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IRISA / University of Rennes 1, France
{minhtn,guillaume.pierre}@irisa.fr

Abstract. Every large multi-site infrastructure such as Grids and Clouds
must implement fault-tolerance mechanisms and smart schedulers to en-
able continuous operation even when resource failures occur. Evaluating
the efficiency of such mechanisms and schedulers requires representative
failure models that are able to capture realistic properties of real world
failure data. This paper shows that failures in multi-site infrastructures
are far from being randomly distributed. We propose a failure model that
captures features observed in real failure traces.

1 Introduction

Large computing infrastructures such as Grids and Clouds have become indis-
pensable to provide the computing industry with high-quality resources on de-
mand. However, failures of computing resources create an important challenge
that these infrastructures must address. Failures cause a reduction of the total
system capacity, and they also negatively impact the reliability of applications
making use of the resources. Understanding failures from a statistical point of
view is therefore essential to design efficient mechanisms such as checkpointing
and scheduling in Grids and Clouds.

This paper presents a comprehensive analysis of failure traces from five large
multi-site infrastructures [10]. We focus on simultaneity, dependence and multi-
plication features. Simultaneity measures the extent to which multiple failures
or multiple recoveries happen at the same time. Dependence means that times
between failures have short- and long-term autocorrelations. Finally, multiplica-
tion captures the fact the times between failures are not smoothly distributed
but rather occur at multiples of specific durations. Similar features were not
present in previous studies of clusters, peer-to-peers and web/dns servers. We
therefore believe that they are characteristic of large multi-site systems. This
analysis enables us to model failures and generate realistic synthetic failure sce-
narios that can be used for further studies of fault-tolerance mechanisms. The
advantage of a failure model is that it enables us to tune parameters as we wish,
which is not possible when replaying a trace.

This analysis is based on five traces of node-level failures from the Failure
Trace Archive [10]. These traces, described in Table 1, can be considered as
representative of both Grid and Cloud infrastructures. For example, GRID’5000
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which is currently used to serve Cloud users is a good representative of low-level
Cloud infrastructures. However, since these traces were collected when serving
Grid jobs, obviously virtualization is another source of failures in Clouds that
we do not consider.

This paper is organized as follows. Sections 2, 3 and 4 respectively analyse
the simultaneity, dependence and multiplication properties in failure traces. Sec-
tion 5 proposes a failure model that Section 6 validates with real world data.
Finally, Section 7 discusses related work and Section 8 concludes the paper.

Table 1. Details of failure traces used in our study.

ID System Nodes Period, Year Res.1 #(Un)availability Events

MSI1 CONDOR-CAE 686 35 days, 2006 300 7,899

MSI2 CONDOR-CS 725 35 days, 2006 300 4,543

MSI3 CONDOR-GLOW 715 35 days, 2006 300 1,001

MSI4 TERAGRID 1,001 8 months, 2006-2007 300 1,999

MSI5 GRID’5000 1,288 11 months, 2006 5 419,808

2 Simultaneity of Failures and Recoveries

Let T be a set of N ordered failures: T = {Fi|i = 1 . . . N and Fi ≤ Fj if i < j},
where Fi denotes the time when a failure i occurs. Each failure i is associated
with an unavailability interval Ui, which refers to the continuous period of a
service outage due to the failure, and the time Ri = Fi + Ui indicates the
recovery time of the failure. For a group of failures T ′ that is a subset of T , we
consider a failure i as a simultaneous failure (SF) if there exists in T ′ any failure
j 6= i such that j and i happen at the same time, otherwise we call i a single
failure. Similarly, we also consider i as possessing a simultaneous recovery (SR)
if there exists in T ′ any failure k 6= i such that k and i recover at the same time,
otherwise i possesses a single recovery.

Assigning T ′ as a whole failure trace, we calculate the fractions of SFs and
SRs in real multi-site systems, which are shown in the first and second rows of
Table 2. As we can see, simultaneous failures and recoveries are dominant in all
cases. We do a further analysis to check how many simultaneous failures possess
SRs. This is done by determining all groups of SFs, i.e. all failures that occur at
the same time are gathered into one group, and calculating the number of SRs
for each group. We then average and show the result in the third row of Table 2.
We conclude that most of the simultaneous failures recover simultaneously.

