Stochastic Calculus with respect to Gaussian Processes: Part I : Stochastic Calculus with respect to Gaussian Processes: Part I

Joachim Lebovits 1
1 LAGA
LAGA - Laboratoire Analyse, Géométrie et Applications
Abstract : Stochastic integration \textit{wrt} Gaussian processes has raised strong interest in recent years, motivated in particular by its applications in Internet traffic modeling, biomedicine and finance. The aim of this work is to define and develop a White Noise Theory-based anticipative stochastic calculus with respect to all Gaussian processes that have an integral representation over a real (maybe infinite) interval. Very rich, this class of Gaussian processes contains, among many others, Volterra processes (and thus fractional Brownian motion) as well as processes the regularity of which varies along the time (such as multifractional Brownian motion). A systematic comparison of the stochastic calculus (including Itô formula) we provide here, to the ones given by Malliavin calculus in \cite{nualart,MV05,NuTa06,KRT07,KrRu10,LN12,SoVi14,LN12}, and by Itô stochastic calculus is also made. Not only our stochastic calculus fully generalizes and extends the ones originally proposed in \cite{MV05} and in \cite{NuTa06} for Gaussian processes, but also the ones proposed in \cite{ell,bosw,ben1} for fractional Brownian motion (\textit{resp.} in \cite{JLJLV1,JL13,LLVH} for multifractional Brownian motion).
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [50 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01489766
Contributeur : Joachim Lebovits <>
Soumis le : mercredi 15 mars 2017 - 09:59:53
Dernière modification le : jeudi 11 janvier 2018 - 02:07:29
Document(s) archivé(s) le : vendredi 16 juin 2017 - 12:33:21

Fichiers

1-Stochastic Integration wrt G...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01489766, version 1
  • ARXIV : 1703.08393

Collections

Citation

Joachim Lebovits. Stochastic Calculus with respect to Gaussian Processes: Part I : Stochastic Calculus with respect to Gaussian Processes: Part I. 2017. 〈hal-01489766〉

Partager

Métriques

Consultations de la notice

113

Téléchargements de fichiers

27