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Abstract. A very wide variety of physical, demographic, biological and
man-made phenomena have been observed to exhibit powerlaw behav-
ior, including the population of cities and villages, sizes of lakes, etc. The
Internet is no exception to this. The connectivity of routers, the popu-
larity of web sites, and the degrees of World Wide Web pages are only
a few examples of measurements governed by powerlaw. The study of
powerlaw networks has strong implications on the design and function
of the Internet.
Nevertheless, it is still uncertain how to explicitly generate such topolo-
gies at a very large scale. In this paper, we investigate the generation of
P2P overlays following a powerlaw degree distribution. We revisit and
identify weaknesses of existing strategies. We propose a new methodol-
ogy for generating powerlaw topologies with predictable characteristics,
in a completely decentralized, emerging way. We provide analytical sup-
port of our methodology and we validate it by large-scale (simulated)
experiments.

1 Introduction

Many real-world large-scale networks demonstrate a power-law degree distribu-
tion, that is, a very small fraction of the nodes has a high degree (i.e., number
of neighbors), while the vast majority of nodes has a small degree. In nature,
such networks typically emerge over time, rather than being instantiated on the
spot based on a blueprint. Providing researchers from different disciplines with
a framework that allows them to control the self-emerging process of power-law
networks, could substantially help them in studying and better understanding
such networks, as well as deploying them at will to serve new applications (e.g.,
bio-inspired algorithms for peer-to-peer systems).

There are several algorithms to generate power-law networks, however little
has been done for a self-emerging method for building such networks [3, 5, 6,
4]. In this work, we first investigate existing research with an emphasis on the
decentralization properties of proposed algorithms. Next, we select one approach
that looks promising for straightforward decentralization. We identify several
limitations within the existing approach and we present a novel algorithm that
has been tailored specifically to the needs of a large P2P network. Starting from



a given, static distribution of random values among the P2P network nodes, we
control the emerging power-law overlay .

We summarize related research conducted on power-law generation in Sec-
tion 2, where we assess the degree to which such approaches may be decentral-
ized. In Section 3.1 we identify several limitations (both theoretical and em-
pirical) with an existing sequential approach and proceed to present a novel
algorithm to alleviate the respective issues. In Section 4 we show how the de-
centralized algorithm may be implemented in a P2P network and present our
evaluation results. We summarize our findings in Section 5.

2 Related work

There is a vast literature on properties and characteristics of scale-free and small-
world networks. The research behind such literature is focused on the observation
of aforementioned topologies and their behavior (like finding the λ value) rather
than construction methodologies. However, there are several important genera-
tive mechanisms which produce specific models of power-law networks. It started
with the Erdös and Rényi random-graph theory and continued with the Watts
and Strogatz model, which was the first to generate a small-world topology from
a regular graph, by random rewiring of edges. Drawbacks of this initial model
are its degree homogeneity and static number of nodes. These limitations can
be addressed by scale-free networks, but the clustering coefficient becomes an
issue. In turn, the clustering coefficient can be controlled through the employed
generative mechanism. However, generating a random scale-free network having
a specific λ value is not trivial. Moreover, most existing algorithms to generate
scale-free networks are centralized and their decentralization, again, far from
trivial. We present several types of generative models.

Preferential attachment This model, also known as the “rich-get-richer”
model, combines preferential attachment and growth. It assumes a small ini-
tial set of m0 nodes, with m0 > 2, forming a connected network. The remaining
nodes are added one at a time. Each new node is attached to m existing nodes,
chosen with probabilities proportional to their degrees. This model is referred to
as the Barabási-Albert (BA) model [2], though it was proposed by Derek J. de
Solla Price [7] in 1965 and Yule in 1925 [12]. The degree distribution is proven
to be P (k) ∼ k−3. Dorogovtsev and Mendes [11] have extended the model to a
linear preference function, i.e., instead of a preference function fBA(i) = ki they
use fDM (i) = ki + D,D ≥ 0. Dangalchev [6] introduced the two-level network
model, by considering the neighbor connectivity as a second “attractiveness”
discriminator, fDa(i) = ki+c×

∑
j kj , where c ∈ [0, 1]. The global view required

at each node attachment renders this algorithm difficult to decentralize.

