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Abstract—Scientific applications are usually described as
directed acyclic graphs, where nodes represent tasks and edges
represent dependencies between tasks. For some applications,
such as the multifrontal method of sparse matrix factorization,
this graph is a tree: each task produces a single output data,
used by a single task (its parent in the tree).

We focus on the case when the data manipulated by tasks
have a large size, which is especially the case in the multifrontal
method. To process a task, both its inputs and its output must fit
in the main memory. Moreover, output results of tasks have to
be stored between their production and their use by the parent
task. It may therefore happen, during an execution, that not all
data fit together in memory. In particular, this is the case if the
total available memory is smaller than the minimum memory
required to process the whole tree. In such a case, some data
have to be temporarily written to disk and read afterwards.
These Input/Output (I/O) operations are very expensive; hence,
the need to minimize them.

We revisit this open problem in this paper. Specifically, our
goal is to minimize the total volume of I/O while processing a
given task tree. We first formalize and generalize known results,
then prove that existing solutions can be arbitrarily worse than
optimal. Finally, we propose a novel heuristic algorithm, based
on the optimal tree traversal for memory minimization. We
demonstrate good performance of this new heuristic through
simulations on both synthetic trees and realistic trees built from
actual sparse matrices.

I. INTRODUCTION

Parallel workloads are often modeled as task graphs,
where nodes represent tasks and edges represent the de-
pendencies between tasks. There is an abundant literature
on task graph scheduling when the objective is to minimize
the total completion time, or makespan. However, with the
increase of the size of the data to be processed, the memory
footprint of the application can have a dramatic impact
on the algorithm execution time, and thus needs to be
optimized. When handling very large data, the available
main memory may be too small to simultaneously handle
all data needed by the computation. In this case, we have
to resort to using disk as a secondary storage, which is
sometimes known as out-of-core execution. The cost of the
I/O operation to transfer data from and to the disk is known
to be several orders of magnitude larger than the cost of
accessing the main memory. Thus, in the case of out-of-

core execution, it is a natural objective to minimize the
total volume of I/O.

In the present paper, we consider the parallel schedul-
ing of rooted in-trees. The vertices of the trees represent
computational tasks, and the edges of the trees represent
the dependencies between these tasks. Tasks are defined
by their input and output data. Each task uses all the data
produced by its children to output new data for its parent.
In particular, a task must have enough available memory
to fit the input from all its children.

The motivation for this work comes from numerical
linear algebra, and especially the factorization of sparse
matrices using direct multifrontal methods [1]. During the
factorization, the computations are organized as a tree
workflow called an elimination tree, and the huge size of
the data involved makes it absolutely necessary to reduce
the memory requirement of the factorization. Note that
we consider here that no numerical pivoting is performed
during the factorization, and thus that the structure of the
tree, as well as the size of the data, are known before the
computation really happens.

It is known that the problem of minimizing the peak
memory Mpeak of a tree traversal, that is, the minimum
amount of memory needed to process a tree, is polyno-
mial [2], [3]. However, it may well happen that the available
amount of memory M is smaller than the peak memory
Mpeak. In this case, we have to decide which data, or part of
data, have to be written to disk. In a previous study [3], we
have focused on the case when the data cannot be partially
written to disk, and we proved that this variant of the
problem was NP-complete. However, it is usually possible
to split data that reside in memory, and write only part of it
to the disk if needed. This is for instance what is done using
paging: all data are divided in same-size pages, which can
be moved from main memory to secondary storage when
needed. Since all modern computer systems implement
paging, it is natural to consider it when minimizing the
I/O volume.

Note that as in [3], the present study does not directly
focus on parallel algorithms. However, parallel processing
is the ultimate motivation for this work: complex scientific



applications using large data such as multifrontal sparse
matrix factorization always make use of parallel platforms.
Most involved scheduling schemes combine data paral-
lelism (a task uses multiple processors) and tree parallelism
(several tasks are processed in parallel). We indeed have
studied such a problem for peak memory minimization [4].
However, one cannot hope to achieve good results for the
minimization of I/O volume in a parallel settings until the
sequential problem is well understood, which is not yet
the case. The present paper is therefore a step towards
understanding the sequential version of this problem.

