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ABSTRACT

Query evaluation over probabilistic databases is known to
be intractable in many cases, even in data complexity, i.e.,
when the query is fixed. Although some restrictions of the
queries [20] and instances [4] have been proposed to lower
the complexity, these known tractable cases usually do not
apply to combined complexity, i.e., when the query is not
fixed. This leaves open the question of which query and
instance languages ensure the tractability of probabilistic
query evaluation in combined complexity.

This paper proposes the first general study of the combined
complexity of conjunctive query evaluation on probabilistic
instances over binary signatures, which we can alternatively
phrase as a probabilistic version of the graph homomor-
phism problem, or of a constraint satisfaction problem (CSP)
variant. We study the complexity of this problem depend-
ing on whether instances and queries can use features such
as edge labels, disconnectedness, branching, and edges in
both directions. We show that the complexity landscape is
surprisingly rich, using a variety of technical tools: automata-
based compilation to d-DNNF lineages as in [4], 8-acyclic lin-
eages using [11], the X-property for tractable CSP from [25],
graded DAGs [28] and various coding techniques for hardness
proofs.

1. INTRODUCTION

Uncertainty naturally arises in many data management ap-
plications, when integrating data that may be untrustworthy,
erroneous, or outdated; or when generating or annotating
data using information extraction or machine learning ap-
proaches. The framework of probabilistic databases [32] has
been introduced to answer such needs: it provides a natural
semantics for concise representations of probability distribu-
tions on data, and allows the user to evaluate queries directly
on the representations. The simplest probabilistic framework
is that of tuple-independent databases (TID), where each tu-
ple in the relational database is annotated with a probability
of actually being present, assuming independence across all
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tuples. Evaluating a Boolean query @ over a TID instance I
means computing the probability that @ is true according to
the distribution of I, or in other words, the total probability
mass of the possible worlds of I that satisfy Q.

As is usual in database theory, the complexity of this prob-
abilistic query evaluation problem (PQE) can be measured
as a function of both I and @, namely, combined complex-
ity [34], or as a function of I when the query Q is fixed,
called data complexity. Almost all works on PQE so far have
focused on data complexity, where they have explored the
general intractability of PQE in this sense. Indeed, while
non-probabilistic query evaluation of fixed queries in first-
order logic has polynomial-time data complexity (specifically,
AC?), the PQE problem is #P-hard! already for some fixed
conjunctive queries [19]. Specifically, the celebrated PQE
result by Dalvi and Suciu [20], has shown a dichotomy on
unions of conjunctive queries: some are safe queries, enjoying
PTIME data complexity (specifically, linear [15]), and all
other queries are #P-hard. Earlier work by some of the
present authors has shown also a dichotomy on instance fam-
ilies for fixed monadic second-order queries, with tractable
data complexity for bounded-treewidth families [4], and in-
tractability otherwise under some assumptions [7].

However, even when PQE is tractable in data complexity,
the task may still be infeasible because of unrealistically large
constants that depend on the query. For instance, our ap-
proach in [4] is nonelementary in the query, and the algorithm
for safe queries in [20] is generally super-exponential in the
query [32]. For this reason, we believe that it is also important
to achieve a good understanding of the combined complex-
ity of PQE, and to isolate cases where PQE is tractable
in combined complexity; similarly to how, e.g., Yannakakis’
algorithm can evaluate a-acyclic queries on non-probabilistic
instances with tractable combined complexity [36]. This mo-
tivates the question studied in this paper: for which classes
of queries and instances does PQE enjoy tractable combined
complexity?

Related work. Surprisingly, the question of achieving com-
bined tractability for PQE does not seem to have been stud-
ied before. To our knowledge, the only exception is in the
setting of probabilistic XML [27], where deterministic tree
automata queries were shown to enjoy tractable combined
complexity [16]. In the context of relational databases, our re-
cent work [2] shows the combined tractability of provenance

14P is the class of counting problems that can be expressed
as the number of accepting paths of a nondeterministic
polynomial-time Turing machine.
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computation for a specific Datalog fragment on bounded-
treewidth instances, but observes that these results do not
seem to give tractability of PQE, which is already intractable
in much more restricted settings. These results, however
(Propositions 36 and 38 of [3]), do not give a complete pic-
ture of the combined complexity of PQE; in particular, they
do not even give any non-trivial setting where it is tractable.
Questions of combined tractability have also been stud-
ied in the setting of constraint satisfaction problems (CSP),
following a well-known connection between CSP and the con-
junctive query evaluation problem in database theory, or the
study of the graph homomorphism problem (see, e.g., [24]).
We can then see the restriction of PQE to conjunctive queries
as a probabilistic, or weighted, variant of these problems,
but we are not aware of any existing study of this variant.
In the graph homomorphism setting, a related but different
problem is that of counting graph homomorphisms [12]: but
this amounts to counting the number of matches of a query
in a database instance, which is different from counting the
possible worlds of an instance where the query has some
match, as we do. A more related problem is #SUB [18], which
asks, given a query graph G and an instance graph H, for the
number of subgraphs of H which are isomorphic to G. When
all facts are labeled with 1/2, our problem asks instead for
the number of subgraphs of H to which G admits a homo-
morphism. A further difference is that we allow arbitrary
probability annotations, amounting to a form of weighted
counting; in particular, facts can be given probability 1.

Problem statement. Inspired by the connection to graph
homomorphism and CSP, in this paper we investigate the
probabilistic query evaluation problem for conjunctive queries
on tuple-independent instances, over arity-two signatures. To
our knowledge, our paper is the first to focus on the combined
complexity of conjunctive query evaluation on probabilistic
relational data. For simplicity of exposition, we will phrase
our problem in terms of graphs: given a query graph and a
probabilistic instance graph, where each edge is annotated
by a probability, we must determine the probability that the
query graph has a homomorphism to the instance graph, i.e.,
the total probability mass of the subgraphs which ensure this,
assuming independence between edges. We always assume
the query and instance graphs to be directed.

As we will see, the problem is generally intractable, so
we will have to study restricted settings. We accordingly
study this problem under assumptions on the query and
input graphs. Inspired by our prior intractability results [7],
one general assumption that we will make is to impose tree-
likeness of the instance. In fact, we will generally restrict
it to be a polytree, i.e., a directed graph whose underlying
undirected graph is a tree. As we will see, however, even this
restriction does not suffice to ensure tractability, so we study
the impact of several other features:

e Labels, i.e., whether edges of the query and instance can
be labeled by a finite alphabet, as would be the case
on a relational signature with more than one binary
predicate.

e Disconnectedness, i.e., allowing disconnected queries
and instances.

e Branching, i.e., allowing graphs to branch out, instead
of requiring them to be a path.

o Two-wayness, i.e., allowing edges with arbitrary orien-
tation, instead of requiring all edges to have the same
orientation (as in a one-way path, or downward tree).

We accordingly study our problem for labeled graphs and
unlabeled graphs, and when query and instance graphs are in
the following classes, that cover the possible combinations
of the above characteristics: one-way and two-way paths,
downward trees and polytrees, and disjoint unions thereof.

Results. This paper presents our combined complexity re-
sults for the probabilistic query evaluation problem in all
these settings. After introducing the preliminaries and defin-
ing the problem in Section 2, we first study the impact of
disconnectedness in instances and queries in Section 3. While
we can easily show that disconnectedness does not matter
for instances (Lemma 3.7), we show that disconnectedness
of queries has an unexpected impact on complexity: in the
labeled case, even the simplest disconnected queries on the
simplest kinds of instances are intractable (Proposition 3.3):
this result is shown via the hardness of counting edge covers
in bipartite graphs. The picture for disconnected queries is
more complex in the unlabeled case (see Table 1): indeed,
the problem is still hard when allowing two-wayness in the
query and instance (as it can be used to simulate labels, see
Proposition 3.4), but disallowing two-wayness in the instance
ensure tractability of all queries. This latter result (Propo-
sition 3.6) is established by showing that all queries then
essentially collapse to a one-way path: we do so by assigning
a level to all vertices of the query using a notion of graded
DAGSs [28, 30].

We then focus on connected queries, and first study the
labeled setting in Section 4; see Table 2 for a summary of
results. We show that disallowing instance branching ensures
the tractability of all connected queries (Proposition 4.11),
and that disallowing branching in the query and two-wayness
in the instance and query also does (Proposition 4.10). These
two results are shown by computing a Boolean lineage of
the query [32], and proving that we can tractably evaluate
its probability because it is S-acyclic [11], thanks to the
restricted instance structure. For the first result, this process
further relies on a CSP tool to show the tractability of
homomorphism testing in labeled two-way paths, a condition
dubbed the X-property [25, 23]. We show the intractability
of all other cases (Propositions 4.1, 4.4, and 4.5), by coding
#SAT-reduction, reusing in part a coding from [3].

We last study the unlabeled setting for connected queries
in Section 5. We show that disallowing query branching
and two-wayness suffices to obtain tractability, provided that
the instance is a polytree (Proposition 5.4): this result is
proven by building in PTIME a deterministic tree automaton
to test the length of the longest path, and compiling a d-
DNNF lineage as in [4]. This result immediately extends to
branching queries, as they are equivalent to paths in this
case (Proposition 5.5). We complete the picture by showing
that, by contrast, allowing two-wayness in the query leads
to intractability on polytrees, by a variant of our coding
technique (Proposition 5.6). We then conclude in Section 6.

Our results completely classify the complexity of proba-
bilistic conjunctive query evaluation for all combinations of
instance and query restrictions, in the labeled and unlabeled
setting. Full proofs are given in appendix.



2. PRELIMINARIES

We first provide some formal definitions of the concepts
we use in this paper, and introduce the probabilistic graph
homomorphism problem and the different classes of graphs
that we consider.

Graphs and homomorphisms. Let o be a finite non-empty
set of labels. When |o| > 1, we say that we are in the labeled
setting; when |o| = 1, in the unlabeled setting.