Preferential attachment with accelerated growth This model [10] extends
the previous model with a separate mechanism to add new links between existing
nodes, hence accelerating the growth of the number of links in the network (much



like the Internet). This algorithm inherits the difficulties of the basic preferential
attachment with respect to decentralization.

Non-linear preferential attachment Krapivsky, Redner, and Leyvraz pro-
pose a model [14] that produces scale-free networks as long as fKRL(i) ∼ ki; k →
∞, where fKRL(i) = kγi . This algorithm inherits the difficulties of the basic pref-
erential attachment with respect to decentralization.

Deterministic static models Dangalchev proposed two such networks, the
k-control and the k-pyramid, where the latter can be extended to a growth
model. Ravasz and Barabási [1] explored hierarchical (fractal-like) networks in
an effort to meet both the power-law degree distribution of scale-free networks
and the high clustering coefficient of many real networks. Their model starts
with a complete q-node graph which is copied q − 1 times (q > 2); the root of
the initial graph (selected arbitrarily from the q nodes) is connected with all the
leaves at the lowest level; these copy-connect steps can be repeated indefinitely.

Such networks have degree distribution P (k) ∼ k
ln q

ln(q−1) . Cohen and Havlin [5]
use a very simple model which delivers an ultra-small world for λ > 2; it assumes
an origin node (the highest degree site) and connects it to next highest degree
sites until the expected number of links is reached. Since loops occur only in
the last layer, the clustering coefficient is intuitively high for a large number of
nodes. According to [9], some deterministic scale-free networks have a clustering
coefficient distribution C(q) ∼ q−1, where q is the degree. This implies well-
connected neighborhoods of small degree nodes. This algorithm seems promising
with respect to decentralization, except for the initial phase of complete q-node
connectedness.

Fitness-driven model This was introduced by Caldarelli [4] and proves how
scale-free networks can be constructed using a power-law fitness function and
an attaching rule which is a probability function depending on the fitness of
both vertices. Moreover, it shows that even non-scale-free fitness distributions
can generate scale-free networks. Recently, the same type of model with infinite
mean fitness-distribution was treated in [13]. This power-law network generative
algorithm seems the most promising with respect to decentralization.

3 Decentralizable algorithms for building scale-free
networks

We are interested in analyzing approaches that are feasible to decentralize. We
first look at an existing model, presented by Caldarelli in [4], for which we
introduce an analytical and empirical verification. We then present an improved
model to build scale-free networks, which we also analyze and verify empirically.
Our model maintains the property of easy decentralization.



3.1 Caldarelli’s fitness-driven model

In this model, power-law networks are generated using a “recipe” that consists
of two main ingredients: a fitness density, ρ(x), and a vicinity function, f(xi, xj).
The fitness density is used to assign each node a fitness value, while the vicinity
function is used to decide, based on the fitness values, whether a link should be
placed between two nodes.

One instance of this model assumes each node to have a fitness value xi
drawn from a Pareto distribution with density ρ(x) ∼ x−γ . For each node i, a
link to another node j is drawn with probability f(xi, xj) =

xixj
x2
M

, where xM is

the maximum fitness value currently in the network.

This model looks very appealing for a self-emerging approach to power-law
network generation, since it requires very little information to be globally avail-
able. Using epidemic dissemination techniques [8], the maximum fitness value
currently existing in the network, xM , may be easily propagated throughout the
network.

According to [4], this approach leads to a network with a power-law degree
distribution, that should have the same exponent as the non-truncated Pareto
distribution of the fitness values. However, our initial set of experiments show
that Caldarelli’s approach rarely converges for very large networks. Figure 1
presents the data collected from four different experiments. Each experiment
corresponds to a different degree distribution exponent and was repeated for
two network sizes: 10,000 nodes and 100,000 nodes. For each experiment we
constructed 100 different graphs, each with the same fitness distribution and
different random seeds for the neighbor selection. We remark that for a de-
sired power-law degree distribution with exponent γ 6= 3 and larger values of
N (100K), the obtained degree distribution exponent does not converge to its
desired value. Also, for γ = 4 and a network of 10K nodes, the general ap-
proximation function used to determine the degree distribution exponent could
not be applied here. We investigated the issue further, by constructing the his-
togram corresponding to the degree distribution. Figure 5 shows the histograms
obtained for each experiment. We remark that the histograms do not coincide
with a power-law distribution.

