Local Times of Gaussian Processes: Stochastic Calculus with respect to Gaussian Processes Part II

Joachim Lebovits 1
1 LAGA
LAGA - Laboratoire Analyse, Géométrie et Applications
Abstract : The aim of this work is to define and perform a study of local times of all Gaussian processes that have an integral representation over a real interval (that maybe infinite). Very rich, this class of Gaussian processes, contains Volterra processes (and thus fractional Brownian motion), multifractional Brownian motions as well as processes, the regularity of which varies along the time. Using the White Noise-based anticipative stochastic calculus with respect to Gaussian processes developed in [Leb17], we first establish a Tanaka formula. This allows us to define both weighted and non-weighted local times and finally to provide occupation time formulas for both these local times. A complete comparison of the Tanaka formula as well as the results on Gaussian local times we present here, is made with the ones proposed in [MV05, LN12, SV14].
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01489778
Contributeur : Joachim Lebovits <>
Soumis le : mardi 14 mars 2017 - 16:29:20
Dernière modification le : mardi 22 mai 2018 - 20:40:10
Document(s) archivé(s) le : jeudi 15 juin 2017 - 14:41:33

Fichiers

2-Local Times for Gaussian Pro...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01489778, version 1
  • ARXIV : 1703.05006

Collections

Citation

Joachim Lebovits. Local Times of Gaussian Processes: Stochastic Calculus with respect to Gaussian Processes Part II. 2017. 〈hal-01489778〉

Partager

Métriques

Consultations de la notice

164

Téléchargements de fichiers

46