite set of rules as the componentwise sum of the degrees
of all the rules in Q.

Next we conclude by showing that at each iteration of the loop of Def. 5 the
degree deg(INC (P )) decreases strictly. Let p̂ be a rule and n̂ be a non-incremental

constraint, k̂-decomposable for a maximal k̂. The statement follows by showing
that INC (p̂, n̂) has at least one k̂-decomposable non-incremental constraint less

than p̂, while all other constraints are at most (k̂ − 1)-decomposable.
This is obvious if INC (p̂, n̂) is obtained according to point (a) of Def. 4.

Otherwise, let INC (p̂, n̂) = {p′, pj} using the notation of point (b). In this case
rule p′ is obtained from p̂ by replacing the selected constraint with one that is at
most (k̂−1)-decomposable. Furthermore, each other constraint ni is replaced by
a set of constraints, obtained as quasi-pushouts of ni and n

′
j . If ni is incremental,

so are all the new constraints obtained as quasi-pushouts, by Prop. 5(4), and thus
they don't contribute to the degree. If instead ni is non-incremental, then it is
h-decomposable for h ≤ k̂, by de�nition of k̂. Then by Prop. 5(3) all constraints
obtained as proper quasi-pushouts are at most (h− 1)-decomposable, and only
one (obtained as a pushout) will be h-decomposable. ut

6 Discussion and Conclusion

In our quest for a stable notion of independence for conditional transformations,
we have de�ned a restriction to incremental NACs that guarantees this property
(Thm. 1). Incremental NACs turn out to be quite powerful, as they are su�cient
for several case studies of GTSs. In particular, the well studied model transfor-
mation from class diagrams to relational data base models [14] uses incremental
NACs only. In an industrial application for translating satellite software (pages
14-15 in [20]), we used a GTS with more than 400 rules, where only 2 of them
have non-incremental NACs. Moreover, the non-incremental NACs could also
have been avoided by some modi�cations of the GTS. Incremental morphisms
have been considered recently in [12], in a framework di�erent but related to ours,
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where requiring that matches are open maps one can restrict the applicability
of transformation rules without using NACs.

We have also presented a construction that compiles as set of rules with gen-
eral (�nitely-decomposable) NACs into a set of rules with incremental NACs
only. For NACs that are obtained as colimits of incremental ones, this compila-
tion yields an equivalent system, i.e., for every transformation in the original GTS
there exists one compatible step in the compiled one and vice versa (Thm. 2),
and therefore the rewrite relation on graphs is still the same. In the general case,
the compiled system provides an overapproximation of the original GTS, which
nevertheless can still be used to analyse the original system.

In fact our intention is to de�ne a stable notion of independence on transfor-
mations with general NACs. Using the compilation, we can declare a two-step
sequence independent if this is the case for all of its compilations, or more liber-
ally, for at least one of them. Both relations should lead to notions of equivalence
that are �ner than the standard shift equivalence, but that behave well thanks
to Thm. 1. Moreover, independence should be expressed directly on the original
system, rather than via compilation. Such a revised relation will be the start-
ing point for developing a more advanced theory of concurrency for conditional
graph transformations, including processes and unfoldings of GTSs.

The main results in this paper can be applied for arbitrary adhesive transfor-
mation systems with monic matches. However, in some cases (like for attributed
graph transformation system) the restriction to injective matches is too strict
(rules contain terms that may be mapped by the match to equal values). As
shown in [13], the concept of NAC-schema provides a sound and intuitive basis
for the handling of non-injective matches for systems with NACs. We are con�-
dent that an extension of our results to general matches is possible based on the
concept of NAC-schema.

Another intersting topic that we intend to study is the complexity of the
algorithm of Def. 5, and the size of the set of rules with incremental constraints,
INC (P ), that it generates. Furthermore, we plan to extend the presented results
for shift equivalence to the notion of permutation equivalence, which is coarser
and still sound according to [13]. Finally, we also intend to address the problem
identi�ed in Ex. 1 at a more abstract level, by exploiting the event structures
with or-causality of events that are discussed in depth in [19].
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