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Interactive Interaction Constraints?

José Proença and Dave Clarke
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{jose.proenca,dave.clarke}@cs.kuleuven.be

Abstract. Interaction constraints are an expressive formalism for de-
scribing coordination patterns, such as those underlying the coordina-
tion language Reo, that can be efficiently implemented using constraint
satisfaction technologies such as SAT and SMT solvers. Existing imple-
mentations of interaction constraints interact with external components
only in a very simple way: interaction occurs only between rounds of
constraint satisfaction. What is missing is any means for the constraint
solver to interact with the external world during constraint satisfaction.
This paper introduces interactive interaction constraints which enable

interaction during constraint satisfaction, and in turn increase the expres-
siveness of coordination languages based on interaction constraints by al-
lowing a larger class of operations to be considered to occur atomically.
We describe how interactive interaction constraints are implemented and
detail a number of strategies for guiding constraint solvers. The benefit
of interactive interaction constraints is illustrated using two examples,
a hotel booking system and a system of transactions with compensa-
tions. From a general perspective, our work describes how to open up
and exploit constraint solvers as the basis of a coordination engine.

Keywords: interaction constraints, constraint satisfaction, coordination, Reo

1 Introduction

Coordination languages facilitate the exchange of data between components (or
services) externally to the operation of those components. One way of describing
coordination patterns is by using interaction constraints [11], which originated
as an approach to implementing Reo connectors [3]. In this approach, off-the-
shelf constraint solvers such as Choco [18] and SAT and SMT solvers such as
SAT4J [6] and Z3 [16] are used as the basis of the underlying coordination
engine. The coordination engine operates in rounds, each of which proceeds by
collecting constraints from components and the connector that coordinates them,
and then solving the constraints. Components perform blocking reads and writes
on ports, which are converted into constraints stating that they want to output
or input data. A solution to the constraints describes how data flows between
? This research is supported by the KU Leuven BOF-START project STRT1/09/031
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the components, after which some reads and writes may succeed. Each round is
considered to be an atomic (or synchronous) step. Between rounds the states of
the components and connectors may change.

One problem with the current state-of-the-art is that interaction occurs only
between constraint solving rounds, not during rounds. It is impossible in Reo, for
instance, to send data to a component and receive a result from it within the
round, as no interaction with external components occurs during a round. This
means that all data involved in the constraint is known at the start of a round,
and consequently that the kinds of interaction that can be expressed using in-
teraction constraints are limited. The challenge of introducing interaction with
external components during a coordination round is that such interaction can
produce externally observable behaviour. However, after solving the coordina-
tion constraints, these external observations may not correspond to what the
coordination pattern aims to achieve. This implies that such actions will need
to be undone after a round using rollbacks or compensations.

This paper reports on our work on interactive interaction constraints, which
enhance a coordination engine to enable interaction during rounds. The under-
lying constraint solver can invoke external components several times during a
round while searching for a valid solution to the coordination constraints. This
can be seen as a form of negotiation. This kind of interaction can be incorporated
into the visual notation of Reo using special filter and transformer channels. Fil-
ters have a predicate that is used to determine whether data flows through the
channel and transformers modify the data passing through the channel by invok-
ing a unary function. In our approach these could involve external interaction.
For instance the predicate could consult an external database or by engaging
in interaction with a user. Because the actual data that flows through a con-
nector involves the solution of a potentially complex set of constraints, it is
never clear when invoking a filter or a transformer whether the connector will
commit to the chosen data. Thus, these channels must be implemented using
a try-and-compensate mechanism, and hence the whole constraint satisfaction
process becomes transactional.

Although originally stemming from research on Reo—indeed, the same visual
notation can be used to describe connectors—our approach is much more gen-
eral, as a greater range of coordination patterns can be implemented. Interactive
interaction constraints are based on information unknown at compile time, the
expressing a wider variety of coordination patterns than constraints over a fixed
set of data types and operators. More generally, our approach falls within the im-
plicit programming paradigm [17], wherein constraints specify the computation
and SAT and SMT solvers perform the computation. The contribution of our
work to this field is the use of constraint satisfaction to implement coordination
patterns. More specifically, this paper deals with the problem of increasing the
kinds of external interaction possible during constraint satisfaction.