The main contributions of this work are:

• A formalization in a common framework of the results
scattered in the literature;

• A proof of the dominance of post-order traversals when
trees are homogeneous (all output data have the same
size), knowing that an algorithm to compute the best
post-order traversal has been proposed by E. Agullo [5].

• A proof that neither the best post-order traversal nor
the memory-peak minimization algorithms are approx-
imation algorithms for minimizing the I/O volume;

• A new heuristic that achieves good performance both
on synthetic and actual trees as shown through simu-
lations.

The rest of this paper is organized as follows. We give
an overview of the related work in Section II. Then in
Section III we formalize our model and present elementary
results. Existing solutions are studied in Section IV before a
new one is introduced in Section V and evaluated through
simulations in Section VI. We finally conclude and present
future directions in Section VII.

II. RELATED WORK

Memory and storage have always been a limited param-
eter for large computations, as outlined by the pioneering
work of Sethi and Ullman [6] on register allocation for task
trees. In the realm of sparse direct solvers, the problem
of scheduling a tree so as to minimize peak memory
has first been investigated by Liu [7] in the sequential
case: he proposed an algorithm to find a peak-memory
minimizing traversal of a task tree when the traversal is
required to correspond to a postorder traversal of the tree.
A postorder traversal requires that each subtree of a given
node must be fully processed before the processing of
another subtree can begin. A follow-up study [2] presents an
optimal algorithm to solve the general problem, without the
postorder constraint on the traversal. Postorder traversals
are known to be arbitrarily worse than optimal traversals for
memory minimization [3]. However, they are very natural
and straightforward solutions to this problem, as they allow
to fully process one subtree before starting a new one.
Therefore, they are widely used in sparse matrix software
like MUMPS [8], [9], and achieve good performance on actual
elimination trees [3]. Note that peak memory minimization
is still a crucial question for direct solvers, as highlighted by

Agullo et al. [10], who study the effect of processor mapping
on memory consumption for multifrontal methods.

As mentioned in the introduction, the problem of min-
imizing the I/O volume when traversing a tree has been
studied in [3] with the constraint that each data either stays
in the memory or has to be written wholly to disk. We study
here the case when we have the option to store part of the
data, which is also the topic of E. Agullo’s PhD. thesis [5].
In his thesis, Agullo exhibits the best postorder traversal for
the minimization of the I/O volume, which we adapt to our
model in Section IV-A. He also studies numerous variants
of the model that are important for direct solvers, as well as
other memory management issues—both for sequential and
parallel processing. Based on these preliminaries, he finally
presents an out-of-core version of the MUMPS solver.

Finally, out-of-core execution is a well-know approach for
computing on large data, especially (but not only) in linear
algebra [11], [12].

III. PROBLEM MODELING AND BASIC RESULTS

A. Model and notation

As introduced above, we assume that we have an avail-
able memory (or primary storage) of limited size M , and a
disk (or secondary storage) of unlimited size.

We consider a workflow of tasks whose precedence
constraints are modeled by a tree of tasks G = (V ,E). Its
nodes v ∈ V represent tasks and its edges e ∈ E represent
dependencies. All dependencies are directed toward the
root (denoted by root): a node can only be executed after
the termination of all its children. The output data of a
node i occupies a size wi in the main memory. This data
may be written totally or partially to the disk after task i
produces it. In order for a node to be executed, the output
data of all its children must be entirely stored in the main
memory. An amount of memory m can be moved between
the memory and the disk at a cost of m I/O operations,
regardless of which data it corresponds to. We assume that
all memory values (M , wi ) are given in an appropriate unit
(such as kilobytes) and are integers. We divide the main
memory into slots, where each slot holds one such unit of
memory.

At the beginning of the computation of a task i , the
output data of i ’s children must be in memory, while at
the end of its computation, its own output data must be
in memory. The amount of memory needed in order to
execute node i is thus

w̄i = max

(
wi ,

∑
( j ,i )∈E

w j

)
.

We assume that M is at least as large as every w̄i , as
otherwise the tree cannot be processed.