Considering each trace separately, failures of MSI1 and MSI2 almost occur
and reoperate concurrently, so it is not surprising when most of the simultaneous

1 Res. is the trace resolution. For instance, a node failure at time t with resolution 5
seconds means that the actual failure time was between t− 5 and t.
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Table 2. Fractions of SFs (R1) and SRs (R2) in real systems, calculated for the whole
trace. The third row (R3) shows fractions of SRs, calculated for groups of SFs.

MSI1 MSI2 MSI3 MSI4 MSI5

R1 97% 93% 75% 73% 95%

R2 98% 97% 81% 75% 95%

R3 97% 98% 94% 93% 69%

recoveries belong to SFs. But this does not apply for MSI5, where only 69%
resources with SF become available simultaneously despite of a large number
of SFs and SRs (95%). This is due to failures that occur but do not recover at
the same time with some failures, instead they recover concurrently with other
failures. In contrast with MSI5, MSI3 and MSI4 only exhibit around 70%-80%
SFs and SRs but a large number of SRs are from SFs. One can think of the
resolution of the traces as the reason that causes SFs and SRs. However, we
argue that the resolution is not necessarily a source of the simultaneity feature
since the resolution is relatively small and cannot cause such a large number of
SFs and SRs. A more plausible reason that causes a group of nodes to fail at
the same time is that the nodes share a certain device/software whose failure
can disable the nodes. For example, the failure of a network switch will isolate
all nodes connected to it. Its recovery will obviously lead to the concurrent
availability of the nodes.

We believe that the simultaneity feature is common in data-center-based
systems. We therefore argue that fault-tolerant mechanisms or failure-aware re-
source provisioning strategies should be designed not only to tolerate single node
failures, but also massive simultaneous failures of part of the infrastructure.

3 Dependence Structure of Failures

We now deal with a set of times between failures {Ii}, whose definition is based
on the set of ordered failures T = {Fi} in Section 2. We determine a time between
failures (TBF) as Ii = Fi−Fi−1 and hence it is easy to represent {Fi} by {Ii} or
convert {Ii} to {Fi}. This section examines the dependence structure of {Ii}2.
The term “dependence” of a stochastic process means that successive samples
of the process are not independent of each other, instead they are correlated. A
stochastic process can exhibit either short or long range dependence (SRD/LRD)
as shown by its autocorrelation function (ACF). A process is called SRD if its
ACF decays exponentially fast and is called LRD if the ACF has a much slower
decay such as a power law [3]. Alternatively, the Hurst parameter H [7], which
takes values from 0.5 to 1, can be used to quantitatively examine the degree of
dependence of a stochastic process. A value of 0.5 suggests that the process is
either independent [1] or SRD [11]. If H > 0.5, the process is considered as LRD,
where the closer H is to 1, the greater the degree of LRD.

2 In terms of statistics, we consider {Ii} as a stochastic process.
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Fig. 1. Hurst parameter and autocorrelation functions of TBFs in real traces.

Figure 1 shows the dependence feature. To quantitatively measure how TBFs
are autocorrelated, we estimate the Hurst parameter of real TBF processes. The
estimation is done with the SELFIS tool [9]. As there are several available heuris-
tic estimators that each has its own bias and may produce a different estimated
result, we chose five estimators (Aggregate Variance, R/S Statistic, Periodogram,
Abry-Veitch and Whittle) and computed the mean and the standard deviation
of their estimates. For all cases real TBFs are indeed LRD because all Hurst
estimates are larger than 0.5. The most noticable point focuses on MSI2, MSI3
and MSI4, which result in H around 0.7 to 0.8. It shows that the TBFs of these
traces are largely autocorrelated. This is confirmed by observing their ACFs in
Figure 1, which decay slowly and determine their LRD feature. The LRD of
MSI1 and MSI5 are not very strong since their estimated Hurst parameters are
larger but not very far from 0.5. In particular, the ACF of MSI1 decays though
not exponentially but quickly to 0, thus one can also consider it as SRD or in
our case, we call it as exhibiting weak LRD.

It is important to capture the LRD feature in modeling because it may signif-
icantly decrease the computing power of a system by the consecutive occurrence
of resource failures. In particular, if simultaneous failures happen with LRD, a
system will become unstable and it is hard to guarantee quality-of-service re-
quirements. Fault-tolerant algorithms should therefore be designed for correlated
failures to increase the reliability.