We consider directed graphs with edge labels from o, i.e.,
triples H = (V, E, A) with V' a non-empty finite set of vertices,
E C V? aset of edges, and X : E — ¢ a labeling function. We

write a - b for an edge e = (a, b) with label A(e) = R. Note
that we do not allow multi-edges: an edge e has a unique
label A(e). When |o| =1, i.e., in the unlabeled setting, we
simply write (V, E) for the graph and a — b for an edge.
Unless otherwise specified, all graphs that we consider in this
paper are directed.

A graph H' = (V' E’, \) is a subgraph of the graph H =
(V,E,\), written H' C H, when we have V' =V, E' C E,
and when A’ is A g, i.e., the restriction of A to E’. (Note that,
in a slightly non-standard way, we impose that subgraphs
have the same set of vertices than the original graph; this
will simplify some notation.)

A graph homomorphism h from some graph G = (Va, Eg, Aa)
to some graph H = (Vg, Eg, Ag) is a function h: Vg — Vg
such that, for all (u,v) € Eq, we have (h(u),h(v)) € En
and further Ag ((h(u), h(v))) = Aa((u,v)). A match of G
in H is the image in H of such a homomorphism A, i.e., the
graph with vertices h(u) for u € Vo and edges (h(u), h(v)))
for (u,v) € Eg. Note that two different homomorphisms
may define the same match. Also note that two distinct
nodes of G could have the same image by h, so a match of G
in H is not necessarily homomorphic to G. We write G ~ H
when there exists a homomorphism from G to H. We call
two graphs G and G’ equivalent if, for any graph H, we have
G ~ H iff G’ ~ H. It is easily seen that G and G’ are
equivalent if and only if G ~ G’ and G’ ~ G.

Probabilistic graphs. A probability distribution on graphs
is a function Pr from a finite set W of graphs (called the
posstible worlds of Pr) to values in [0; 1] represented as rational
numbers, such that the probabilities of all possible worlds
sum to 1, namely, >, ., Pr(H) = 1.

A probabilistic graph is intuitively a concise representation
of a probability distribution. Formally, it is a pair (H, )
where H is a graph with edge labels from o and where 7 is
a probability function 7 : E — [0; 1] that maps every edge e
of H to a probability 7(e), represented as a rational number.
Note that each edge (u,v) in a probabilistic graph (H, ) is
annotated both with a label A((u,v)) € o, and a probability
m((u,0)).

The probability distribution Pr defined by the probabilistic
graph (H, ) is obtained intuitively by considering that edges
are kept or deleted independently according to the indicated
probability. Formally, the possible worlds W of Pr are the
subgraphs of H = (V, E, A), and for H' = (V,E', \pr) C H
we define Pr(H') := [ ¢ 7(e) x [ c\ g/ (1 — 7(€)). Note
that, when H has edges labeled with 0 or 1, some possible
worlds are given probability 0 by .

EXaAMPLE 2.1. Figure 1 represents a probabilistic graph
(H,m) on signature o = {R, S}, where each edge is annotated

0.1 o R
R||S

0.8110.7

R 0.05
1 . R

H: o

Figure 1: Example probabilistic graph H

with its label and probability value. There are 2° possible
worlds, 2° of which have non-zero probability.

The possible world where all R-edges are kept and all S-
edges are removed has probability 0.1 x 1 x 0.8 x 0.1 x 0.05 X
(1-0.7).

Probabilistic graph homomorphism. The goal of this pa-
per is to study the probabilistic homomorphism problem
PHom, for the set of labels o that we fixed: given a graph
G on o and a probabilistic graph (H,m) on o, compute the
probability that there exists a homomorphism from G to H
under Pr, i.e., the sum of the probabilities of all subgraphs
of H' to which G has a homomorphism:

Pr(G~ H) := Z Pr(H").

H'CH
G~H'

ExAMPLE 2.2. Continuing the ezample, consider the PHom

problem for the graph G : B, 5,5 and the example probabilis-
tic graph (H,r) in Figure 1. The graph G intuitively corre-
sponds to the relational calculus query Ixyzt R(z, y)AS(y, z)A
S(t, z). Of course, we can compute Pr(G ~ H) by summing
over the possible worlds of H, but this process is generally
intractable. Here, by considering the possible matches of G in

H, we can see that Pr(G ~ H) = 0.7x(1—(1-0.1)x(1-0.8)).

Following database terminology, we call G the query graph
and (H,w) the (probabilistic) instance graph. Indeed, the
PHom problem is easily seen to be equivalent to conjunctive
query evaluation on probabilistic tuple-independent relational
databases [20], over binary relational signatures.

Note that, in this paper, we measure the complexity of
PHom as a function of both the query graph G and of the in-
stance graph (H, ), i.e., in database terminology, we measure
the combined complezity [34] of probabilistic query evalua-
tion. The PHom problem is known to be #P-hard in general
[19] (even for some fixed query graphs): by this, we mean
that it is hard (under polynomial-time reductions) for the
class #P of counting problems that can be expressed as the
number of accepting paths of a nondeterministic polynomial-
time Turing machine. To achieve tractable complexity for
PHom, we will classify the complexity of PHom under various
restrictions. We say that the complexity of some variant of
the problem is tractable if the probability can be computed
by a deterministic polynomial-time Turing machine: by a
slight abuse of terminology, we then say that it is in PTIME.
All PHom variants that we study will be shown either to be
PTIME in this sense, or to be #P-hard.

We will study restrictions of PHom first by distinguishing
the labeled and unlabeled settings. We write PHom for the
problem when the fixed label set ¢ is such that |o| > 1, and
PHomy when the fixed o is such that |o| = 1.
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Figure 2: Inclusions between classes of graphs

R S S T

\ \
4 L4

R S S T R

N L y) N L
Y h) )

~
~

Figure 3: Example of labeled 1WP (top) and 2WP
(bottom) for o ={R,S,T}.

The second restriction concerns the input query graphs
and instance graphs. We will model restrictions on these
graphs by requiring them to be taken from specific graph
classes, where by graph class we simply mean an infinite set
of graphs. Inspired by the notation used in CSP, for two
classes G and H of graphs in the labeled setting, we denote
PHom (G, H) the problem that takes as input a graph G in
class G and a probabilistic graph (H,7) with H in class H,
and computes the probability Pr(G ~» H). We denote the
same problem in the unlabeled setting by PHomy (G, H).

Graph classes. The graph classes which we study in this
paper are defined as follows, on a graph G with edge labels
from o

e G is a one-way path (IWP) if it is of the form aq Ei2N
R — . .
. Yy am for some m, with all a1, ..., am being

pairwise distinct, and with R; € o for 1 < i < m.
e G is a two-way path (2WP) if it is of the form a1 —
- — am, with all a1, ..., a, being pairwise distinct,

and each — being Ly or & (but not both) for some
label R; € 0.

e G is a downwards tree (DWT) if it is a rooted unranked
tree (each node can have an arbitrary number of chil-
dren), with all edges going from parent to child in the
tree.

e G is a polytree (PT) if its underlying undirected graph is
an unranked tree, without restriction on edge directions.

We also consider the class Connected of connected graphs,
and write All the class of all graphs. The inclusion diagram
between our graph classes is shown in Figure 2. See Figure 3
for an example of a labeled one-way path and two-way path,
and Figure 4 for an unlabeled downwards tree and polytree.

We also introduce the classes | | IWP (resp., | |2WP, | |DWT,
LIPT) of graphs that are disjoint unions of IWP (resp., 2WP,
DWT, PT), that is, of possibly disconnected graphs whose
connected components are 1IWP (resp., 2WP, DWT, PT).

Our graph classes were chosen to be representative of
different features of graphs that will have an impact in the
complexity of the PHom problem, namely, labeling, two-
wayness, branching, and disconnectedness. Indeed, 2WP
(resp., PT) adds two-wayness to IWP (resp., DWT); DWT
(resp., PT) adds branching to 1IWP (resp., 2WP); and | | 1WP
(resp., | |2WP, | |DWT, | | PT) adds disconnectedness to 1IWP
(resp., 2WP, DWT, PT).

<N RN
NN IN LN

NN VAR
/N L TN

Figure 4: Examples of unlabeled DWT (left) and PT
(right)

In the following sections, we investigate the complexity of
probabilistic graph homomorphism for these various classes
of conjunctive queries and instances.

3. DISCONNECTED CASE

We first consider the case where either the query or proba-
bilistic instance graph is disconnected, i.e., not in the Connected
class. When the query is disconnected, we show in this section
that the probabilistic homomorphism problem is #P-hard
in all but the most restricted of cases (in particular in the
labeled setting), which justifies that we restrict to connected
queries in the rest of the paper. On the other hand, we
will show that disconnectedness in the probabilistic instance
graph has essentially no impact on combined complexity.

3.1 Labeled Disconnected Queries

We establish our main intractability result on disconnected
queries by reduction from the #Bipartite-Edge-Cover prob-
lem on undirected graphs:

DEFINITION 3.1. An undirected graph is bipartite if its
vertices can be partitioned into two classes such that no edge
connects two vertices of the same class. An edge cover of an
undirected graph is a subset of its edges such that every vertex
is incident to at least one edge of the subset. #Bipartite-
Edge-Cover is the problem, given a bipartite undirected graph,
of counting its number of edge covers.

This problem was shown in [26] to be intractable. The
result can also be proven using Valiant’s holographic re-
ductions [33] and the results of Cai, Lu, and Xia [14], as
explained in [35]: see Appendix D.

THEOREM 3.2. [26, 14, 35] The #Bipartite-Edge-Cover
problem is #P-complete.

We can then use this result to show intractability for the
simplest forms of disconnected query graphs (| | IWP) on the
simplest forms of probabilistic instance graphs (1WP), in the
labeled case:

PROPOSITION 3.3. PHom( (| |IWP, 1WP) is #P-hard.