Our objective is to find a solution minimizing the total
I/O volume. A solution needs to give the order in which
nodes should be executed, and how much of each node
should be written out during I/O operations. In particular,
for a tree of n tasks, we define a solution to our problem



as a permutation σ of [1. . .n] and a function τ. We call
such a solution a traversal. The permutation σ represents
the schedule of the nodes, that is, σ(i ) = t means that task
i is computed at step t , while the function τ represents the
amount of I/O for each data: τ(i ) = m means that m among
wi units of the output data of task i are written to disk (then
we assume they are written as soon as task i completes).
Note that we do not need to clarify which part of the data
is written to disk, as our cost function only depends on the
volume. Besides, we assume that when τ(i ) 6= 0, the write
operation on the output data of task i is performed right
after task i completes (and produces the data), and the read
operation is performed just before the use of this data by
task i ’s parent, as any other I/O scheme would use more
memory at some time step for the same I/O volume. Finally,
since there are as many read than write operations, we only
count the write operations.

In order for a traversal to be valid, it must respect the
following conditions:

• Tasks are processed in a topological order:

∀(i , j ) ∈ E , σ(i ) <σ( j );

We say that a node i of parent j is considered active
at step t under the schedule σ if σ(i ) < t < σ( j ). This
means that its output data is either partially in memory
and/or partially written to disk at time t .

• The amount of data written to disk never exceeds the
size of the data:

∀i ∈V , 0 ≤ τ(i ) ≤ wi ;

• Enough memory remains available for the processing
of each task (taking into account active nodes):

∀i ∈G ,
∑

(k,p)∈E
σ(k)<σ(i )<σ(p)

(wk −τ(k)) ≤ M − w̄i .

The problem we are considering in this paper, called
MINIO, is to find a valid traversal that minimizes the total
amount of I/O, given by

∑
i∈G τ(i ).

We formally define a postorder traversal as a traversal σ
such that, for any node i and for any node k outside the
subtree Ti rooted at i , we have either ∀ j ∈ Ti , σ(k) <σ( j )
or ∀ j ∈ Ti , σ( j ) <σ(k).

B. Towards a compact solution

Although a traversal is described by both the schedule σ

and the I/O function τ, the following results show that one
can be deduced from the other. The first result is adapted
from [5, Property 2.1], which has the same result limited
to postorder traversals (see Section II). It states that given
a schedule σ, it is easy to derive a I/O scheme τ which
minimizes the I/O volume of the traversal (σ,τ).

Theorem 1. We consider a tree G, a memory bound M, and
a schedule σ. The I/O function τ following the Furthest in
the Future policy achieves the best performance under σ.

The I/O function τ following the Furthest in the Future
(FiF) policy is defined as follows: during the execution of σ,
whenever the memory exceeds the limit M , I/O operations
are performed on the active nodes which will remain
active the furthest in the future, i.e., whose execution come
last in the schedule σ. This result is similar to Belady’s
rule which states the optimality of the offline MIN cache
replacement [13], [14], that evicts from the cache the data
which is used the latest.

Proof. Given a tree G , a memory bound M , a schedule σ

and a I/O function τ that does not respect the FiF policy, it
is straightforward to transform τ into another I/O function
τ′ following the rule. Consider the first step when an I/O is
performed on a data i that is not the last one to be used
among active data. Let j denote the last data used among
active ones. We can safely increase τ′( j ) and decrease τ′(i )
until either τ′( j ) = w j or τ′(i ) = 0. As j is active longer than
i is, the memory freed by τ′ is available for a longer time
than the one freed by τ, which keeps the traversal valid.
Furthermore, by repeating this transformation, we produce
an I/O function which respects the FiF policy.

On the other hand, if we have an I/O function τ de-
scribing how much of each node is written to disk, we can
compute a schedule σ such that (σ,τ) is a valid traversal
(if such a schedule exists).

Theorem 2. We consider a tree G, a memory bound M, and
an I/O function τ for which there exists a valid schedule.
Such a schedule can be computed in polynomial time.

The proof of this result is delegated to Section V where
we use a similar method to derive a heuristic: once we know
where the I/O operations take place, we may transform the
tree by expanding some nodes to make these I/O operations
explicit within the tree structure. If a valid traversal using
τ exists, the resulting tree may be completely scheduled
without any additional I/O, and such a schedule can be
computed using an optimal scheduling algorithm for mem-
ory minimization.

Both previous results allow us to describe solutions
in a more compact format (as either a schedule or an
I/O function). However, this does make the problem less
combinatorial: there are n! possible schedules and already
2n τ functions if we restrict only to functions such that
τ(i ) = 0 or wi .