Organisation of the paper The next section motivates the need for richer
interaction model and identifies the main challenges. Section 3 describes the
language used to specify constraints, and Section 4 explains how they are solved.



Details of the constraint-solving engine are described in Section 5. Section 6
presents how transactions are achieved with interactive interaction constraints,
Section 7 presents related work, and Section 8 concludes.

2 The Need for Interaction

Interaction constraints were introduced as a bridge to providing an efficient
and flexible implementation of the Reo coordination language [11]. Previous im-
plementations based on compilation to constraint automata suffered from the
problem that the entire behaviour of the connector needed to be known in ad-
vance [5]. Implementations based on connector colouring got around this prob-
lem, but these were initially not very efficient and were ultimately not very
flexible as they were insensitive to data values [9]. Changizi et. al [7] extended
the automata-based compilation approach with filters and transformers. These
are handled by a SAT/SMT solver, though the choice of filters and transformers
is limited to those expressible in the language of the solver. When building an
automaton, all solutions for all states need to be found, and thus more work
than necessary needs to be done and the approach is inflexible. Jongmans et
al. [14] integrated external functionality by generating Java code correspond-
ing to the automata-with-data-constraints model of Reo. The resulting code
has an exponential number of formulas, without data transformations, that are
checked sequentially. Interaction constraints improved on these implementations
by exploiting the flexibility of constraints—again, limited only by the underly-
ing solver—, and by permitting constraints to change dynamically and to be
evaluated concurrently and partially, thereby increasing scalability as well [10].

One remaining problem is that the kind of external interaction available
in the current interaction constraints-base engine is limited to blocking reads
and writes. That is, considering Fig. 1, component Request interacts with the
connector by performing a blocking write of some value. At some future time,
this value may be accepted by the system and the write will proceed (or it may
timeout). Dually, component Confirmed interacts by preforming a blocking read.
At some future time, a value will become available and the read proceeds.

From Reo’s perspective synchronicity corresponds to atomicity. Thus in Fig. 1
there are three possible ways data can flow (synchronously) through the connec-
tor: a request flows from Request via exactly one of SrchHoteli, which return a
possible hotel room booking. Then it flows through filter Approve, which seeks
approval from the user, transformer Book, which performs the booking, trans-
former Invoice, which handles the payment, filter Paid, which occurs when the
payment succeeds, and finally to component Confirmed. Due to semantics of the
synchronous drain (sd), dataflow through the connector is permitted only if Paid
allows the data to pass. Now it is clear that such an atomic step corresponds to
all steps of the hotel booking process succeeding. If any step fails, such as when
the user does not approve the selection or if the payment is not made, then no
flow occurs in the connector at all. To actually implement this requires a lot
more than interaction via blocking reads and writes, such as calling and getting
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Fig. 1. Example of a Hotel Reservation workflow. Nodes ( ) receive data from exactly
one of their inputs, and replicate it to all of their outputs. The exclusive router ( ) is
a special node that forwards data to exactly one of its outputs. Transformer channels
are represented using a triangle and filter channels using a zig-zag line.

results multiple times from the hotels, interacting with the user checking the
payment, and retrying with different possible values from the hotels. These in-
teractions can be realised using special functions and predicates that, whenever
queried by the constraint solver, trigger calls to external components. Solving an
interactive constraint might require such functions to be executed with different
parameters until a valid solution is found. Whenever constraints imposed by in-
dividual elements of the connector are not satisfied, some externally observable
actions, such as interaction with the user and calls to the booking site, might
need to be undone, by performing a rollback or running compensation code.

Exploiting a constraint solver to implement a scenario such as the one above
requires that a number of issues are properly handled:

– Constraints corresponding to the channels need to be evaluated in the right
order, such as calling Approve before Book, to avoid situations where the
solver guesses a value and wastefully calls some external function. External
functions should only be given input that derives from concrete initial values.

– The constraint solver may (potentially, wastefully) invoke all of SrchHotel1,
SrchHotel2, and SrchHotel3, although only one of them will be accepted. A
better strategy is often to try one at a time.