ProoOF. We reduce from #Bipartite-Edge-Cover. Let
I' = (X UY, E) be an input to #Bipartite-Edge-Cover, i.e.,
a bipartite undirected graph with parts X and Y; we write
X = (331,“.755711)7 Y = (ylv--wynr)a E= (61,-..7€m), and
for all 1 <4 < m we write e; = (x1,,¥r,;), with 1 < I; < m
and 1 < r; < ne.

We first construct in PTIME the 1WP probabilistic graph
(H,m): see Figure 5 for an illustration of the construction.
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Figure 5: Illustration of the proof of Proposition 3.3, for the bipartite graph I'. Dashed edges have probability

1

5. We show (in parentheses) the edge of I' coded by each V-labeled edge in the instance graph H, and the

vertex of I' coded by each 1IWP component of the query graph G.

Specifically, for 1 < j < m, we construct the following 1WP:
H,, = (5 Y (B,

The graph H is then defined as:

SH, S H,S S H, S,
We define 7 as follows: edges labeled by V' have probability %
(intuitively coding whether an edge is part of the candidate
cover), all others have probability 1.
We then construct the query graph G € | |[IWP, coding
the edge covering constraints. For every 1 < ¢ < nj, the

graph G contains the 1WP component < (£>)1 L, and for

every 1 <1 < ny, the graph G contains the 1IWP component
V. ,R

RAYENTEN

It is clear that H is in 1WP, G is in | J]1WP and that
both can be constructed in PTIME from I'. We now show
that Pr(G ~ H) is exactly the number of edge covers of I"
divided by 2™, so that the computation of the latter reduces
in PTIME to the computation of the former, concluding the
proof.

To see why, we define a bijection between the subsets of
edges of T, seen as valuations v : E — {0, 1}, to the possible
worlds H' of H of non-zero probability. We do so in the
expected way: keep the one V-edge Y of H,, iff v(e;) =1.
We now show that there is a homomorphism from G to H’
if and only if v is an edge cover of I'. As the number of H'’s
such that there is a homomorphism from G to H' is exactly
Pr(G ~ H) x 2™, this will allow us to conclude.

Indeed, if there is a homomorphism h from G to H’, then,
considering the 1IWP component in G that codes the con-

straint on z; (resp., on y;), its image must be of the form

< (i>)‘ N (resp., N (£>)Z i>), but then by construction

of H the V-fact must correspond to an edge e such that x;
(resp., y;) is adjacent to e, so that we have v(e) = 1 and
so x; (resp., y;) is covered. As this is true for each 1WP
component, all the vertices are covered and v is indeed an
edge cover of T'.

Conversely, suppose that v is an edge cover of I', then
for every vertex x; (resp., y;) we know that there exists
1 < 7 < m such that v(e;) =1 and I; = i (resp., r; = 1),
and we can use the V-fact corresponding to e; and the
surrounding facts to build the homomorphism as above from
each component of G to H'. O

Table 1: Tractability of PHomy for disconnected
queries (Section 3.2). Results also hold when in-
stances are unions of the indicated classes.

1G H— | IWP 2WP DWT PT Connected
[]1wP 5.1
Lj2wp
LI DWT 5.5
L|PT
All 3.6

[PTIME]| [#£P-hard| Numbers given correspond to proposi-
tions for border cases, remaining cells can be filled using the
inclusions from Figure 2.

The proof of Proposition 3.3 crucially requires multiple
labels in the signature. Indeed, it is easy to see that, in the un-
labeled setting, a query graph in | |1IWP (or even in | | DWT)
is equivalent to the longest path within the graph, and we
will show further (Proposition 5.5) that PHomy (1WP, 1WP)
(indeed, even PHomy(| |DWT, PT)) is PTIME.

3.2 Unlabeled Disconnected Queries

In light of this intractability result, let us now consider the
unlabeled setting. We show in Table 1 where the tractability
frontier lies. First, introducing two-wayness in both query
and instance graphs is enough to obtain an analogue of the
intractability of Proposition 3.3:

PROPOSITION 3.4. PHomy (| |2WP,2WP) is #P-hard.

PrOOF. We reduce, again, from the #P-hard problem
#Bipartite-Edge-Cover. The idea of the reduction is similar
to that used in the proof of Proposition 3.3, but we face
the additional difficulty of not being allowed to use labels.
Fortunately, we can use two-wayness to simulate them.

Let I' = (X UY,E) be an input of #Bipartite-Edge-
Cover. Consider the reduction from I' used in the proof
of Proposition 3.3 and the 1WP probabilistic graph (H, )
and the | |1IWP query graph G that were constructed. We
construct from H and G the unlabeled probabilistic graph H’
and unlabeled | |2WP query graph G’ as follows:

e replace each L- or R-labeled edge a Liborabin
H and G by 3 edges a ——+ b;

e replace each C-labeled edge a s bof H and G by 3
edges a <<+« b;



e replace each V-labeled edge a Y bof H and G by 6
edges a >————<b.

All edges of H' have probability 1, except the first edge
of each sequence of 6 edges that replaced a V-labeled edge,
which has probability %

Consider a 1IWP component of G that codes the constraint

V. Ry; C . .
on a vertex from Y, e.g — (—)° =, which was rewritten

in G’ into »————¢ (——<)" +—<<+. A homomorphism
from this component into a possible world J’ of H' must

actually map to a rewriting of a —» (g)z < sequence
in H': indeed, the key observation is that the first 5 —
edges can only be matched to 5 consecutive — in J’, which
only exist as the first 5 edges of a sequence of 6 edges that
replaced a V-labeled fact in H. There is no choice left
to match the subsequent edges without failing. A similar

observation holds for components coding the constraints

. C. Ly V
on vertices from X (— (—)* —). Hence, we can show

correctness of the reduction using the same argument as
before. O

Allowing two-wayness in both the query and the instance
graphs thus allows us to simulate labels, so that PHomy is
intractable. We will study in Section 5 what happens for
query graph classes without two-wayness (i.e., IWP, DWT,
and unions thereof); so let us now consider the case of in-
stance graph classes where two-wayness is forbidden, i.e.,
is in | |DWT. As we will show, PHomy of arbitrary query
graphs on such | | DWT instance graphs is tractable. To this
end, we need to introduce level mappings of acyclic directed
graphs (DAGs):

DEFINITION 3.5. A level mapping of a DAG G is a map-
ping p from the vertices of G to Z such that for each directed
edge w — v of G we have p(v) = p(u) —1. We call G a
graded DAG if it has a level mapping.

An example of graded DAG together with a level mapping
is given in Figure 6. It is easy to see (and shown in Proposi-
tion 1 of [28]) that a DAG G is graded iff there are no two
vertices u, v and two directed paths x, X’ in G from u to v
such that x and x’ have different lengths (in the terminology
of [28], G does not have a jumping edge). Graded DAGs are
related to the classical notion of graded ordered set [30], and
the level mapping function has been called in the literature a
depth function [28], a grading function [30], a set of levels [30],
or a rank function [31].

To obtain such a level mapping, we can proceed by picking
one vertex in each connected component of G, mapping
each of these vertices to level 0, and then exploring G by a
breadth-first traversal and assigning the level of each vertex
according to the level of the vertex used to reach it, visiting
all edges and defining the image of each vertex. It is clear
that this process yields a level mapping of G unless it tries to
assign two different levels to the same vertex v, which cannot
happen if there is no jumping edge [28, Proposition 1].

We will now use the notion of graded DAG to show:

PROPOSITION 3.6. PHomy(All,| |DWT) is PTIME.

PROOF SKETCH. We only give the idea when the query
graph is connected and the graph instance H is a DWT (see
Appendix for full proof). As we pointed out already, if the
query graph G is not a graded DAG, then it has a cycle or
a pair of vertices joined by two directed paths of different

Figure 6: A DAG with a level mapping (dashed
lines), see Definition 3.5.

lengths: then, from the structure of the DWT instance graph,
this clearly implies that Pr(G ~ H) = 0. So it suffices to
study the case when G is a graded DAG.

As we explained earlier, we can then compute in PTIME
a level mapping p of G. It is clear that, as GG is connected,
the level mapping p is uniquely defined up to an additive
constant. Hence, we shift u so that the smallest value of its
image is 0, and we then call the difference of levels of G the
largest value m in the image of u. Note that m is not the
maximal length from a root of G to a leaf of G (see, e.g.,
Figure 6). We then claim that, on any possible world H’
of the DWT instance graph H, the query graph G is in fact
equivalent to the IWP query graph —"" of length m. This
allows us to conclude using Proposition 5.5.

One direction is easy to observe, because p directly gives
a homomorphism from G to —™. For the converse, suppose
that a homomorphism h from G to H' exists. Because G is
connected and H' is in | |DWT, the image of h is actually
a DWT, call it T'. Now it is easy to see that the image of a
node that has level m — ¢ in G has depth ¢ in T, so that T’
(and so H') contains the IWP —™. O

3.3 Disconnected Instances

We conclude our study of the disconnected case with the
case of disconnected instance graphs, which we show to be
less interesting than the disconnected query graphs that we
studied so far. Specifically, when the query is connected,
PHom on arbitrary instances can reduce in PTIME to PHom
of the same queries on a corresponding class of connected
instances:

LEMMA 3.7. For any class of graphs H, let H' be the class
of connected components of graphs in H. Then for any class
of connected graphs G, PHom (G, H) reduces in PTIME
to PHom (G, H'), and PHomy (G, H) reduces in PTIME to
PHomy (G, H).

PRrROOF. Let G € G, H € H, and write H = Hy U ... U H}:
we have H] € H' for all 1 < i < n. Let m be a probability
distribution over H: the independence assumption ensures
that the edges of any H| are pairwise independent from those
of any H for i # j. Now, as G is connected, any image of a
homomorphism from G to H must actually be included in
some H;. Thus, the computation of Pr(G ~» H) reduces to
that of the Pr(G ~ HY) for 1 < i < n, as follows:

Pr(G~ H)=1- [] A -Pr(G~ H})). O

1<i<n



Table 2: Tractability of PHom_ in the connected case
(Section 4)

1G H— | IWP 2WP DWT PT Connected
1WP 4.10 | 4.1
2WP 4.5
DWT 4.4
PT
Connected 4.11

[PTIME]| [#£P-hard| Numbers given correspond to proposi-
tions for border cases, remaining cells can be filled using the
inclusions from Figure 2.