C. Related algorithms

As mentioned in Section II, the problem of minimizing
the peak memory, denoted MINMEM, is strongly related
to our problem, and has been extensively studied. In
this problem, the available memory is unbounded (which
means no I/Os are required) and we look for a schedule that
minimizes the peak memory, i.e., the maximal amount of
memory used at any time during the execution. There are
at least two important algorithms for this problem, which
we use in the present paper:



• It is possible to compute a schedule minimizing the
peak-memory in polynomial time, as proved by Liu [2].
We denote such an algorithm by OPTMINMEM.

• The best postorder traversal for peak-memory mini-
mization can also be computed in polynomial time [7].
We will refer to this algorithm by POSTORDERMINMEM.

IV. EXISTING SOLUTIONS ARE NOT SATISFACTORY

We now detail two existing solutions for the MINIO prob-
lem. The first one is the best postorder traversal proposed
by Agullo [5]. The second consists in using the optimal
traversal for MINMEM proposed by Liu [2] and then to
apply Theorem 1 to obtain a valid traversal. After presenting
these algorithms, we prove that none of them has a constant
competitive factor compared to the optimal traversal.

A. Computing the best postorder traversal

For the sake of completeness, we present the adaption to
our model of the algorithm computing the best postorder
traversal for MINIO from [5]. Recall that in a postorder
traversal, when a node is processed, its whole subtree
must be processed before any other external node may be
started. Given a node i and a postorder schedule σ, we
first recursively define Si as the storage requirement of the
subtree Ti rooted at i . Let Chil(i ) be the children of i . Then:

Si = max

wi , max
j∈Chil(i )

S j +
∑

k∈Chil(i )
σ(k)<σ( j )

wk


 .

This expression represents the maximum memory peak
reached during the execution. If the peak is obtained at
the end of the execution, it is then equal to wi . Otherwise,
it appears during the execution of the subtree of some child
j . In this case, the peak is composed of the weights of the
children already processed, plus the peak S j of T j .

We may now consider Ai = min(M ,Si ), which represents
the amount of main memory used for the out-of-core
execution of the subtree Ti by σ. We recursively define Vi

as the volume of I/Os performed by σ during the execution
Ti when I/O operations are done using the FiF policy:

Vi = max

(
0, max

j∈Chil(i )

(
A j +

σ(k)<σ( j )∑
k∈Chil(i )

wk

)
−M

)
+ ∑

j∈Chil(i )
V j .

The expression of Vi has a similar structure to the expres-
sion of Si . No I/Os can be incurred when only the root i is
in memory, hence wi has no effect here. The second term
accounts for the I/Os incurred on the children of i . Indeed,
during the execution of node j , some parts of children of
i must be written to disk if the memory peak exceeds M ,
and this quantity is at least A j +∑σ(k)<σ( j )

k∈Chil(i ) wk −M . The last
term accounts for the I/Os occurring inside the subtrees.
Note that such I/Os can only happen if the memory peak
of the subtree exceeds M .

It remains to determine which postorder traversal mini-
mizes the quantity Vroot . Note that the only term sensitive

to the ordering of the children of i in the expression of Vi

is max
j∈Chil(i )

(
A j +

σ(k)<σ( j )∑
k∈Chil(i )

wk

)
. Theorem 3 states that sorting

the children of i by decreasing values of A j −w j achieves
the minimum Vi .

Theorem 3 (Lemma 3.1 in [7]). Given a set of values
(xi , yi )1≤i≤n , the minimum value of max1≤i≤n

(
xi +∑i−1

j=1 y j

)
is obtained by sorting the sequence (xi , yi ) in decreasing
order of xi − yi .

Therefore, the postorder traversal that processes the chil-
dren nodes by decreasing order of Ai −wi minimizes the
I/O cost among all postorder traversals. This traversal is
described in Algorithm 1, initially called with r = root, and
will be referred to as POSTORDERMINIO. Note that in the
algorithm ⊕ refers to the concatenation operation on lists.