4 Multiplication Feature of Failures

An interesting feature of failure traces is the distribution of times between fail-
ures. However, we have seen that the vast majority of failures are simultaneous.
This would result in several TBFs with value 0 as shown in Table 3. The oc-
curence of a large number of zeroes in a TBF process makes it difficult to fit
TBFs to well-known probability distributions. Therefore, instead of finding a
best fit for the whole TBF process, we remove zeroes out of the process and only
try to fit TBFs that are larger than 0, so-called positive TBFs or PTBFs.
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Table 3. The fraction of zero values in TBF processes.

MSI1 MSI2 MSI3 MSI4 MSI5

93% 91% 71% 65% 90%
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Fig. 2. Cumulative distribution functions of real PTBFs.

Figure 2 shows cumulative distribution functions (CDFs) of PTBFs of all fail-
ure traces. For each trace, the PTBFs are fitted to the following five distributions:
Generalized Pareto (GP), Weibull (Wbl), Lognormal (LogN), Gamma (Gam)
and Exponential (Exp). The maximum likelihood estimation method [12] is used
to estimate parameters for those distributions in the fitting process, which is done
with a confidence level γ = 0.95 or a significance level α = 1−γ = 0.05. For each
distribution with the estimated parameters in Table 4, we use a goodness-of-fit
test, called Kolmogorov-Smirnov (KS test) [3], to assess the quality of the fitting
process. The null hypothesis of the KS test is that the fitted data are actually
generated from the fitted distribution. The KS test produces a p-value that is
used to reject or confirm the null hypothesis. If the p-value is smaller than the
significance level α, the null hypothesis is rejected, i.e. the fitted data are not
from the fitted distribution. Otherwise, we can neither reject nor ensure the null
hypothesis.

Table 5 shows that PTBFs of MSI1 and MSI5 cannot be fitted well to any dis-
tribution candidate since all p-values are equal to 0. The reason lies in Figure 2,
where we can easily observe staircase-like CDFs in the two traces. This shape
indicates that the data tend to distribute around some specific values. Further
analysing PTBFs of MSI1 and MSI5, we find that most of them are multiples
of so-called basic values. As shown in Table 6, MSI1 has a basic value of 1200
seconds as 100% of its PTBFs are multiples of 12004. We refer to this property
as the multiplication feature of failures. Other traces show similar behavior.

Although MSI2, MSI3 and MSI4 exhibit this feature and their CDFs also
have staircase-like shapes, their PTBFs still can be fitted to some distributions.
Table 5 indicates that Gam and Exp are suitable for MSI2 where Exp is the
best. Though GP is the best for MSI3, its PTBFs can be fitted to any dis-

4 We consider a as being a multiple of b if |a/b− round(a/b)| < 0.005.
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Table 4. Parameters of distributions estimated during the fitting process. a, b, µ, σ
indicate shape, scale, mean and standard deviation, respectively.

GP(a, b) Wbl(a, b) LogN(µ, σ) Gam(a, b) Exp(µ)

MSI1 0.7 4653 0.8 8548 8.4 1.3 0.7 15415 10490

MSI2 0.2 11546 0.9 13540 9 1.2 1 14596 14034

MSI3 0.3 14028 0.9 17272 9.2 1.2 0.9 21013 18420

MSI4 0.5 72854 0.7 97029 10.6 2 0.5 235811 126615

MSI5 0.7 445 0.7 838 6 1.3 0.6 2112 1227

Table 5. P-values of fitting PTBFs, obtained from the KS test. Those larger than the
significance level α = 0.05 are in gray boxes.

GP Wbl LogN Gam Exp

MSI1 0 0 0 0 0

MSI2 0.03 0.03 0.04 0.07 0.08

MSI3 0.29 0.19 0.17 0.26 0.09

MSI4 0 0.08 0 0.29 0

MSI5 0 0 0 0 0

tribution candidate. Finally, Gam should be the best choice for MSI4 besides
Wbl. Different from MSI1 and MSI5, the staircases in the CDFs of MSI2, MSI3
and MSI4 are relatively small, so have the CDFs be possible to fit the distribu-
tion candidates. In contrast, MSI1 and MSI5 focus their PTBFs on their basic
value (see Figure 2) and hence the PTBFs are hard to fit the tested distribu-
tions. As there is a consensus among MSI2, MSI3 and MSI4, we suggest that
the Gamma distribution can be used as a marginal distribution-based model for
PTBFs, where zeroes can be added to form a complete TBF process. However,
this would be a simple model that is able to capture neither the dependence nor
the multiplication feature and hence its representativeness is limited.