We last discuss the case when both the query and instance
graphs are disconnected. Let us consider the results of Ta-
ble 1 for connected instance graphs. Clearly, any hardness
results of a connected class carries over to the corresponding
disconnected class. Conversely, we have shown in Propo-
sition 3.6 that PHomy (All,| |DWT) is PTIME; this implies
that all tractable cases in Table 1 also hold for unions of the
indicated instance classes, except PHomy (| |IWP,| |PT) and
PHomy (||DWT,| |PT). But we have noted at the end of
Section 3.1 that, in the unlabeled setting, | | 1IWP or | |DWT
query graphs are equivalent to 1WP query graphs: thus,
Lemma 3.7, together with tractability of PHomy (1WP, PT),
implies PHomy (| |1WP,| |PT) and PHomy (| |DWT,| |PT)
are both in PTIME. Hence, the results of Table 1 also hold
when instances are unions of the indicated classes.

We have thus completed our study of PHom_ and PHomy
for disconnected instances and/or disconnected queries, We
accordingly focus on connected queries and instances in the
next two sections.

4. LABELED CONNECTED QUERIES

In this section, we focus on the labeled setting, i.e., the
PHom_ problem, for classes of connected queries and in-
stances. Table 2 shows the entire classification of the labeled
setting for the classes that we consider.

Intuitively, we show intractability for polytree instance
graphs, and for downward trees instance graphs when the
query graphs allow either two-wayness or branching. Con-
versely, we show tractability of one-way path query graphs
on downward trees, and of arbitrary connected queries on
two-way path instances. We first present the hardness results,
and then the tractability results.

4.1 Hardness Results

We recall that, if we allow arbitrary connected unlabeled
probabilistic instance graphs (or even just 4-partite graphs),
then computing the probability that there exists a path of
length 2 is already #P-hard: this is shown in [32], and we
will state this result in our context as Proposition 5.1 in the
next section. Hence, if we want to obtain PTIME complexity
for PHom, we need to restrict the class of instances. We can
start by restricting the instances to be polytrees, but as we
show, this does not suffice to ensure tractability:

PROPOSITION 4.1. PHom (IWP,PT) is #P-hard.

To show this result, we will reduce from the problem of
computing the probability of a Boolean formula, which we
now define:

DEFINITION 4.2. Given a set of variables X and a prob-
ability assignment 7™ mapping each variable X in X to a
rational probability w(X) € [0, 1], we define the probability
w(v) of a valuation v : X — {0,1} as

m(v) = ( II (X)) ( II

Xex, v(X)=1 XeX, v(X)=0

(1-7(X))).

The Boolean probability computation problem is defined as
follows: given a Boolean formula ¢ on variables X and a prob-
ability assignment m on X, compute the total probability of the
valuations that satisfy ¢, i.e., Pr(p,m) =3 w(v).

v satisfies p

This problem is known to be #P-hard, even under severe
restrictions on the formula . We will use the #PP2DNF
formulation of the above problem, which is #P-hard [29, 32]:

DEFINITION 4.3. A positive DNF is a Boolean formula ¢ of
the form o =\ cicpm (/\léani X,-,j), i.e., it is a disjunction
of (conjunctive) clauses that are conjunctions of variables
of X. We assume that each variable of X occurs in ¢, as we
can eliminate the others without loss of generality.

A positive partitioned 2-DNF (PP2DNF) is intuitively
a positive DNF ¢ on a partitioned set of variables where
each clause contains one variable from each partition. For-
mally, the variables of ¢ are X U, where we write X =
{X1,..., X} and Y ={Y1,...,Yn,}, and ¢ is of the form
Vici m(Xa; AYy,) with1 <z; <niand 1< y; <na for
1<j<m.

The #PP2DNF problem is the Boolean probability computa-
tion problem when we impose that ™ maps every variable to
1/2, and that ¢ is a PP2DNF.

We show Proposition 4.1 by reducing from #PP2DNF:

PrOOF SKETCH. The full proof is in appendix; see Fig-
ure 7 for an illustration. From the PP2DNF formula ¢, we
construct a PT probabilistic instance where each branch start-
ing at the root describes a variable of the formula. The first
edge is probabilistic and represents the choice of valuation.
The edges are oriented upwards or downwards depending on
whether the variable belongs to X or to ). We add a special
gadget at different depths of the branch to code the index of
each of the clauses where the variable occurs.

We code satisfaction of the formula by a query that tests
for a path of a specific length that starts and ends with
the gadget. The query has a match exactly on possible
worlds where we have set two variables to true such that the
sum of the depths of the gadgets corresponds to the query
length: this happens iff the two variables occur in the same
clause. O

Hence, restricting instances to polytrees is not sufficient
to ensure tractability, even for IWP query graphs. We must
thus restrict the instance further, by disallowing one of the
two remaining features, namely branching and two-wayness.
The first option of disallowing branching, i.e., requiring the
instance to be a 2WP, is studied in Section 4.2 below, where
we show that the problem is tractable for arbitrary query
graphs.

The second option is to forbid two-wayness on the instance,
i.e., restrict it to be a DWT. In this case, we first show that
intractability holds even when we also forbid two-wayness
in the query graph, i.e., we also restrict it to be a DWT.
The result follows from our earlier work on the combined
complexity of query evaluation [2, 3]:
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Figure 7: Illustration of the proof of Proposition 4.3
for the PP2DNF formula X1Y>V X1Y:V XsY>. Dashed
edges have probability %, all others have probability
1.

PROPOSITION 4.4 [3]. PHom (DWT,DWT) is #P-hard.

If we forbid branching in the query graph instead of two-
wayness, requiring it to be a 2WP, then intractability still
holds, which also follows from our earlier results:

PROPOSITION 4.5 [3]. PHom (2WP,DWT) is #P-hard.

Thus, on DWT instances, the only remaining case is when
the query is a one-way path. We will now show in the section
below that this case is tractable, in addition to the case of
arbitrary queries on 2WP instances that we left open above.

4.2 Tractability Results

The general proof technique to obtain PTIME combined
complexity in this section is inspired by the probabilistic
database literature [32]: compute the lineage of G on H as a
Boolean formula in positive disjunctive normal form (DNF),
then compute its probability. Let us first define lineages:

DEFINITION 4.6. Let G be a query graph and (H,T) be
a probabilistic graph with edge set EE. For any valuation
v:E — {0,1}, we denote by v(H) the possible world of H
where each edge e € E is kept iff v(e) = 1. Letting ¢ be a
Boolean function whose variables are the edges of E, we say
that ¢ captures the lineage of G on H if, for any valuation
v: E —{0,1}, the function ¢ evaluates to 1 under v iff we
have G ~ v(H).

Lineage representations allow us to reduce the PHom prob-
lem to the Boolean probability computation problem on
the lineage function (recall Definition 4.2). Formally, for
any query graph G and probabilistic graph (H,7), given a
Boolean function ¢ that captures the lineage of G on H, we

compute the answer to PHom on G and (H,7) as the prob-
ability Pr(p, ) of ¢ under 7: it is immediate by definition
that these two quantities are equal.

Of course, computing a lineage representation does not gen-
erally suffice to show tractability, because, as we explained
earlier, the Boolean probability computation problem is gen-
erally intractable. However, computing a Boolean lineage
allows us to leverage the known tractable classes of Boolean
formulas. Specifically, we will show how to use the class
of B-acyclic positive DNF' formulas, which are known to be
tractable [11]. We define this notion, by first recalling the no-
tion of a B-acyclic hypergraph, and then defining a B-acyclic
positive DNF':

DEFINITION 4.7. A hypergraph H = (V, E) is a finite set V
of vertices and a set E of non-empty subsets of V', called
hyperedges. For v € V, we write H \ v for the hypergraph
(V\{v}, E') where E" is {e\ {v} | e € E}\ {0}.

A vertex v € V of H is called a B-leaf [10] if the set
of hyperedges that contain it, i.e., {e € E | v € e}, is
totally ordered by inclusion. In other words, we can write
{e€ E|v € e} as(el,...,er) in a way that ensures that
ei Ceipr1 foralll <i<k.

A B-elimination order for a hypergraph H = (V,E) is
defined inductively as follows:

e if £ =0, then the empty tuple is a (B-elimination order
for H;

e otherwise, a tuple (vi,...,vn) of vertices of H is a
B-elimination order for H if vi is a B-leaf in H and
(v2,...,vn) 18 a B-elimination order for H \ v1.

The hypergraph H is B-acyclic if there is a [B-elimination
order for H.

We can see a positive DNF (recall Definition 4.3) as a
hypergraph of clauses on the variables, and introduce the
notion of B-acyclic positive DNFs accordingly:

DEFINITION 4.8. The hypergraph H(¢) of a positive DNF
on variables X has X as vertexr set and has one hyperedge
per clause, i.e., we have H(p) = (X, E) with E := {{X;; |
1<j<ni}|1<i<m}. We say that the positive DNF ¢
is B-acyclic if H(yp) is B-acyclic.

It follows directly from results by Brault-Baron, Capelli,
and Mengel about the -acyclic #CSPq problem [11] that we
can tractably compute the probability of -acyclic positive
DNFs:

THEOREM 4.9. The Boolean probability computation prob-
lem is in PTIME when restricted to B-acyclic positive DNF
formulas.

PROOF SKETCH. The #CSP4 problem studied in [11] is
about computing a partition function over the hypergraph,
under weighted constraints on hyperedges: it generalizes the
problem of counting the number of valuations of g-acyclic for-
mulae in conjunctive normal form (CNF) by [11, Lemma 3].
We show how the result extends to S-acyclic positive DNF,
using de Morgan’s law, and to probability computation for
weighted variables, using additional constraints on singleton
variable sets. (]

We will then use the tractability of B-acyclic formulas to
show PTIME combined complexity results for our PHom,
problem. The first result that we show is tractability for



labeled 1IWP query graphs on DWT probabilistic instance
graphs:?