A second set of experiments evaluated how well the algorithm controlled the
emerging degree distribution exponent, γ. We increased the control γ in steps of
0.1 and ran the algorithm ten times for each value on a network of 100,000 nodes.
We collected the estimated value of the emerging degree distribution exponent
and the percentage of isolated nodes (i.e., nodes of degree zero). Both types of
results are plotted in Figures 3a and 3b. We note that in the Caldarelli model a
large number of nodes remain isolated.

We verified the empirical results by revisiting the assumptions made in [4].
We localized a possible problem with the way the vicinity function is integrated.
Intuitively, the problem is that while the X’s (fitnesses) are independent r.v. (by
assumption), their maximum (xM ) is dependent on all of them, hence can not
be pulled out of the integral. To explain this formally, using the Law of Large
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Fig. 1: Caldarelli’s model
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Fig. 2: Improved model

Numbers we obtain the estimation

Vk =
Number of nodes of degree k

n
≈ 1

n

ρ
(
P−1(k/n)

)
P ′ (P−1(k/n))

,

where P−1 denotes the inverse of P , which is the probability that a node u with
fitness x will be linked with any other node v (P (x) := E[p(Xu, Xv)|Xu = x]).
This approximation, in conjunction with the assumption ρ(x) ∼ x−γ would
provide the power-law behavior Vk ∼ k−γ , as claimed in [4]. However, this is
not the case since xM is a random variable dependent on all fitnesses (thus, also
on Xu and Xv). Hence P (x) is not linear, but is a rather intricate expression of
x and an analytical expression for the inverse of P is infeasible. Even worse, if
ρ(x) ∼ x−γ , the squared-maximum x2M will grow to infinity at rate n2/(γ−1) (by
Fisher-Tippet-Gnedenko Theorem), so that D = (n− 1)E[p(X1, X2)], will tend
to 0 when γ < 3 (the resulting graph will have a very large fraction of isolated
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Fig. 3: Caldarelli’s fitness-driven model
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Fig. 4: Our model

nodes) and will grow to infinity for n→∞, when γ > 3; however, as explained
before, this last fact is impossible in a power-law graph in which all nodes are
linked with the same probability; see equation (3).

3.2 Improved model

Here we present a novel model for a power-law graph with n nodes. It addresses
the limitations found with the Caldarelli model by avoiding certain mathematical
pitfalls. Our assumptions differ from the Caldarelli model in that we consider a
truncated Pareto distribution, with density function ρ(x) ∼ x−2, for x ∈ (l, bn).
We emphasize that, unlike Caldarelli, we start with a fixed distribution exponent.

Another considerable difference is the truncation and its upper bound bn →
∞. The upper bound will depend on the density ρ(x) and on the desired outcome
graph degree distribution exponent, denoted by γ in Caldarelli’s model. The
global variable xM from Caldarelli’s model will be replaced in our model by bn.

We summarize the mathematical model below:
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(I) The fitnesses X1, . . . , Xn are drawn from a truncated Pareto distribution,
with lower bound l = 1, upper bound bn →∞ (it will depend on the desired
outcome) and density ρ(x) ∼ x−2, for x ∈ (l, bn).

(II) Every pair of nodes (u, v) will be linked with a probability given by p(Xu, Xv),
where we define

p(x1, x2) :=

(
x1x2
b2n

)η
, (1)

with η > 0 depending (again) on the desired outcome.

For appropriate choices of the upper-bound bn (see details below), performing
steps (I) and (II) will result in a power-law graph with index γ := 1 + (1/η),
satisfying (for large k ≤ n)

Vk :=
Number of nodes of degree k

n
≈ γ − 1

kγ
;

in other words, if a power-law degree-distribution with exponent γ > 1 is desired,
then one must choose η = (γ− 1)−1 in step (II), while the upper-bound bn must
be chosen according to the following rules:

(i) For γ ∈ (1, 2) we choose bn :=
[(

γ−1
2−γ

)
n
] γ−1

γ

, which gives an expected degree

D ≈
(
γ − 1

2− γ

) 2
γ

n
2−γ
γ .