It is hard to explain why PTBFs exhibit the multiplication feature. One
possible cause is that this is an artifact of the trace resolution. For example,
MSI4 has a resolution of 300 seconds so all TBFs in the trace are multiples of
5 minutes even if the actual failures did not exhibit this property. However, this
explanation does not fully explain the phenomenon in the other four traces since
their resolutions are different from their basic values. Therefore in addition to
the resolution, there may be other causes that we did not discover due to limited
available information in each trace. We argue that this would be an interesting
information to be added in the Failure Trace Archive [10]. Since almost PTBFs
in all five traces are multiples of a basic value, it is essential to take this feature
into account in our failure models.

5 Failure Modeling

This section presents a model for times between failures that is able to capture all
the practical features analysed in previous sections, including the simultaneity,
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Table 6. Basic values and fractions of PTBFs that are multiples of a basic value.

MSI1 MSI2 MSI3 MSI4 MSI5

Basic value (s) 1200 1200 1200 300 100

Fraction 100% 99% 99% 100% 100%

Fig. 3. Illustration of how the model gathers information from its input.

the dependence and the multiplication. The model described in Algorithm 1
receives a TBF process {Ii} as its input and produces a synthetic TBF process
{Si} with those three features, which can be converted into a sequence of failure
events used in performance study.

5.1 General Model

Our failure model in Algorithm 1 consists of three steps. Firstly, we extract
necessary information from the TBF process input {Ii}, where the extraction is
explained in Figure 3. As we indicated in Table 3, the TBF process of a failure
trace contains a large number of zeroes due to the simultaneity feature, it is
reasonable to set up a 2-state model: {Ii} goes to state-0 if its value is zero,
otherwise it is with state-1. Once {Ii} falls into a state, we will determine how
long it remains in the state before switching to the other state. For example
with a TBF process in Figure 3, we form for state-0 a set Z that contains the
lengths of all zero sequences. With respect to state-1, we produce a similar set
P with the lengths of all PTBF sequences. We also determine the basis value
B of the TBF process that will be used later for the multiplication feature.
Furthermore, all PTBFs are collected, divided by B and stored into a set V .
With Z,P, V,B, we gather enough information and finish the first step of the
model. As the second step, we find the best fitted marginal distribution for
Z, P and V , denoted by DistZ, DistP and DistV , respectively. The fitting
methodology will be presented later in Section 5.2.

As the last step, we generate {Si} through a main loop. We initialize by
randomly picking a state. Then, we sample a value r, which indicates how many
TBFs should be created in this state, by using DistZ or DistP , depending on
the state. With r, the dependence structure of {Si} can be controlled as similar
as that of {Ii}. If the state is state-0, we generate a sequence of r zero values and
switch to state-1. The zero sequence helps to create simultaneous failures and
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Algorithm 1 The failure model.

Input: a TBF process {Ii}.
Output: a synthetic TBF process {Si}.

[Z,P, V,B] = ExtractInfo({Ii}); // Extract necessary information from input
DistZ = Fit(Z); DistP = Fit(P ); DistV = Fit(V ); // Find fitted distributions
state = random({0, 1}); N = 0; // Initialize

repeat
if state = 0 then
r = round(Sampling(DistZ));
SN+1 . . . SN+r = 0;

else
r = round(Sampling(DistP ));
for j = 1 to r do
SN+j = round(Sampling(DistV )) ∗B

+[−Res ∗ UniF ]; // Optional
end for

end if
N = N + r;
state = 1− state;

until N + 1 ≥ desired number of failures;

hence helps to capture the simultaneity feature for {Si}. If the state is state-1,
we generate a sequence of r PTBFs, each is formed by sampling DistV and
multiplying with B to obtain the multiplication feature5. Then, we switch to
state-0 and continue the loop until the desired number of failures is achieved.
Indeed, the model operates similarly as a 2-state Markov chain [4], where there
is no probability for a state to switch to itself.