PROPOSITION 4.10. PHom (IWP,DWT) is PTIME.

PROOF SKETCH. Intuitively, the proof proceeds in three
steps. The first step is to enumerate all candidate minimal
matches of the query graph in the instance graph, i.e., sub-
graphs of the instance graph to which the query graph could
have a homomorphism, and which are minimal for inclusion.
As the query graph is a path, we know that the minimal
matches are downward paths in the DWT instance: hence,
as each vertex of the DWT instance can be the lowest vertex
of at most one match, there are polynomially many matches
to consider.

The second step is to decide which ones of these matches
are actually a match of the query, by considering the labels:
as both the query graph and the match are a 1WP, this is
straightforward. These first two steps produce a positive
DNF that captures the lineage of the query graph on the
instance in the standard sense.

The third step is to notice that this lineage expression is
[B-acyclic: this is because its variables can be eliminated by
considering the nodes of the instance DWT in a bottom-up
fashion. O

Interestingly, we were not able to prove this result using
tree automata-based dynamic programming approach (like
we will do later for Proposition 5.4).

The second result that we show is tractability when re-
stricting the instance to be a 2WP, and allowing arbitrary
connected queries (remember from Proposition 3.3 that the
problem is hard even on 1WP instances if we allow discon-
nected queries):

PROPOSITION 4.11. PHom (Connected, 2WP) is PTIME.

To show this result, we follow the same scheme as in the
proof of Proposition 4.10 above: (i) enumerate all candidate
matches; (ii) check whether they are indeed matches; and
(iii) argue that the resulting lineage is B-acyclic. For the
first step, there are polynomially many candidate matches
to consider, because matches are necessarily connected sub-
graphs of the instance graph H, that are uniquely defined by
their endpoints: this is where we use connectedness of the
query. For the third step, the resulting lineage is S-acyclic for
the same reason as in Proposition 4.10, as we can eliminate
variables following the order of the path H: all connected
subpaths containing an endpoint of the path are ordered by
inclusion. What changes, however, is the second step: from
the quadratically many possible matches, to compute the
lineage expression, we must decide which ones are actually
matches.

Deciding this for each subpath amounts to testing, given
the connected query graph G and a candidate match H’,
whether G ~» H’, in the non-probabilistic sense. This graph
homomorphism problem is generally intractable, but here the
minimal match H' is a 2WP (as it is a subpath of H), so it
turns out to enjoy combined tractability. The corresponding
result was first shown by Gutjahr [25] for unlabeled graphs,
when the instance graph is a path, or for more general in-
stances satisfying a condition called the X-property; this was

2The connection to B-acyclicity in this context is due to
Florent Capelli.

generalized to labeled graphs by Gottlob, Koch, and Schulz
in [23]. We recall here the definition of this property:

DEFINITION 4.12 (DEFINITION 3.2 OF [23]). Let H =
(V,E,\) be a directed graph with labels on o, let R € o, and
let < be a total order on V. Then R is said to have the
X-property w.r.t. < if for all no,ni,n2,n3 € V such that

. R R
no < n1 and ne < ng, if we have no — n3 and n1 — na then

we also have ng EiN na. H is said to have the X-property
w.r.t. < if it is the case of each label R.

THEOREM 4.13. (Theorem 8.5 of [23], extending Theo-
rem 8.1 of [25]) Given a labeled query graph G, and given
a labeled directed graph H with the X -property w.r.t. some
order <, we can determine in time O(|H| x |G|) whether
G~ H.

We can use this result to check, for all connected subpaths
of the 2WP instance graph, whether the query graph has a
homomorphism to the subpath. This leads to the following
sketch for the proof of Proposition 4.11 (the full proof is in
Appendix):

PRrROOF SKETCH. We proceed following the three-step pro-
cess outlined above. We first enumerate the possible query
matches in the instance, i.e., the quadratic number of con-
nected subpaths. Second, we test for each subpath a; —--- —
a;+r whether it satisfies the query. We can do so tractably
because the subpath clearly has the X-property w.r.t. the
order a; < --- < aj+k: using the notation of Definition 4.12,
there are in fact no ng, n1,nz2,n3 that satisfy the conditions.
Third, having computed the resulting DNF, we compute its
probability using B-acyclicity, eliminating variables in the
order of the path as we explained above. O

S. UNLABELED CONNECTED QUERIES

We now turn to the unlabeled setting, whose classification
is presented in Table 3. We start with an intractability result
which follows directly from the well-known intractability of
query evaluation in probabilistic databases [32]:

PROPOSITION 5.1 [32]. The PHomy (1WP, Connected) prob-
lem is #P-hard.

Proor. Example 3.3 of [32] states that the conjunctive
query 3z3y3z U(z,y) AU(y, z) is #P-hard on TID instances.
In other words, PHomy ({——1}, All) is #P-hard, which im-
plies the #P-hardness of PHomy(1WP, All). We conclude
using Lemma 3.7, which provides a PTIME (Turing) re-
duction® from the PHomy (1WP, Connected) problem to the
PHomy (1WP, All) problem. O

Note that this PHomy (IWP, Connected) problem can be
phrased in a very simple way: given an unlabeled connected
probabilistic graph (H, ) and a length m as input (namely,
that of the IWP graph query), compute the probability that
H contains a directed path of length m.

This result suggests that, to obtain tractability, we need
to restrict the instance graphs. In fact, such tractability
results were already obtained in the previous sections. In
Section 3, we proved (Proposition 3.6) that PHomy (All, DWT)
has PTIME combined complexity. Similarly, in the previous

3Note that it is usual to define #P-hardness under Turing
reductions rather than under Karp reductions, as #P is a
counting complexity class.



Table 3: Tractability of PHomy in the connected case
(Section 5)

1G H— | IWP 2WP DWT PT Connected
1WP 5.1
2WP 5.6
DWT 5.5
PT
Connected 4.11 3.6

[PTIME]| [#£P-hard| Numbers given correspond to proposi-
tions for border cases, remaining cells can be filled using the
inclusions from Figure 2.

section, we proved that PHom( (Connected, 2WP) is PTIME
(Proposition 4.11), which means PHomy (Connected, 2WP) is
also PTIME. This completes the analysis of the unlabeled
case for IWP, 2WP and DWT instances (see Table 3), so the
only remaining case is that of PT instances.

We start our study of PHomy for PT instances with the sim-
plest queries, namely, 1WP, for which we will show tractabil-
ity. We will proceed by translating the 1IWP query to a
bottom-up deterministic tree automata [17]:

DEFINITION 5.2. Given an alphabet I', a bottom-up de-
terministic tree automaton on full binary (every node has
esther O or 2 children) rooted trees whose nodes are labeled
by I is a tuple A = (Q, F,, A), where:

(i) Q 1is a finite set of states;
(ii) F € Q is a subset of accepting states;
(#i) ¢ : ' — @ is an initialization function determining the
state of a leaf from its label;
(iv) A:T x Q* — Q is a transition function determining
the state of an internal node from its label and the states
of its two children.

Given a D-tree (T, \) (where A\ : T — T is the labeling
function), we define the run of A on (T, \) as the function
¢ : T — Q such that (1) o(1) = (A(l)) for every leafl of T';
and (2) p(n) = A(A(n), p(n1), p(n2)) for every internal node
n of T with children n1 and na. The automaton A accepts
(T, A) if its run on T maps the root of T to a state of F.

We will evaluate 1IWP queries by translating them to a
tree automaton and running it on an uncertain tree. This
will use again the notion of lineage (recall Definition 4.6),
which was extended in [4] to tree automata running on trees
with uncertain Boolean labels: the lineage of an automaton
on such a tree describes the set of annotations of the tree
that makes the automaton accept. In this context, the
lineage of deterministic tree automata was shown in [7] to be
compilable to a deterministic decomposable negation normal
form circuit [21]:

DEFINITION 5.3. A deterministic decomposable negation
normal form (d-DNNF) is a Boolean circuit C' with the fol-
lowing properties:

(i) megations are only applied to input gates;

(ii) the inputs of any AND-gate depend on disjoint sets of
input gates;

(iii) the inputs of any OR-gate are mutually exclusive, i.e.,
for any two input gates g1 # g2 of g, there is no val-
uation of the inputs of C under which g1 and g2 both
evaluate to true.

We can then straightforwardly extend the Boolean proba-
bility computation problem (Definition 4.2) to take circuits
as inputs, and the properties of d-DNNF circuits are de-
signed to ensure that the Boolean probability computation
problem restricted to d-DNNF has PTIME complexity [21].
Combining these tools, we can show that PHomy on one-way
path queries and polytree instances is tractable:

PROPOSITION 5.4. PHomy (1WP, PT) is PTIME.

PRrROOF SKETCH. The idea of the proof is to construct
in polynomial time in the query graph G a bottom-up de-
terministic automaton Ag, which runs on binary trees T'
representing possible worlds of the polytree instance H, and
accepts such a tree T iff the corresponding possible world
satisfies G. We can then construct a d-DNNF representation
of the lineage of G on H by [6, Theorem 6.11], which allows
us to efficiently compute Pr(G ~ H): the complexity of this
process is in O(]A¢| - |H|), hence polynomial in |H|-|G|. (An
alternative way to see this is to use the results of [16].)

Intuitively, the design of the bottom-up automaton ensures
that, when it reaches a node n after having processed the
subtree T, rooted at n, its state reflects three linear-sized
quantities about T,:

1. the length of the longest path leading out of n;

2. the length of the longest path leading to n;

3. the length of the longest path overall in T}, (not neces-

sarily via n).