– If an external function that produces an externally observable side-effect is
called, such as Book, but subsequently the booking needs to be cancelled,
then some compensation/rollback functionality (CancelB) needs to be per-
formed to undo the side-effect.

– Functions that do not transform their data but do produce side-effects can
be postponed until after a solution to the constraints has been found, as from
the perspective of the constraint solver they are equivalent to a synchronous
channel (what happens on both ends is the same).

– External functions and predicates need to be total to avoid blocking the
constraint solver. Non-complying functions could easily be wrapped, such as
by implementing a time-out and returning a ‘no-result’ value.

– Within a given round, external functions and predicates need to be deter-
ministic to preserve the consistency of the constraint solving process. Non-
complying functions can be memoized to behave as deterministic functions.



3 Coordination via Interaction Constraints

Our previous work on interaction constraints formed the basis of an efficient im-
plementation of the Reo coordination language [11]. In this model, coordination
patterns are described using logical formulas defined over two kinds of variables:
synchronisation variables, which capture whether or not there is dataflow on a
given port, and data variables, which describe the value that flows, when there
is dataflow. Coordination takes place in rounds, and between rounds the con-
straints can change. From a high level perspective, each round corresponds to
an atomic operation, and each solution to the interaction constraints gives the
ports that synchronise and the data that flows between them.

Given a collection of ports X , synchronisation variables x ∈ X range over
booleans, and data variables x̂ ∈ X̂ range over a global data set D. Formulas are
defined as Dijkstra’s guarded commands [12], given by the following grammar:

ψ ::= φ→ s | ψ1 ψ2 | > (formulas)
φ ::= x | P (x̂) | φ1 ∧ φ2 | ¬φ (guards)
s ::= φ | x̂ := d | x̂1 := x̂2 | x̂1 := f(x̂2) | s1 ; s2 (statements)

> is true, P is a unary predicate over data variables, and f is a unary total
function. Constraint ψ ψ is interpreted as ψ∧ψ, s; s as s∧s, and x := y as x = y.
Other logical connectives can be encoded as usual. The grammar for guarded
commands enforces data assignments to always be in positive positions, and
ensures that the assignment operator := is asymmetric to capture the direction
of dataflow. These features are not exploited in this paper, but required by the
predicate abstraction technique described in Section 4.1.

The novel addition of this paper is that functions and predicates need not
be built-in functions of the logic and can be implemented externally. Thus, eval-
uating a function or predicate requires a call outside of the constraint solver.
Furthermore, such functions and predicates may be side-effecting, and these side-
effects may need to be undone. How this interactive and transactional evaluation
of functions and predicates is handled is explained in detail in Section 4.

A Constraint-Based Encoding of Reo Channels As an example of how
interaction constraints are used, Table 1 recalls the encoding of the semantics
of the most common Reo primitives [11]. For example, the LossySync can have
dataflow on b only if data flows on a (b → a), and, whenever both ports have
dataflow, the data flowing on a is copied to b (b → b̂ := â). Included in the
table are writers and readers: these capture the essential interaction behaviour of
components that perform blocking reads and writes. The semantics of connector
composition is given by conjunctively joining the constraints of its constituents.

4 Solving Interactive Constraints

As functions and predicates are defined externally, the constraint solving pro-
cess requires external interaction to provide an interpretation for them as logical



Channel Representation Constraints Channel Representation Constraints

Sync a b
a↔ b

b→ b̂ := â
LossySync a b

b→ a

b → b̂ := â

SyncDrain a b a↔ b FIFO-E a b ¬b

SyncSpout a b a↔ b FIFO-F(d) a bd
¬a

b → b̂ := d

Merger ca
b

c↔ (a ∨ b)
¬(a ∧ b)

a → ĉ := â

b → ĉ := b̂

Replicator a b
c

a↔ b
a↔ c

a→ b̂ := â;
ĉ := â

Filter(P ) a b
P b → b̂ := â

(a ∧ P (â))↔ b
Transf(f) a b

f a↔ b

b → b̂ := f(â)

Writer(d) W(d) a a→ â := d Reader R a >

Table 1. Constraint-based encoding of Reo Channel.

formulas. This section provides a model of how this can be done. Firstly, before
constraint solving, constraints are reduced to a boolean formula using a notion
of predicate abstraction based on the data dependencies of each predicate. This
avoids prematurely computing such predicates and functions. Then, during con-
straint solving the solver will evaluate predicates and functions on a per-need
basis. In addition, compensations need to be performed, but as these are inde-
pendent of constraint solving, their discussion is postponed until Section 5.