5.2 Fitting Methodology

In order to find the best fits for Z, P and V sets, we also apply the maximum
likelihood estimation method and the KS test on the five well-known distribution
candidates as described in Section 4. Since data are hard to fit any distribution
if they contain some specific values that are dominant over other values, as
illustrated when we fit PTBFs of MSI1 and MSI5 in Section 4, we carefully
check if this happens with the Z, P and V sets. In Table 7, we list top four
values that appear in the sets with their frequency. As we can see in most cases,
values 1 and 2 are dominant over other values. Therefore, we remove values
1 and 2 out of the fitting process. Furthermore since the applied distribution
candidates support a non-negative value domain and we already remove the two

5 Since failures are reported with a resolution, our model also allows to generate “ac-
tual” failure times if one needs by subtracting each generated PTBF an amount of
Res ∗ UniF , where Res is the resolution and UniF is the uniform distribution in
the range [0, 1].
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smallest values out of the sets, which results in 3 as the new smallest value,
we decide to shift all remaining values of the sets by 3 units to ease the fitting
process. In summary, let X be any from the Z, P and V sets, we will find the
best fit for the set Y = {y = x− 3|x ∈ X \ {1, 2}}.

Table 7. Top four values (ordered) appear in the Z, P and V sets. Reading format: a
value above and a frequency in percentage below, correspondingly.

Z P V

MSI1 (1 2 8 6) (1 2 3 4) (1 2 3 4)
(17 8 6 5) (60 21 6 5) (40 11 5 4)

MSI2 (1 2 3 25) (1 2 4 3) (1 2 3 4)
(30 14 7 5) (37 12 9 7) (15 9 7 7)

MSI3 (1 2 9 3) (1 3 10 2) (1 2 5 3)
(45 9 9 5) (26 17 13 4) (12 10 6 6)

MSI4 (1 2 3 6) (1 2 3 6) (1 2 3 5)
(43 13 5 5) (28 15 10 10) (4 3 2 1)

MSI5 (1 2 3 4) (1 2 3 4) (1 2 3 4)
(24 12 9 6) (63 19 8 4) (26 16 10 6)

Table 8. P-values of fitting Y sets, obtained from the KS test. Those larger than the
significance level α = 0.05 are in gray boxes.

Trace/Set GP Wbl LogN Gam Exp

MSI1/Z 0.06 0.01 0.00 0.00 0.00
MSI1/P 0.00 0.00 0.00 0.00 0.00
MSI1/V 0.06 0.00 0.00 0.00 0.03

MSI2/Z 0.56 0.02 0.00 0.01 0.20
MSI2/P 0.59 0.01 0.00 0.00 0.67
MSI2/V 0.11 0.00 0.00 0.00 0.07

MSI3/Z 0.50 0.41 0.06 0.34 0.20
MSI3/P 0.23 0.03 0.01 0.02 0.23
MSI3/V 0.59 0.00 0.00 0.00 0.23

MSI4/Z 0.06 0.12 0.01 0.07 0.20
MSI4/P 0.41 0.00 0.00 0.00 0.41
MSI4/V 0.05 0.00 0.00 0.00 0.00

MSI5/Z 0.00 0.00 0.00 0.00 0.00
MSI5/P 0.00 0.00 0.00 0.00 0.00
MSI5/V 0.00 0.00 0.00 0.00 0.00

Table 8 shows the results of fitting Y sets, which indicate that GP seems to
be the best fitting candidate. In 11/15 cases, GP results in p-values larger than
the significance level α = 0.05. Therefore in these cases, the null hypothesis that
Y sets are from the GP distribution cannot be rejected. In addition, though Exp
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can also be a good candidate, its p-values are smaller than those of GP in most
cases. Hence, we suggest that GP should be the best choice for fitting Y sets. As
all distribution candidates result in p-values equal to 0 in the other four cases,
we additionally use the KS statistic, also produced by the KS test, to select the
best distribution. From Table 9, we again confirm that GP should be a suitable
choice for fitting Y sets since its KS statistics are smallest, except for the P set
of MSI5. Hence for generality of the model, we propose and use GP as the fitting
distribution for Y sets in our study, where the estimated parameters of GP are
shown in Table 10.