The final states are those where the third quantity is greater
than the length of G. The transitions compute each triple
from the child triples by considering how the longest leading
paths are extended, and how longer overall paths can be
formed by joining an incoming and outgoing path. O

Hence, PT instances enjoy tractability for the simplest
query graphs. We now study whether this result can be
extended to more general queries. We first notice that this re-
sult immediately extends to branching (i.e., to DWT queries),
and even to unions of DWT queries. Indeed, in the unlabeled
setting, as we already observed at the end of Section 3.1,
such queries are equivalent to 1WP queries:

PROPOSITION 5.5. The problems PHomy (DWT,PT) and
PHomy (| |DWT,PT) are PTIME.

PrOOF. We first show the result for a DWT query graph G.
Let m be its height, i.e., the length of the longest directed
path it contains, and let G’ be the 1WP of length m, which
can be computed in PTIME from G. It is easy to observe
that G and G’ are equivalent. Indeed, we can find G’ as
a subgraph of G by taking any directed path of maximal
length, and conversely there is a homomorphism from G to
G': map the root of G to the first vertex of G’ and each
element of G’ at distance i from the root to the i-th element
of G'. Hence, PHomy on G and an input probabilistic PT
instance reduces to PHomy on G’ and the same instance, so
that the result follows from Proposition 5.4.

The same argument extends to | |DWT by considering the
greatest height of a connected component of G. (]

Thus, we have successfully extended from 1WP to | |[DWT
queries while preserving tractability on PT instances. How-
ever, as we now show, tractability is not preserved if we
extend queries to allow two-wayness. Indeed:

PROPOSITION 5.6. PHomy (2WP, PT) is #P-hard.



Proor. We adapt the proof of Proposition 4.1, but we
face the additional difficulty of not being allowed to use
labels. Fortunately, we can use the two-wayness in the query
graph to simulate labels.

We reduce from #PP2DNF (recall Definition 4.3): the in-
put consists of two disjoint sets X = {X1,...,Xn, }, VY =
{Y1,...,Yn,} of Boolean variables, and a PP2DNF formula
. We construct a 2WP query graph G’ and PT instance H’
with the same construction as the one that yielded H and G
in that proof, except that we perform the following replace-
ments (see Figure 8):

e replace every edge a 5 bof Hand G by 3 edges

a ——<b;

e replace every edge a L bof H and G by 3 edges
a —>——b.

In particular, the query graph is then defined as follows:
G i=——— (=)™ 5. All the edges of H' have
probability 1, except the middle edge of the edges that re-
placed the S-labeled edges used to code the valuation of
the variables (e.g., for X;, the middle edge of the 3 edges
X; ——+¢ R), which have probability .

One can check that any image of G’ must again go from
the vertex Az, ; to the vertex By, ; for some 1 < j < m.
The key insight is that the first —° of G must be matched
to a —°-path in H’, which only exist as the concatenation of
a —> obtained by rewriting a T-edge for some variable X,
and of the first —7 of the (undirected) path from X, ; to R.
Then there is no choice left to match the next edges without
failing.

From this we deduce that, from any possible world Hyy
of the modified instance H’, considering the corresponding
possible world Hw of the unmodified instance H following
the natural bijection, the modified query graph G’ has a
homomorphism to Hiy iff the unmodified query graph G
has a homomorphism to Hw. We thus conclude that the
probabilistic homomorphism problem on G’ and H' has the
same answer as the one on G and H, which finishes the
proof. O

6. CONCLUSION

We have introduced the probabilistic homomorphism prob-
lem, also known in the database community as probabilistic
evaluation of conjunctive queries on TID instances, and stud-
ied its combined complexity for various restricted classes of
query and instance graphs. Our classes illustrate the impact
on PHom of various features: acyclicity, two-wayness, branch-
ing, connectedness, and labeling. As we show, the landscape
is already quite enigmatic, even for those seemingly restricted
classes! In particular, we have identified four incomparable
maximal tractable cases, reflecting various tradeoffs between
the expressiveness that we can allow in the queries and in
the instances:

e arbitrary queries on unlabeled downward trees (Propo-
sition 3.6);

e one-way path queries on labeled downward trees (Propo-
sition 4.10);

e connected queries on two-way labeled path instances
(Proposition 4.11);

e downward tree queries on unlabeled polytrees
(Proposition 5.5);

1,3 )22’ 23 Y11 mes‘
Azz ; B 1
)RRIXLz Xoo Yio Yoo
A2 i Bi2 ;
le’l X21 Y13 Yo 3
A B3

G == (o) wom

Figure 8: Illustration of the proof of Proposition 5.6
for the PP2DNF formula X;Y2V XYV X2Y,. Dashed
edges have probability %, all the others have proba-
bility 1.

These results all extend to disconnected instances, as shown
in Section 3.3. The (somewhat sinuous) tractability border
is described in Tables 1, 2, and 3.

It is debatable whether the tractable classes we have identi-
fied yield interesting tractable cases for practical applications.
The settings of Propositions 3.6, 5.5, and 4.11 may look re-
strictive, as both labels and branching are important features
of real-world instances, though some situations may involve
unlabeled tree-like instances, or labeled words. The setting
of Proposition 4.10 may be richer, and is reminiscent of prob-
abilistic XML [27]: the instance is a labeled (downward) tree,
while the query is a path evaluated on that tree.

Future work. The query and instance features studied in
this paper could be completed by other dimensions: e.g.,
studying an unweighted case inspired by counting CSP where
all probabilities are 1/2 (as our hardness proofs seem to
heavily rely on some edges being certain); imposing sym-
metry in the sense of [8]; or alternatively restricting the
degree of graphs (though all our hardness proofs on poly-
trees and lower classes can seemingly be modified to work on
bounded-degree). Another option would be to modify some
of the existing dimensions: first, polytrees could be general-
ized to bounded-treewidth instances, as we believe that the
relevant tractability result (Proposition 5.5) adapts to this
setting; second, non-branching instances could be generalized
to bounded-pathwidth instances, or maybe general instances
with the X-property (recall Definition 4.12).

Of course, another natural direction would be to lift the
arity-two restriction, although it is not immediate to gen-
eralize the definition of our classes to work in higher arity
signatures. We could also extend the query language: in par-
ticular, allow unions of conjunctive queries as in [20]; allow a
descendant axis in the spirit of XML query languages [9]; or
more generally allow fixpoint constructs as done in [2] in the
non-probabilistic case. An interesting question is whether
an extended query language could capture the tractability



results obtained in the context of probabilistic XML by [16]
(remembering, however, that such results crucially depend on
having an order relation on node children [1]). Another pos-
sibility would be to search for extensions of the S-acyclicity
approach, and investigate which restrictions on the queries
and instances ensure that the lineages are -acyclic.

Last, the connection to CSP would seem to warrant further
investigation. In particular, we do not know whether one
could show a general dichotomy result on the combined
complexity of query evaluation on TID instances, to provide
a probabilistic analogue to the Feder—Vardi conjecture [22].
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APPENDIX

A. Proofs for Section 3 (DISCONNECTED
CASE)

PROPOSITION 3.6. PHomy (All,| |DWT) is PTIME.

PROOF. Let G be an arbitrary unlabeled graph and (H, )
a probabilistic graph with H € | |[DWT. We observe that if
G contains a directed cycle, then it cannot have a homomor-
phism to a subgraph of H (which is necessarily acyclic), so
Pr(G ~ H) = 0. Hence, it suffices to study the case where
the query graph G is a DAG.

Likewise, if there are two vertices u,v of G and directed
paths x, X" in G from u to v such that y and x’ have different
lengths, then again G cannot have a homomorphism to a
subgraph of H: indeed, any subgraph of H is a directed
forest and there is at most one directed path between each
pair of nodes. So we can assume without loss of generality
that there is no such pattern in G, and G is therefore graded.

Letting u be a level mapping of G, we call the difference
of levels of p the difference between the largest and smallest
value of its image; the difference of levels of G itself is the
minimum difference of levels of a level mapping of G. As the
level mappings of G only differ in the constant value that
they add to all vertices of each connected component, the
difference of levels can clearly be computed in PTIME by
shifting each connected component so that its minimal level
is zero, and computing the difference; we call the result of
the shifting the minimal level mapping of G.

Letting m be the difference of levels of GG, we now make
the following claim: in any subgraph H' of H, there is a
homomorphism from G to H' if and only if H' has a directed
path of length m.

This claim implies the result. Indeed, we can first check
in PTIME if G has no cycles and has no pairs of paths of
different lengths between two endpoints, and return 0 if the
conditions are violated. We can then compute in PTIME
the difference of levels m of G using the observations above.
Now, on any subgraph of H, the query G is equivalent to the
1WP graph —™, so our result follows from Proposition 5.5.

All that remains is to prove the claim. We first note that
it suffices to show the claim under the assumption that G
is connected. Indeed, if the claim is true for all connected
G, then the claim is implied for arbitrary G by considering
each of its connected components, applying the claim, and
observing that G has a suitable homomorphism to H’ iff
each one of its connected components does, i.e., iff H' has
a directed path whose length is the maximal difference of
levels of a connected component of GG, and this is precisely
the difference of levels m of G. Hence, we now prove the
claim for connected G.

We start with the backwards direction of the claim. It
is easily seen that there is a homomorphism A’ from G
to the IWP graph —™. Indeed, we define h’ according
to the minimal level mapping p of G: we set h’ to map
all the vertices whose level is i to the i-th vertex of —™.
From the existence of h’, we know that, whenever there
is a homomorphism h from —™ to H’', then hoh' is a
homomorphism from G to H’, which shows the backwards
implication.

For the forward direction of the claim, suppose that there
exists a homomorphism h from G to H’', and let m be the

difference of levels of G. Because G is connected and H' is
in | |DWT, the image of h is actually a DWT, call it 7. Now
it is easy to see that the image of a node that has level m —1
in G has depth 7 in T, so that T (and so H') contains the
1IWP —™. This finishes the proof of the converse and thus
the proof of Proposition 3.6. O

B. Proofs for Section 4 (LABELED CONNECTED

QUERIES)

PROPOSITION 4.1. PHom (1WP,PT) is #P-hard.