4.1 Pre-Processing

Formulas over boolean and data variables are encoded into formulas only over
boolean variables using a notion of predicate abstraction in two steps (full details
are available in a separate report [21]):

1. starting from predicates, calculate all data variables that may contribute to
its value by tracing back to sources of data; and

2. replace data variables by new boolean variables, one for each predicate that
is reachable, based on the sets calculated on the previous step.

These steps are illustrated using the examples in Fig. 2. In the first step,
every path backwards from a predicate to a data source is determined based on
the data assignments in formulas, yielding paths numbered from 1 to 5. Each
of these paths is denoted by a new boolean variable. In the second step, data
variables are replaced by boolean variables. Each new variable captures whether
the associated predicate holds when applied to the given data. For instance,
path 2 is represented by variable x̂R.f , which denotes whether R(f(x̂)) holds.
In the underlying constraints, x̂ is replaced by 4 new boolean variables x̂P , x̂Q,



2

3

4

1

5

x y

P

Q

f

g

R S
h

k

Fig. 2. Simple examples to illustrate predicate abstraction.

x̂R.f and x̂R.g. Similarly ŷ is replaced by ŷS , and so forth. Data assignments
are modified to work on these new variables. For example, given variables x̂P.f

and ŷP.f , the encoding of ŷ := x̂ includes ŷP.f := x̂P.f . Given variables x̂P.f

and ẑP , the encoding of ẑ := f(x̂) includes ẑP := x̂P.f . Predicates in formulas
are replaced by the corresponding variable: for instance, P (x̂) is replaced by
x̂P . Finally, data assignments x̂ := d are encoded as a conjunction of special
constraints, called external predicates:∧

p reaches x

XPred(p, x, d) (usage of external predicates)

The reachability mentioned in the formula above is the same as in Fig. 2, and, in
this case, p ranges over R.f , R.g, P andQ. Each XPred(p, x, d) in this formula is a
wrapper guarding the evaluation of p(d). This constraint is equivalent to the one
below, but it is evaluated during constraint solving using dedicated functions.

¬x ∧ ¬y ∧ x̂p = eval(p(d)) (interpretation of an external predicate)

where y is the port to which the predicate p is applied, after dropping all the
associated functions, and eval performs the computations needed to evaluate
a predicate and its associated functions. For instance, the external predicate
XPred(R.f, x, d) is interpreted as ¬x ∧ ¬r ∧ x̂R.f = eval(R(f(d)), where r is
the port between the transformer f and the filter R. This means that the value
of x̂R.f only reflects the result of R(f(d)) when both x and r have dataflow.

For example, the original and abstracted constraints
of the connector on the right are, respectively:

a b cf P
W (d)

a → â := d b → b̂ := f(â)

a↔ b c → ĉ := b̂ (b ∧ P (̂b)) ↔ c

a→ XPred(P, b, d) b → b̂P := âP.f

a↔ b (b ∧ b̂P ) ↔ c

Since no predicate reaches c, no variables are created for c and ĉ := b̂ is dropped.
An alternative to using predicate abstraction is to use an encoding into con-

straints over a fixed domain that are used as hashes for the actual values or
functions that need to be computed. Following this line of thought, we are cur-
rently investigating the advantages of encoding into integer constraints, making
a tradeoff between the number of variables used at the cost of a more expensive
underlying constraint solver. These ideas are left as future work.



4.2 Evaluation Model

Fig. 3 presents a model of constraint solving over booleans, following the style of
Apt [2], adapted to our setting. These rules rely on two core functions: propagate
and satisfy (|=), which will be defined later for external predicates to control
when functions and predicates are evaluated.