(ii) For γ = 2 we choose bn :=
√

(n/2) log(n) and obtain for the expected degree

D ≈ log(n)

2
.



(iii) For γ > 2 we choose bn :=
[(

γ−1
γ−2

)
n
] γ−1

2

which yields

D ≈ γ − 1

γ − 2
.

In the model described by steps (I) and (II), the probability that a node u,
having fitness x, will be linked with any other node v is given by

P (x) := E[p(Xu, Xv)|Xu = x] =
xη

b2ηn

∫ ∞
0

zηρ(z) dz. (2)

The expected degree of a node of fitness x is (n − 1)P (x). The (unconditional)
probability of having the edge (u, v) is πn := E[p(Xu, Xv)] = E[P (Xu)] and
the expected degree of a node is D := (n − 1)πn. For the choices (i)–(iii), the
expected degree of a node of fitness x will be approximately xη, for large enough
n.

At this point, it should be noted that power-law graphs with index γ > 1
(regardless of how they are generated) in which every two nodes are linked with
the same probability πn, enjoy the following property: If γ > 2 then the expected
degree D must remain bounded as the number of nodes n grows arbitrarily large.
When γ = 2 the expected degree D may grow to infinity with the number of
nodes, but no faster than log(n). Finally, when γ ∈ (1, 2) the expected degree D
may again grow to infinity with the number of nodes, but no faster than n2−γ . To
justify the above claims, one may express the total expected number N of edges
in the graph in two ways: first, since any two nodes are linked with the same
probability πn, the expected number of edges E[N ] is given by n(n−1)πn/2. On
the other hand, N is half of the sum of all degrees in the graph, hence

D = (n− 1)πn =
2E[N ]

n
=

n−1∑
k=1

kE[Vk] ≤ c
n−1∑
k=1

1

kγ−1
, (3)

where Vk denotes the number of nodes of degree k and c > 0 is some finite
constant. Since the r.h.s. in (3) is bounded for γ > 2 and using the estimates

n−1∑
k=1

1

kγ−1
∼

{
n2−γ , γ ∈ (1, 2),

log(n), γ = 2,

hence our claims are justified. The conclusion is that the power-law structure of
a graph, in which every two nodes interact with the same probability, induces an
upper-bound on the magnitude of the expected degree of the nodes. Comparing
the expected degree estimates in (i)–(iii) with the maximal rates imposed by (3)
reveals that our method maximizes the expected degree when γ ≥ 2.

We also remark that the graph resulted at step (II) will have a certain fraction
of isolated nodes which increases with γ. More precisely, for γ close to 1 this
fraction will be very small (close to 0), while for very large γ it will approach
1/e ' 37%; when γ ∈ (2, 3) this fraction will stay between 14 − 22%. The



existence of these isolated nodes in our model is a consequence of the upper-
bound established by (3) since, in general, by Jensen’s Inequality it holds that

E[deg(v) = 0] ≈ E[exp(−(n− 1)P (X))] ≥ exp[−(n− 1)πn] = exp(−D),

so whenever the expected degree D is bounded (recall that this is necessarily the
case when γ > 2) the expected fraction of isolated nodes will be strictly positive.

Similarly to the experiments conducted on the Caldarelli model, we also
performed a set of extensive tests on our novel model. Results from the set of
100 experiments are collected in Figure 2. We remark that our model performs in
a more stable fashion with respect to the emerging degree distribution exponent.
We also notice that our model provides a better convergence with respect to the
size of the network.

Next, we analyzed how well our model controlled the emerging degree dis-
tribution exponent, γ, by performing the same set of averaging experiments as
in Caldarelli’s case. All results are collected in Figures 4a and 4b. Our model
outperforms Caldarelli’s model both in terms of control over the emerging degree
distribution exponent, γ, and in terms of the number of isolated nodes. Finally,
we notice that the theoretically proven discontinuity at γ = 2 is illustrated by
the experimental results.