In conclusion, let X be any from the Z, P and V sets, the fitted distribution
DistX of X is determined by the following parameters: percentage of value 1 in
X (p1), percentage of value 2 in X (p2) and GP parameters (a, b). To sample a
value x from DistX, we first sample a value pr from the uniform distribution
over the range [0, 1]. If pr ≤ p1, we assign x = 1, else if p1 < pr ≤ p1 + p2,
x = 2. Otherwise, x = g + 3, where g is sampled from the GP distribution with
parameters (a, b).

Table 9. KS statistics of fitting Y sets, obtained from the KS test.

Trace/Set GP Wbl LogN Gam Exp

MSI1/P 0.32 0.40 0.41 0.44 0.32

MSI5/Z 0.14 0.27 0.39 0.28 0.22

MSI5/P 0.36 0.33 0.35 0.33 0.44

MSI5/V 0.17 0.32 0.40 0.31 0.28

Table 10. Estimated parameters of GP(a, b), where a and b indicate shape and scale.

MSI1 MSI2 MSI3 MSI4 MSI5

Z 0.33 20.82 0.45 46.35 0.45 19.19 -0.75 27.87 0.87 8.04

P -0.17 1.82 -0.08 5.77 0.02 5.31 0.10 3.87 12.54 0.00

V 0.11 12.10 0.23 9.21 0.24 12.53 0.35 302.96 1.07 3.97

6 Validation of the Model

We present in this section our experiments to validate our model. We apply the
model to all the traces in Table 1 to generate synthetic failures. The quality
of these synthetic failures is evaluated by comparing with the real data. Our
evaluation focuses on the simultaneity feature, the dependence structure and
the marginal distribution of TBFs. Evaluating the multiplication feature is not
necessary because it is guaranteed when we generate PTBFs by sampling the
distribution DistV and multiplying with the basic value B (see Algorithm 1).
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6.1 Simultaneous Failures

Table 11 describes fractions of simultaneous failures produced by the model.
It can be seen that our model controls well this feature since the fractions are
close to those of the real data. The quality of generating this feature depends
on fitting the Z sets. Successfully fitting the sets, as shown in Tables 8 and 9,
helps to control well the number of zeros generated in a TBF process. In case of
MSI5, though the p-value of fitting the Z set to GP is 0, its KS statistic is small.
Thus, the fitting is acceptable, resulting in a good control of the simultaneity.

Table 11. Fractions of simultaneous failures produced by the model.

MSI1 MSI2 MSI3 MSI4 MSI5

Data 97% 93% 75% 73% 95%

Model 96% 90% 79% 70% 97%

Table 12. Compare the Hurst parameter between the model and the data, presented
as mean± standard deviation of the five estimators.

MSI1 MSI2 MSI3 MSI4 MSI5

Data 0.60± 0.06 0.74± 0.14 0.78± 0.20 0.70± 0.08 0.62± 0.08

Model 0.62± 0.05 0.76± 0.06 0.76± 0.18 0.68± 0.06 0.54± 0.04

6.2 Dependence Structure

We evaluate the long range dependence feature both via observing an autocor-
relation function and estimating the Hurst parameter. The estimation is done
similarly as presented in Section 3, i.e. using the SELFIS tool with the five es-
timators, namely Aggregate Variance, R/S Statistic, Periodogram, Abry-Veitch
and Whittle [9]. As we can see in Figure 4, the autocorrelation of the model fits
well to that of the real data, except for the case of MSI5. This is in accordance
with the quantitative results of estimating the Hurst parameter in Table 12. It
is not strange when the model does not fit MSI5 since we cannot find good fit-
ting distributions for the Z, P and V sets of MSI5 as shown in Section 5.2. In
contrast for the other cases, the fitting step of the model is well done and thus,
the model is able to generate autocorrelated failures.