(branch)

〈c1, . . . , cn ; V1, x 7→ {>,⊥}〉
〈cx1 , . . . , cxn ; V x

n+1〉 〈c−x
1 , . . . , c−x

n ; V −x
n+1〉

where, for 1 ≤ i ≤ n :
(cxi , V x

i+1) = propagate(ci, V
x
i ) ;

(c−x
i , V −x

i+1) = propagate(ci, V
−x
i )

(propagate)

〈c, C ; V 〉
〈c′, C ; V ′〉

(satisfy)

〈c, C ; V 〉
〈C ; V 〉

(prune)

〈c, C ; V 〉 〈C′ ; V ′〉
〈C′ ; V ′〉

where (c′, V ′) = propagate(c, V ) if V � c if V 2 c

Fig. 3. Semantics of the constraint solver. V x = V [x 7→ >] and V −x = V [x 7→ ⊥],
where V [x 7→ b] denotes the update of V by mapping x to {b}, for b ∈ {⊥,>}.

Formally, a CSP over booleans is a pair 〈C;V 〉 of constraints and variable
domains. The constraints are initially the conjunctive set of guarded commands
of a connector. The variable domains initially map each variable to {>,⊥}.
Constraint satisfaction proceeds by branching over variables and by simplifying
constraints based on the current domains of variables. Branching over a variable
x means creating two new CSPs, one assuming x is true and one that x is false.
Simplification of constraints is performed by a propagate function, which takes
a constraint c and a variable domain V and builds, when possible, a simpler
constraint c′ and a smaller domain variable V ′ where some variables become
instantiated with {>} or {⊥}. Satisfaction of a constraint c is determined using
the operator |=, based on the instantiated variables of domain V .

The implementation of propagate and satisfaction for external predicates
XPred(P, x, d) are as follows:

propagate(XPred(P, x, d), V )

=


(>, V ) if V (x) = ⊥ or V (y) = ⊥
(⊥, V ) if V (x) = V (y) = > and eval(P (d)) /∈ V (x̂P )
(>, V [x̂P 7→ >]) if V (x) = V (y) = > and > ∈ V (x̂P ) and eval(P (d))
(>, V [x̂P 7→ ⊥]) if V (x) = V (y) = > and ⊥ ∈ V (x̂P ) and ¬eval(P (d))
(XPred(P, x, d), V ) otherwise

V � XPred(P, x, d)

=

> if V (x) = ⊥ or V (y) = ⊥
ŷP = eval(P (d)) if V (x) = V (y) = >
unknown otherwise

Observe that if V � c returns unknown, then neither V � c nor V 2 c hold.



The solver will still control when to instantiate any of the variables used by
XPred, which are guided using a search strategy (see the next section).

5 Implementation

We have implemented a prototype coordination engine that handles external
predicates based on the Choco constraint solver.1 It focuses on the boolean
satisfaction problem of the formulas obtained via predicate abstraction. Contrary
to most other SAT and SMT solvers,2 Choco allows user-defined function and
predicates, and the customisation of strategies. These capabilities are exploited
to control the evaluation of external predicates. As a running example we use
a simple implementation of the Hotel Reservation system (Fig. 1). External
predicates are implemented to read from and write to the command line.

5.1 Caching and Compensating

To avoid redoing complex calculations or performing the same query twice, when-
ever a function or predicate is evaluated its result is cached. This ensures that
all functions are deterministic in any given round. Similarly, functions and pred-
icates that require human interaction are executed at most once per argument,
per round.

After each round of constraint solving the cache is cleared. During this process
the engine checks which values contributed to the solution. Every cached value
that did not contribute is reverted using its associated compensation, if it exists.

5.2 Strategies

By default Choco uses a branching strategy that selects the next variable to
be analysed based on its current domain size, the number of uninstantiated
constraints involving the variable, and the sum of some counters associated with
these constraints [18]. For each selected variable, Choco starts by assigning the
smallest value (false in the case of booleans), increasing it whenever necessary.