In this section, we have presented and experimentally evaluated a novel
method for generating connected power-law graphs with any index γ > 1. In our
proposed model, we correct the issues in [4], by considering truncated (bounded)
fitness-values and use a deterministic bound bn instead of a random one. While
the lower bound (l = 1) is included in the model for technical purposes only,
the upper bound bn is crucial and plays the role of a tuning parameter which
allows one to obtain the desired power-law index γ as well as the correct be-
havior for the expected degree. In fact, the upper-bound bn is strongly related
to the number of edges in the graph by means of the vicinity function defined
in (1); namely, the larger the bn the smaller the number of edges in the graph.
In general, increasing the magnitude of bn will damage the power-law behav-
ior, while for γ > 2 decreasing bn will result in an asymptotically empty (still
power-law) graph. Therefore, the model is extremely sensitive to the choice of
the upper-bound bn when γ > 2.

4 Building Power-law Overlays

4.1 Algorithm

Building power-law overlays in the real world is a nontrivial task. Following
the standard methodology, that is, applying the vicinity function on all possible
pairs of nodes to decide which edges to place is impractical: It assumes either
centralized membership management, or complete membership knowledge by
each node. Neither of these scales well with the size of the overlay.

Instead, we explicitly designed a solution in which nodes are not required to
traverse the whole network to determine their links. They form links by con-
sidering a small partial view of the network. The key point, however, in this



Active Thread (on node p)

while true do
// wait T time units
S ← r random peers from Cyclon
foreach q in S do

v = VicinityFunc(fitness(p), fitness(q))
with prob v

Send (q, “INVITE”)

function TerminationCondition()
if degree ≥ expected degree then

return true
else

return false

Passive Thread (on node q)

while true do
Receive msg from p
if msg ==“INVITE” then

if not TerminationCondition()
then

Send(p, ”ACCEPT”)
AddLink(p)

else if msg ==“ACCEPT” then
AddLink(p)

if TerminationCondition() then
Cease(Active Thread)
Cease(Cyclon)

Fig. 6: The generic gossiping skeleton for building power-law overlays.

approach is the termination condition, that is, a criterion that lets a node decide
when to stop looking for additional links.

Our method exploits the analytic findings of the previous section. In a nut-
shell, each node periodically picks a few random other nodes, and feeds the two
fitness values into the vicinity function to determine whether to set up a link or
not. A node performs this repeatedly until it has satisfied its termination con-
dition, that is, it has established a number of links equal to its expected degree,
as computed by the respective formula.

In more detail, our protocol works as follows. Nodes run an instance of Cy-
clon [15], a peer sampling service that provides each node with a regularly
refreshed list of pointers to random other peers, in a fully decentralized manner
and at negligible bandwidth cost. Upon being handed a number of random other
peers, a node applies the vicinity function and decides if it wants to set up a link
with one or more of them. It sends an Invite message to the respective peers,
and awaits their responses. Upon receiving an Invite, a node checks if its degree
has already reached its expected degree value. If not, it sends back an Accept
message as a response to the invitation, and the two nodes establish a link with
each other on behalf of the power-law overlay.

When a node’s termination condition is met, that is, the number of estab-
lished links of that node has reached its expected degree, it refrains from further
gossiping. That is, it stops considering new neighbors to send Invite messages
to, and it responds to other nodes’ invitations by a Reject message. Notably, a
node also refrains from all Cyclon communication. This is particularly impor-
tant for letting the network converge fast. By ceasing its Cyclon communica-
tion, a node is prompty and conveniently “forgotten” by the Cyclon overlay,
letting the latter be populated exclusively by nodes that are still in search of ad-
ditional links. Thus, Cyclon constitutes a good source of random other peers,
as it picks random nodes out of a pool of peers that are willing to form addi-
tional links. Even in a network of hundreds of thousands of nodes, when a small
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Fig. 7: Statistics collected for different γ values and different random views.

number of nodes are left searching for additional links,they quickly discover each
other and decide what links to establish.

Figure 6 shows the programming model of our protocol, without including
Cyclon. As most gossiping protocols, it is modelled by two threads. An active
thread, taking care of all periodic behavior and sending invitations, and a passive
thread receiving messages (invitations or responses to invitations) and reacting
accordingly.

4.2 Evaluation

We implemented our algorithm in PeerNet, a branch of the popular PeerSim
simulator written in Java.