6.3 Marginal Distribution

One of the first aspects often received the attention of researchers when they
analyse or model failures is the marginal distribution. It can be seen that our
model is highly representative since it can capture realistic observed features of
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Fig. 4. Fitting autocorrelation functions and marginal distributions of TBFs.

failures, namely the simultaneity, the dependence and the multiplication. How-
ever, its representativeness is even better if it can fit the marginal distributions of
real times between failures. Indeed, this is confirmed in Figure 4 where we draw
the complementary cumulative distribution functions (CCDFs) of synthetic and
real TBFs. The figure shows that our model fits the marginal distribution feature
well in four cases. For MSI5, the fitting step does not work finely, which makes
the generated TBFs not able to fit the real TBFs well. Nevertheless, the fitting
quality of MSI5 is acceptable since the ugly fitting part only occurs when TBFs
are larger than 10,000 seconds, which just occupy ∼ 0.2% number of TBFs.

7 Discussion and Related Work

Our study demonstrates that Grid and Cloud infrastructures exhibit proper-
ties of simultaneity, dependence and multiplication that must be modeled to
accurately capture the characteristics of such systems. Interestingly, the same
features are not necessarily present in other types of large-scale systems such as
desktop grids and P2P systems. Table 13 measures the occurence of these fea-
tures in a number of systems, and highlights systems which clearly exhibit them.
Only 2/14 systems exhibit all three features. We so argue that it is essential to
develop a specific failure model for systems such as Grids and Clouds.

Many studies have been dedicated to analysing and modeling failures [2, 5,
6, 8, 13–19]. However, most of them focus on servers, high performance clusters,



Failure Analysis and Modeling in Large Multi-Site Infrastructures 13

Table 13. The simultaneity (S), the dependence (D) and the multiplication (M) fea-
tures in other systems, expressed by the fraction of simultaneous failures, the Hurst
parameter and the basic value, respectively. Grey boxes indicate systems which exhibit
the corresponding feature clearly (S <50% and D < 0.6 are not considered).

System Type S D M

UCB Desktop Grid 5% 0.47 No

MICROSOFT Desktop Grid 100% 0.52 3600

LRI Desktop Grid 31% 0.56 No

DEUG Desktop Grid 5% 0.70 No

NOTRE-DAME (host availability) Desktop Grid 90% 0.69 960

NOTRE-DAME (CPU availability) Desktop Grid 99% 0.58 960

PLANETLAB P2P 67% 0.65 900

OVERNET P2P 100% 0.50 1200

SKYPE P2P 100% 0.48 1800

SDSC HPC Cluster 18% 0.53 No

LANL HPC Cluster 15% 0.76 60

PNNL HPC Cluster 42% 0.55 100

WEBSITES Web Server 1% 0.63 No

LDNS DNS Server 10% 0.56 No

peer-to-peer systems, etc. The few studies dedicated to multi-site systems [6, 8,
18] did not concentrate on modeling the observed features. In [8], a failure model
is developed based on fitting real data to distribution candidates, but none of
the features observed in this study is captured. Moreover, this model is designed
specifically only for GRID’5000 and it is not clear whether it would work for
other systems. The model proposed by Yigitbasi et al. [18] studies peaks of
failures but not times between failures. Although it studies autocorrelation, it is
in terms of failure rates and is not taken into account in their model. Finally, the
authors of [6] showed that failures often occur closely in time, in so-called group
of failures. The concept of group of failures is close to the simultaneity feature in
this paper, and we believe that groups of failures occur due to the vast majority
of simultaneous failures as shown in Table 2. Hence, modeling simultaneous
failures is more accurate than modeling groups of failures since the information
about the times between failures in a group could not be recovered once they are
grouped for modeling. Furthermore, the dependence and multiplication features
are not taken into account by [6], possibly because it aims at other large-scale
systems than multi-site infrastructures.

8 Conclusions and Future Work

This paper demonstrated that failures exhibit simultaneity, dependence and mul-
tiplication features, which can have a significant impact on system performance.
We proposed a failure model that can capture these features and help research
on fault-tolerance mechanisms. The Gamma distribution alone may be used as
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a marginal distribution-based model for PTBFs. However, the model from Sec-
tion 5 offers much more precision with respect to these three features. It is also
flexible as the parameters of GP distributions can easily be tuned. Finally, it ad-
dresses the issue of trace resolution and generates “actual” failure times that are
not affected by the resolution. Our future work includes adding the unavailabil-
ity attribute and using the model to associate failure-awareness for enhancing
scheduling performance or resource provisioning in Clouds.
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