We propose the use of an alternative strategy, built using Choco strategy
constructors,3 that selects variables using a fixed order and assigns false values
before assigning true. This order of variables is produced based on the possible
paths of dataflow, which have been partially calculated during the pre-processing
of the constraints (Section 4.1). The intuition is that if a path with dataflow that
satisfies the constraints is found, the external predicates on the remaining paths
do not need to be evaluated. More concretely, we use the following guidelines:

– Approximate the data dependency graph and linearise the resulting ordering.
– Branch first over synchronisation variables and only later over the rest.

1 http://www.emn.fr/z-info/choco-solver/
2 We also experimented with SAT4J and Z3 solvers, among others.
3 These constructors are called AssignVar, StaticVarOrder, and IncreasingDomain.

http://www.emn.fr/z-info/choco-solver/


In the Hotel Reservation system, this strategy can avoid the booking, invoic-
ing, and payment of hotels that are not approved. The choice of which function
and predicate is evaluated first is non-deterministic: it depends on the order of
concatenation of traversals during the linearisation process. In this case, a pos-
sible linearisation is: req ← h1 ← h1out ← hs ← ap ← bk ← inv ← paid ←
h3 ← h3out ← h2 ← h2out . Thus the constraint solver will first select and
branch the variable h2out, then the variable h2, and so on. The data variables
are selected only after the synchronous variables. The ports hi and hiout are
the two ports of the filter SrchHoteli, and the ports ap, bk , inv , paid succeed the
channels Approve, Book, Invoice, and Paid, respectively.

5.3 Scala Implementation

We have developed a set of libraries for the Scala language4 to easily specify
interactive constraints. Scala is fully interoperable with Java, hence our libraries
can also be used to define and run connectors using Java.

object HotelReservation extends App {

case class Req(val content:String)

def srchHotel(i:Int) =
Function("SearchHotel-"+i){

case r:Req ⇒ i match {
case 1 ⇒ List("F1","Ibis","Mercury")
case 2 ⇒ List("B&B","YHostel")
case _ ⇒ List("HotelA","HotelB")

}
}
val approve = Predicate("approve"){
case l:List[String] ⇒

println ("approve: "+l.mkString(",
")+". [y,n]")

readChar() == ’y’
}
val book = Function("book"){
case l : List[String] ⇒

println ("Options: "+l.mkString(", ")+
". Which one? (1.."+l.length+")")

val res = readInt()
l(res-1)

}
val cancelB = Function("cancelB"){
case x ⇒ println ("canceling "+x+".")

}
val invoice = Function("invoice"){
case x ⇒ println ("invoice for "+x+".")

}

val pay = Predicate("paid"){
case x ⇒ if (x == "Ibis") {

println ("paid for Ibis")
true

}
else {

println ("not paid for "+x)
false

}
}

// Connector definition
val connector =
writer("req",List(Req("req1"),

Req("req2"))) ++
nexrouter("req",List("h1","h2","h3")) ++
transf("h1","h1o",srchHotel(1)) ++
transf("h2","h2o",srchHotel(2)) ++
transf("h3","h3o",srchHotel(3)) ++
nmerger(List("h1o","h2o","h3o"),"hs") ++
filter("hs","ap",approve) ++
sdrain("hs","ap") ++
transf("ap","bk",book,cancelB) ++
monitor("bk","inv",invoice) ++
filter("inv","paid",paid) ++
reader("paid",5)

connector.run()
}

Listing 1: Scala code for the Hotel Reservation system.

4 http://www.scala-lang.org

http://www.scala-lang.org


The code for the Hotel Reservation system is presented in Listing 1. The code
consists of a single object HotelReservation, which defines a Request inner class,
a method or constant value that returns an instance of a Predicate or Function
for each predicate and function, and a connector defined as the composition
of 14 sub-connectors. The sub-connector monitor is a channel with a function
that has side-effects but does not transform data. Instances of the Predicate
and Function classes can be equally created using class inheritance, defining the
methods check and calculate, respectively. The last line of the listing starts the
connector running. This triggers the consecutive execution of rounds until a state
with no solutions is reached. The code that interacts with the user via command
line is highlighted. The documentation of the API can be found online.5