ProOF. We reduce from the #P-hard problem #PP2DNF.
From the formula ¢, we construct the following {S, T'}-labeled
probabilistic graph H (an example of this construction is
presented in Figure 7):

e The vertices of H are {R} U {X1,... Xpn, JU{Y1,...,
YnQ}U{Xi,j ‘ 1<i<n, lgjgm}l_l{Yi,j ‘ 1 <1<
na 1< j <mbU{Ae, | 1< <mbU{By,|1<
j<m}.

e The edges of H, all of which have probability 1 except
when specified, are:

~ X, 3y Rforall 1 <i<m and R Y, for all
1 < i < ne, all having probability % and intuitively
coding the valuation of each variable;

— For all 1 < i < nq, the edge Xim i) X; and the
edges X ; 5, Xij+1 forall1<j<m—1;

— For all 1 < i < no, the edge V; N Y:1 and the
edges Y; ; 5, Yijprforall 1< j<m—1;

— For all 1 < j < m, the edges Az, ; I Xz;,; and

Yy, . KN By;,j, intuitively indicating that variables
Xz, and Yy, belong to clause j.

The {S,T}-labeled graph G is then KN (i>)m+3 L Tt is
clear that G is a 1WP query graph, H is a polytree and
that both can be constructed in PTIME from ¢. We now
show that Pr(G ~ H) is exactly the number of satisfying
assignments of ¢ divided by 2", so that the computation
of one reduces in PTIME to the computation of the other,
concluding the proof. To see why, we define a bijection
between the valuations v of {X1,..., Xpn, JU{Y1,..., Yy, } to
the possible worlds H' of H that have non-zero probability,
in the expected way: keep the edge X; 5R (resp., R 5, Y:)
iff X; (resp., Y;) is assigned to true in the valuation. We
then show that there is a homomorphism from G to H’ if
and only if ¢ evaluates to true under v.

Indeed, if there is a homomorphism from G to H', then
by considering the only possible matches of the T-edges, one

can check easily that the image of the match in H’ must be

of the following form for some 1 < j < m: Ay ; z, Xaj,j 5,

Xojjtr = 5 Xoom 5 X, SR5Y,, 5V, 15
Yy 2 ENIRN Yy, 5 N By, j; further, from the length
of the S-path we must have (m —j) +4+ (' —1) = m + 3,
so that we must have j = j'. Then, by construction, Xa,
and Yy, belong to clause j, so the valuation satisfies .
Conversely, suppose that the valuation satisfies ¢, then for
some 1 < j < m we know that X, and Y, are assigned to

true by the valuation, and so we can build the homomorphism
as above from G to H'. O



PROPOSITION 4.4 [3]. PHom (DWT,DWT) is #P-hard.

PrOOF. The proof is almost the same as that of Propo-
sition 36 of [3], straightforwardly adapted to our setting
of probabilistic graphs (in particular replacing the unary
relation R by a binary relation), by observing that the prob-
abilistic instance defined in this proof is actually a DWT
(beyond having treewidth 1), and that the query actually
corresponds to a DWT graph (beyond being a-acyclic). O

PROPOSITION 4.5 [3]. PHom_(2WP,DWT) is #P-hard.

ProoF. The proof is almost the same as that of Proposi-
tion 38 of [3], again adapted to our setting of probabilistic
graphs, with one small modification: we do not materialize

S_
edges b — a in the instance graph for each edge a N
in the instance, and instead modify the query to replace all

S_
edges © — y by edges x S y. This ensures that the query
is a 2WP and the instance is a DWT, and hardness is shown
similarly to the original proof. O

THEOREM 4.9. The Boolean probability computation prob-
lem is in PTIME when restricted to B-acyclic positive DNF
formulas.

Proor. We reduce our Boolean probability computation
problem to the problem of S-acyclic #CSPq of [11], which they
show to be in PTIME (Theorem 26 of [11]). We will explain
how probability computation in the sense of Definition 4.2
can be encoded in their setting, by a variant of their own
encoding (in Lemma 3 of [11]): we give a full proof for
completeness.

First, we recall their definition of #CSP4q (Definitions 1
and 2 in [11]) in the case of a Boolean domain. We denote by
Q. the nonnegative rational numbers. Denote by {0,1}% the
set of functions from X to {0, 1}, i.e., the Boolean valuations
of X. For v € {0,1}* and ¥ C X, we denote by vy the
restriction of v to Y. A weighted constraint (with default
value) on variables X is a pair ¢ = (f, 1) that consists of a
function f : S — Q4 for some subset S of {0,1}7, called
the support of ¢, and a default value p € Q4; we write
var(c) := X. The constraint ¢ induces a total function on
{0,1}¥, also denoted ¢, that maps v € {0,1}* to f(v) if
v € S, and to p otherwise. The size of ¢ is [¢| = |S| x | X].
Intuitively, a constraint with default value assigns a weight
in Q4+ to all valuations of X', but the default value mechanism
allows us to avoid writing explicitly the complete table of
this mapping.

An instance of the #CSP4 problem then consists of a finite
set I of weighted constraints. The size of I is [I| := > ., |c|,
and we write var(I) := ., var(c). The output of the
problem is the partition function

S T e@pare)-

VE{O,l}""‘r(I) cel

w(l) =

The hypergraph H(I) of the #CSPq4 instance I (defined in
Section 2.2 of [11]) is the hypergraph (var(l), E;) where
E; = {var(c) | c € T}. We say that I is B-acyclic if H(I) is
a (-acyclic hypergraph (recall Definition 4.7), and we call
[B-acyclic #CSPq the problem #CSP, restricted to S-acyclic
instances. By Theorem 26 of [11], the problem S-acyclic
#CSP4 is in PTIME.

We now explain how to reduce the probability compu-
tation problem to the [-acyclic #CSP4 problem. Let ¢ =

Vicicm (Aléjgni Xi,j) be a Boolean S-acyclic DNF on vari-

ables X, with probabilities 7(X) € [0,1] for each X €
X. We construct in linear time from ¢ and = the vari-
able set X' := {X' | X € X}, the ONF formula ¢’ :=
Aicicm (vléani Xg’j), and the probability valuation 7’
on X' defined by 7'(X] ;) =1 — 7(Xs;). By De Morgan’s
duality law, ¢’ is equivalent to the negation of ¢, so that
we have Pr(p,m) = 1 — Pr(¢’,n’); hence, the probability
computation problem for ¢ and 7 reduces in PTIME to the
same problem for ¢’ and 7’.

We then construct in linear time a -acyclic #CSPq4 instance
I such that Pr(¢’, ") = w(I), which concludes the proof. For
each variable X’ € X', we define a weighted constraint cxs on
variables {X'} by cx/ (X' = 1) = 7#'(X’) and cx/ (X' — 0) =
1—7'(X"), which codes the probability of the variables. Now,
for each clause 1 < ¢ < m, just like in Lemma 3 of [11], we
define a weighted constraint ¢; = (f;, 1) with default value 1
whose variables are {X7 ; | 1 < j < ni}, i.e., those that occur
in the clause: f;(v) is 0 for the (unique) valuation that sets all
variables of the clause to 0, intuitively coding the constraint
of the clause. From the fact that ¢ was S-acyclic, it is clear
that I is also B-acyclic. Now, the result w(I) of the partition
function sums over all valuations of the variables of I, namely
the variables X’ of ¢’. Whenever a valuation does not satisfy
some clause 1 < 7 < m, the weighted constraint ¢; will give
it weight 0, hence ensuring that the product evaluates to 0,
so we can restrict the sum to valuations that satisfy ¢’: such
valuations are given weight 1 by all weighted constraints c;.
Now, it is easy to see that the weight of valuations v that
satisfy ¢ is their probability 7’(v), as each cx/ gives them
weight 7/ (X’) or 1—(n’(X")) depending on whether v(X’) is 1
or 0. Hence, we have reduced the probability computation
problem for B-acyclic DNF formulas to S-acyclic #CSP4 in
PTIME, which concludes the proof. O

PROPOSITION 4.10. PHom (1WP,DWT) is PTIME.

PROOF. Let G i= u; ~% o 225 4, be the TWP
query (where all R; are not necessarily distinct), and H be
the downwards tree instance. The idea is to construct the
lineage of G on H as a f-acyclic DNF ¢, so that we can
conclude with Theorem 4.9. It is clear that any match of G
can only be a downwards path of H, hence we construct ¢
as follows: for every downwards path a; i> . b am
of length m of H (their number is linear in |H| because each
path is uniquely defined by the choice of a.,) check if the path
is a match of G (i.e, check that R; = R} for 1 <i < m — 1),
and if it is the case then create a new clause of ¢ whose

variables are all the facts a; ﬁ) aiy1 for 1 <i<m—1.
The formula ¢ thus obtained is then a DNF representation
of the lineage of H on G, and has been built in time O(|H]| -
|G|), i.e., in PTIME. We now justify that ¢ is S-acyclic by
giving a [-elimination order for ¢: while H still has edges,
repeatedly pick a leaf b of H and, letting a be the parent

of b, eliminate the variable a L b from . Such a variable
will always be a (-leaf, as any set of downwards paths of a
downwards tree all ending at a leaf is necessarily ordered
by inclusion. From the above, the fact that ¢ is S-acyclic
suffices to conclude the proof. O

PROPOSITION 4.11. PHom( (Connected, 2WP) is PTIME.