We consider a network consisting of a fixed set of N nodes. We assume that
communication is reliable. Links are persistent and bidirectional (i.e., when x
establishes a link to y, y gets a message to establish a link to x). A node’s active



thread operates in a periodic manner, and all nodes’ periods are the same, yet
they are triggered completely asynchronously with respect to each other.

The behavior of the protocol depends on three main parameters. First, the
target γ; second, the number of nodes in the network; and third, the random
view size, that is, the number of random links a node is handed by Cyclon in
each round.

Figures 7 and 8 show the results of our experiments for 10,000 and 100,000
nodes, respectively. The first row in each figure (i.e., Figure 7(a-c) and Fig-
ure 8(a-c)) shows the observed γ of the emerged overlay, as a function of the
number of rounds elapsed since the beginning of the experiment, for three sam-
ple values of γ, namely, 1.4, 1.8, and 2.6. The four different lines in each plot
correspond to four different random view sizes. In the case of 10K nodes, all
four lines converge equally fast to the (approximate) target γ. For the larger
network of 100K nodes, checking out more random nodes per round provides
some advantage with respect to convergence time.

Note that each graph shows a different target value of γ and the correspond-
ing approximate value. Our formula for a node’s expected degree is derived from
the mathematical model presented in Section 3.2. However, it is based on the
assumption of a large enough number of nodes and therefore we evaluate the
error introduced by this approximation. We construct the histogram of all ex-
pected degrees (i.e., the expected degree distribution) and we use it to compute
an approximate γ. In each Figure 7a–7c and 8a–8c we compare the target γ, the
approximate γ and the γ values of the self-emerging overlays.

The second row of the figures (i.e, Figure 7(d-f) and Figure 8(d-f)) shows the
percentage of nodes that have not yet established as many links as their expected
degree mandates, and are, therefore, still gossiping in search of new connections.
We see that, particularly for the 10K network, the most of the nodes meet their
termination criterion within the first few hundred rounds, which means they do
not spend any network resources thereafter.

Our formula for a node’s expected degree is derived from the mathematical
model presented in Section 3.2. However, it is based on the assumption of a large
enough number of nodes and therefore we evaluate the error introduced by this
approximation. We construct the histogram of all expected degrees, which corre-
sponds to the expected degree distribution and use it to compute an approximate
γ. In each Figure 7a–7c and 8a–8c we compare the target γ, the approximate γ
and the γ values of the self-emerging overlays.

Most importantly, though, the graphs of the second row show that the vast
majority of the nodes reach their exact expected degree, contributing to the
excellent γ approximation observed in the first row graphs.

Finally, the third row graphs (i.e, Figure 7(g-i) and Figure 8(g-i)) show the
number of nodes not contained in the largest cluster. For low values of γ the
largest cluster is massive, containing virtually the whole set of nodes. This is
expected, as nodes tend to have high degrees. For higher values of γ, though,
which experience long tails of nodes with very low degrees, we see that the
resulting overlay is split in many disconnected components. This does not mean
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Fig. 8: Statistics collected for different γ values and different random views.

that nodes are isolated at an individual level (as confirmed by the graphs of the
second rows), but that nodes are connected according to their expected degrees
in smaller components. Making sure of connecting all these components in a
single connected overlay is the subject of future work.

5 Conclusions

Self-emerging power-law networks are an important area of research. However,
algorithms that generate such topologies in a controlled manner are still scarce.

In this work, we investigated existing approaches to sequential power-law
graphs generation and selected a model that allowed for straightforward de-
centralization. We then experimentally identified limitations with the selected
model which have been supported by our theoretical findings. We presented a
novel model, built on a thorough mathematical support, that addressed the lim-



itations found with previous models. Under the same experimental settings, our
results show that our proposed model significantly outperforms the initial one
in different convergence aspects.

Next, we implemented a prototype self-emerging power-law network based
on our model and gossiping protocols. We show that the theoretical and se-
quential implementations of the novel model are closely followed in performance
by the decentralized prototype. Furthermore, the theoretical bounds are ob-
served throughout an extensive set of experiments. Such a result encourages us
to consider the theoretical model already robust with respect to implementation
approximations and to continue our research efforts having this model as a foun-
dation. One interesting future research question, identified by our decentralized
prototype evaluation, is how to alleviate the the problem of (many) disconnected
components.
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