6 Example: Transactional Connectors

This section presents three example connectors that coordinate transactions with
compensations. The examples are based on a chain of pairs (Fi, F

−1
i ), where Fi

is some operation and F−1i is a compensation that undoes the effect of Fi. A
successful transaction will pass data through each Fi in succession. If any in-
termediate step fails, then all compensations up to that point need to be run,
in reverse order. Thus, if F1 and F2 succeed, but F3 fails, then F−13 , F−12 , and
F−11 need to be run. The first example is based on traditional Reo connectors
and external components. Traditionally in Reo, external components operate
asynchronously and no external interaction occurs during the constraint solving
process. The second example is an adaptation of the first where the asynchronous
external components are replaced with synchronous transformer channels that
encapsulate the external interaction. The third example internalises the com-
pensation behaviour so that it is only accessible to the engine.

Ai

in

stopped

out

stop

Fi

F−1
i

oki

¬oki
A1 A2 An

in
stopped

out
stop

· · ·

Fig. 4. Asynchronous transactions in Reo.

Fig. 4 presents a traditional Reo connector for coordinating the transaction
and its compensation. The left-hand side shows how to coordinate a pair of
components (Fi, F

−1
i ), and the right-hand side shows how these can be composed

sequentially to form a larger transaction. Each connector Ai passes data input on
port in to Fi. In a subsequent step, Fi returns a result. If this satisfies the filter
oki, the value is passed to out, otherwise it is passed to F−1i . In addition, a value

5 http://people.cs.kuleuven.be/~jose.proenca/reopp/doc

http://people.cs.kuleuven.be/~jose.proenca/reopp/doc


can come from port stop and be passed to F−1i to indicate that the transaction
failed upstream. They key point is that all Fi and F−1i are asynchronous as far
as the Reo connector is concerned. Consequently, each part of the chain runs
in a separate round, and nothing guarantees that all parts will run. Thus the
connector does not really enforce that the transaction is atomic.

Si

in

stopped

out

stop

Fi oki

¬okiF−1
i

S1 S2 Sn
in

stopped
out
stop

· · ·

Fig. 5. Synchronous transactions via transformers.

Fig. 5 presents a revised version of the connector that uses synchronous trans-
former channels Fi and F−1i instead of components, as in the previous example.
These transformers perform the same external operations as their counterparts
above, but now they can be handled by the constraint engine. A consequence of
the fact that they are synchronous is that the entire connector Si is synchronous.
Indeed, the entire chain in the right-hand side of the figure is synchronous, thus
atomicity is regained.

Bi

in out
Fi[F−1

i ] oki
B1 B2 Bnin out· · ·

Fig. 6. Synchronous transactions with built-in compensations.

But we can do better. Fig. 6 shows an improved version. In this version,
each transformer is modified so that the compensation action F−1 is built into
the transformer and is run by the engine whenever the transaction fails. The
semantics of the connector is that it permits flow on all ports and only on all
ports. So the only possible flows permitted are the ones where each transaction
succeeds. In cases where this is not possible, such as when some oki is false,
the engine rollbacks all transformers through which data has passed by running
their compensations.

The main differences between the three approaches are summarised as fol-
lows: the first approach takes a multiple number of rounds to complete the
transaction, while the second and third approaches take only one round; and
the running of the compensation is handled by the connector in the first and
second approaches, but by the engine in the third approach. Two consequences
of having multiple rounds are that the intermediate steps are observable to the
external world and the transaction may get stuck in the middle. By compress-
ing everything into a single round, these problems are avoided, and the only



observables are completed transactions (modulo the fact that some actions are
undone using compensations). Having the connector handle the running of the
compensations is potentially error-prone, even though it introduces a degree of
flexibility. Handling compensations within the engine simplifies the connector
and shifts responsibility for correctness to the engine.

An alternative approach to using Reo to coordinate (long-running) trans-
actions was presented by Kokash et al. [15]. This resembles the first approach
above, though the connector was more complicated as it also permitted the
transaction to be cancelled externally.