Proor. First of all, notice that, as the query graph G is
connected, the image of a homomorphism from the query G
to the 2WP instance H is necessarily a connected component
of H. Moreover, each connected component of H is also a
2WP and there are O(|H|?) of them. We then proceed as
follows. For every connected subpath C' = a; —- -+ —a, (with

each — being either L5 or ¢ for some binary relation R in H)
of H, we check if there is a homomorphism from G to C. This
can be done in PTIME by Theorem 4.13, because C trivially
has the X-property w.r.t. the total order a1 < az < -+ < an:
the only possibility for (no,n3) and (n1,n2) to be edges of C
when no comes before n1 and no comes before n3 is if ng = no
and n1 = ns, in which case it cannot hold that ng EiN ns and

n1 < ny at the same time, because we disallow multi-edges.
If there is such a homomorphism, then we create a new clause
of ¢ whose variables are all the facts that belong to C.
From this, we obtain in PTIME a positive DNF ¢ that
captures the lineage of G on H. We now justify that ¢ is 8-
acyclic by giving a -elimination order for ¢, by an argument
similar to the proof of Proposition 4.10: repeatedly eliminate
a variable a — b from ¢ and this fact from H, where b is an
endpoint of H. Indeed such a variable will always be a (-leaf,
as any set of connected component of H including a — b is
necessarily ordered by inclusion. Hence, ¢ is S-acyclic, which
allows us to conclude. O

C. Proofs for Section 5 (UNLABELED CON-
NECTED QUERIES)

PROPOSITION 5.4. PHomy (1WP, PT) is PTIME.

PRrROOF. Let G, (H, ) be the IWP query graph and the
probabilistic PT instance, and m be the length of G. Then
Pr(G ~ H) is the probability that H contains a directed
path of length at least m.

Because we will use automata that run on full binary trees,
we will have to represent possible worlds of H as full binary
trees. The first step is to transform in linear time H into a
full binary polytree H' by applying a variant of the left-child-
right-sibling encoding: in so doing, in addition to unlabeled
edges of both orientations that exist in the polytree, we will
also introduce some edges called c-edges that are labeled
by e and whose orientation does not matter (so we see them
as undirected edges and write them a — b); intuitively, the
e-edge a — b means that a and b are in fact the same. For a
node a € H and a child b of a, we say that b is an up-child
of a if we have b — a and a down-child of a if we have a — b.
We do this transformation by processing H bottom-up as
follows:

o If n is a leaf node of H, then create a node n’ in H'.

e If n is an internal node of H with up-children w1, ..., ux
and down-children dy,...,d; then, letting u},..., u}
and d},...,d; be the corresponding nodes in H': create
a node n’ in H' and nodes ni,...,nj,,_, with the
following e-edges: n’ —ny — ... — ny4;_y, all having
probability 1. Create an edge u} — n’ whose probability
is that of w1 — n. For 2 < i < k create an edge
u, — nj_; annotated with the same probability as
u; = n. For 1 <4 <1 —1 create an edge nj_;,; — d;
annotated with the same probability as n — dj, and
finally create an edge nj,_y,; — d; annotated with the
same probability as n — d;. Last, if any node has

exactly one children (specifically, n’, in case k +1 = 1),
then create a node n” in H’ and connect it with an
e-edge to the node.

One can check that H' is indeed a full binary polytree (with
some edges being labeled by ¢ and being undirected) and
that Pr(G ~» H) equals the probability that H' contains
a path of the form (— —*)™, that is, m occurrences of a
directed edge — followed by some sequence of e-edges —.

The second step is to transform in linear time H’ into
a probabilistic tree T' to which we can apply the construc-
tion of [5]. Specifically, T' must be an ordered full binary
rooted tree whose edges do not have a label or an orientation,
but whose nodes n carry a label in some finite alphabet I
(written A(n), where A is the labeling function) and with a
probability value written 7(n). Writing T' :=T" x {0,1} as
n [5], the semantics of T is that it stands for a probability
distribution on T-trees, i.e., trees T" labeled with I" x {0, 1},
which have same skeleton as T": for each node n of T', the cor-
responding node n’ in a possible world 7" has label (A(n),1)
with probability 7(n) and label (A(n),0) otherwise. We do
this transformation by first adding a new root vertex to H’
with an e-edge with probability 1 to the original root (this
clearly does not change the probability that H' has a path
of the prescribed form), and then simply create T' from H’
by assigning the label and probability of each node that
is not the new root as the direction of its parent edge (in
[ := {1, ]}, —}) and its probability (so the root of T" has label
— and probability 1).

Our last step is to construct a bDTA Ag running on I'-
trees such that for every possible world W of H’, letting Tw
be its representation as a T-tree, Ag accepts Ty if and only
if W contains a path of the form (— —*)™. The states of
Ac are of the form (1: 4,]: j,Max: k) for 0 <i,j <k <m,
which ensures that A¢g is of size polynomial in |G| (and we
will construct it in PTIME from G). The idea is that when
a node n of Ty will be in such a state, it will mean that:

e Letting W,, be the subinstance of W which is represented
by the subtree of Tw rooted at n, and letting r,, be the
root, of W,,, the longest directed upwards path in W,
finishing at 7, has length 4 (the path is the longest of
the form (1 —*)* that ends at r,).

e The longest directed downwards path in W,, beginning
at 7, has length j (the path is the longest of the form
(§ =*)* that begins at 7).

e The longest directed path in W, has length k (the path
is of the form (— —*)* and is the longest in W,).

We now describe the initialization function ¢ of Ag:

° L((S 0)) := (1: 0,: 0,Max: 0) for any s € I'.

o(=,1)) == {1+ 0,4 0,Max: 0).

. L(( 1)) := (1 1,{: 0,Max: 1).

e ((4,1)):= (12 0,): 1,Max: 1).

o A1), (1 i 4 g, Maxs k), (15 7, 4: 5, Max: ) -
(t: "4+ 0,Max: k") where " := min(m, max(i
1,4' +1)) and k" := min(m, max(i",i + j',7 + j, k, k'

@ A1 (1 b G Max: K (5 74 5 Max: )
(t+ 0,): j”,Max: k") where j" := mm(m max(j

K
)

5+ i

=

1,5°+1)) and k" := min(m, max(j",i + 5,1’ + 7, k,
o A((=, 1), (1 4,4t j,Max : k), (12 i, 4 j,Max : k')

(1: 3", ): §”,Max : k') where i’ := max(i,4') and j”

max(j,j') and k” := min(m, max(k, k’,i + j',i" + 7)).

v



o A((s,0), (1: 4,4: j,Max: k), (1: i',): j,Max: k")) :=
(1: 0,4: 0,Max : k") where k" := min(m, max(k, k", i +
j/?il +])) for every s € {75T3 \I/}

The final state of Ag are all the states (11 ¢,]: j, Max: k)
such that & = m. One can check by a straightforward
induction that the semantics of each state is respected, so
that indeed the automaton tests the query G.

We conclude thanks to Proposition 3.1 of [5] by computing
in linear time in |A¢| and |H'| a representation of the lineage
on H' of the query that checks whether the input contains a
directed path of the form (— —*)™, and observe by Theo-
rem 6.11 of [6] that it is a d-DNNF. We then compute the
probability of this d-DNNF [21], yielding Pr(G ~ H) in
PTIME: this concludes the proof. O

D. PROOF OF HARDNESS OF COUNTING
EDGE COVERS

In this appendix, following the connection pointed out
in [35], we give a proof of the following strengthening of
Theorem 3.2, which is independent from the proof of [26].

THEOREM D.1. The #Bipartite-Edge-Cover problem is
#P-complete. Hardness holds even for 2-8 regular bipartite
undirected graphs that are planar.

PrOOF. Membership in #P is straightforward: the ma-
chine guesses a subset of edges and accepts in PTIME iff the
subset is a matching. Hence, we focus on hardness.

Recall that 2-3 regular bipartite undirected graphs are
bipartite undirected graphs I' = (U UV, E) where the degree
of each vertex in U is 2 and that of each vertex in V' is 3.
We will show how the result derives from the holographic
reduction results of [14].

For t € ULV, we denote by E(t) the set of edges to which
t is adjacent. For a valuation of the edges v : E — {0,1} and
a vertex t, we write v(E(t)) the multiset {v(e) | e € E(t)}.
Given a multiset of bits B, the Hamming weight of B is
the number of 1 bits in B. For each zo,...,z, € {0,1}, let
[0, ..., Zn] denote the function that takes a multiset of n
bits as input and outputs z; if the Hamming weight of those
n bits is <.

For every zo,z1,T2,Y0,Y1,Y2,y3 € {0,1}, the problem
#[xo, z1, z2]|[yo, Y1, Y2, y3] is the following [14]: given a 2-3
regular bipartite undirected graph I' = (U UV, E), compute
the quantity

> IHlko, 2y, @2)((E@)x [T vo, y1, v, ys] (B (0))).

v:E—{0,1} uelU veV

Then, restricted to 2—-3 regular bipartite undirected graphs,
our problem #Bipartite-Edge-Cover can be seen to be the
same as #[0, 1, 1]|[0, 1,1, 1]. Indeed, seeing a valuation v of
the edges as a set of edges, the value under the sum for a
valuation v will be 1 if and only if, for every vertex, there
exists an adjacent edge such that v(e) = 1, which exactly
means that v is an edge cover of I'.

Now, let us consider the problem #/1,1,0]|[1,1,1,0]. As
observed at the end of Section 8 of [13], it is the rever-
sal of the problem #]0,1,1]|[0,1,1,1]. Indeed, the prob-
lem #[1,1,0]|[1,1,1,0] amounts to counting the number of
subsets S of edges such that, for every vertex v, there ex-
ists at least one edge adjacent to v that is not in S, i.e.,
that is in E \ S. But this means that #[1,1,0]|[1,1,1,0]
counts the number of sets S such that £\ S is an edge

cover of I'. As there is a trivial bijection between the sets S
that are edge covers and the sets S’ such that E \ S’ is an
edge cover, #Bipartite-Edge-Cover is PTIME-equivalent
to #[1,1,0]|[1,1,1,0] on 2-3 regular bipartite undirected
graphs. The problem #[1,1,0]|[1, 1,1, 0] is shown in [13, 14]
to be #P-hard on 2-3 regular bipartite graphs (even when
the graphs are additionally required to be planar), which
concludes the proof. O
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