7 Related Work

Traditional approaches to implementing Reo [5,7,14] are based on pre-computing
an automaton describing all future behaviour of the Reo connector. This typi-
cally performs more work than is necessary and is rather inflexibility, specifically
because it eliminates all intensional information about the connector. Our ap-
proach is based on dynamically generating and solving logical constraints [11,8].
This permits more control over intensional aspects during runtime, which allows
more refined interaction with external components than was previously possible.

Montanari and Rossi express coordination as a constraint satisfaction prob-
lem, in a similar and general way [20]. They view networks as graphs, and use the
tile model to distinguish between synchronisation and sequential composition of
the coordination pieces. In our approach, we explore a more concrete coordina-
tion model, which not only captures the semantics of Reo, but also extends it
with external interaction, not found in Montanari and Rossi’s work.

Minsky and Ungureanu introduced the Law-Governed Interaction (LGI) mech-
anism [19], implemented in the Moses toolkit. The mechanism targets distributed
coordination of heterogeneous actors, enforcing laws that are defined using con-
straints in a Prolog-like language. The main innovation is the enforcement of
laws by certified controllers that are not centralised. Their laws, as opposed
to our approach, are not global, allowing them to achieve good performance,
while compromising the scope of the constraints. Communication between ac-
tors governed by laws and actors outside LGI is possible, but not the execution
of side-effecting code while checking constraints.

Abreu and Fiadeiro explore the coordination of interactions in service-ori-
ented systems using SRML, a Service Modelling Language [1]. Services are linked
with each other by connecting ports and referring to the protocol used to con-
nect them. SRML operate at the abstraction level of business modelling, using
asynchronous message passing and explicitly supporting service discovery. Our
approach differs from theirs as in our work orchestration is guided by a con-
straint solving process, interaction with services is transactional, and our global
constraints express more coordination patterns.

Our work falls within the implicit programming paradigm. Köksal et al. pro-
posed similarly to integrate the power of declarative SAT/SMT solvers non-
intrusively into sequential, imperative programs [17]. In contrast to this work,



our approach targets coordination languages, and depends upon a constraint
solver enhanced with interaction as a side-effect.

Faltings et al. [13] explore interactive constraint satisfaction, which is a frame-
work for open constraint satisfaction in a distributed environment that enables
constraints to be added on-the-fly. There are a number of key differences be-
tween our work and theirs. The first is that our work focuses on the coordination
of components, separating the computation and coordination aspects, whereas
they aim purely at constraint satisfaction. Secondly, our work allow functions
and predicates to be defined externally to the constraint solver, whereas their
approach allows instead on-the-fly constraint generation. The former requires the
management of compensations for any external interaction that is not committed
to, where as the latter does not.

8 Conclusion and Future Work

This paper expanded upon the use of constraint solving as the basis of an en-
gine for coordinating components by introducing support for external interaction
during the constraint solving process. For this to make sense in terms of exter-
nally observable behaviour, certain calls to functions and predicates required
rollback or compensation to undo their effect. This means that the rounds of
constraint solving become transactional. In contrast to previous implementation
approaches for Reo connectors, our approach increases the degree of external in-
teraction possible in a connector, and transactional behaviour can be expressed
much more concisely as a consequence. In effect, we have lifted Reo’s notion of
synchrony as atomicity to synchrony as transactional atomicity. This means that
Reo’s synchronous connector semantics can be used to (visually) express trans-
actional behaviour, and interactive interaction constraints supply the bridge to
the underlying implementation.

As future work we first plan to experiment with heuristics to better guide the
constraint solver. One approach is to avoid the pre-processing phase by reducing
the original constraints over arbitrary data values to an SMT problem of a
simple theory. This approach will allow some external functions and predicates
to be internalised within the engine, thereby avoiding the need for rollback/
compensation. Secondly, we will combine the techniques described in this paper
with our earlier work on partial connector colouring [10], which optimises the
constraint satisfaction process by admitting partial solutions to the constraints.
This optimisation was experimentally demonstrated to increase scalability of the
engine. Finally, we plan to integrate our implementation into the existing open
source ECT tools for Reo [4], thereby making it available to developers.
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