Algorithm 1: POSTORDERMINIO (G ,r )

Output: a tree G and a node r in G
Output: an ordered list `r of the nodes in the subtree

rooted at r , corresponding to a postorder
1 foreach i child of r do
2 `i ← POSTORDERMINIO(G , i )
3 Compute the Ai value using postorder `i

4 `r ←;
5 for i child of r by decreasing value of Ai −wi do
6 `r ← `r ⊕`i

7 `r ← `r ⊕ {r }
8 return `r

B. POSTORDERMINIO is optimal on homogeneous trees

In this subsection we focus on homogeneous trees, which
are defined as trees in which all nodes have output data of
size one. We will show that POSTORDERMINIO is optimal
on these homogeneous trees, i.e., that it performs the
minimum number of I/Os. This generalizes a result of Sethi
and Ullman [6] for homogeneous binary trees.

Theorem 4. POSTORDERMINIO is optimal for homogeneous
trees.

In order to prove this theorem, we need first to define
some labels on the nodes of a tree. Let T be any homoge-
neous tree (wv = 1 for all nodes v of T ). In the following
definitions, whenever v is a node of T with k children,
v1, . . . , vk will be its children.

Memory bound l (v). For each node v of T , we recursively
define a label l (v) which represents the minimum
amount of memory necessary to execute the subtree
T (v) rooted at v without performing any I/Os:

l (v) =


0 if v is a leaf
max1≤i≤k (l (vi )+ i −1) otherwise

and ordering the children such that
l (vi ) ≥ l (vi+1) for 1 ≤ i ≤ k −1



We call POSTORDER one postorder schedule that exe-
cutes the children of any node by non-increasing l -
labels (ties being arbitrarily broken). Intuitively, under
POSTORDER, while computing the i -th child, we have
i −1 extra nodes in memory, each of size one, so we
need l (vi )+ (i −1) memory slots in total.

I/O indicator c(v). If vi is a child of v , intuitively, c(vi )
represents the number of children of v written to disk
by POSTORDER during the execution of T (vi ). This
number can be either 0 or 1. We set c(v1) = 0 and

c(vi ) =
{

0 if l (vi )+∑
1≤ j<i (1− c(v j )) ≤ M

1 otherwise.

We set c(root) = 0. To ease the writing of some proofs,
we use the notation

m(vi ) = ∑
1≤ j<i

(1− c(v j )).

Thus m(vi ) represents the number of children of v in
memory right before vi is executed. Note that m(v1) =
0 and m(vi ) = (1−c(v1))+∑

2≤ j<i (1−c(v j )) ≥ (1−c(v1)) =
1 for 2 ≤ i ≤ k.

I/O volumes w(v) and W (T (v)). w(v) represents the total
number of children of v stored by POSTORDER:

w(v) =
k∑

i=1
c(vi ) =

k∑
i=2

c(vi ).

Finally, for a given node v , we define W (T (v)) on the
subtree rooted at v :

W (T (v)) = c(v)+ ∑
µ∈T (v)

w(µ).

W (T (v)) intuitively represents the total volume of
communications performed during the execution of
the tree T (v) by POSTORDER.

We first state the correctness of the l -labels and the
optimality of POSTORDER for the MINMEM problem.

Lemma 1. With infinite memory, POSTORDER uses l (n) slots
to compute the subtree rooted at node n.

Proof. This result follows from the definition of the labels
l (v).

Lemma 2. With infinite memory, any schedule uses at least
l (v) slots to compute the subtree rooted at v.

Proof. We prove this result by induction on the size of T (v).
If v is a leaf, the result holds (l (v) = 1).

Otherwise, we assume the lemma to be true for the
subtrees rooted at the children v1, . . . , vk of v . We consider
the schedule returned by MINMEM. The memory peak
inherent to the execution of a subtree T (vi ) is equal to
l (vi ) by the induction hypothesis. Assume without loss of
generality that the children of v are ordered such that
MINMEM first computes a node of T (v1), then the next
executed node not in T (v1) is in T (v2), then the next
executed node neither in T (v1) nor in T (v2) is in T (v3),

and so on. Then, the memory peak reached during the
execution of T (vi ) is at least l (vi ) + (i − 1) because, in
addition to T (vi ), at least i −1 subtrees have been partially
executed: T (v1), ..., T (vi−1). Finally, the total memory peak
is at least equal to max1≤i≤k (l (vi )+i−1). By Theorem 3, this
quantity is minimized when the nodes are ordered by non-
increasing values of l (vi ). Hence, the total memory peak is
at least l (v).

We now state the performance of POSTORDER for the
MINIO problem (I/Os are done following the FiF policy).

Lemma 3. With bounded memory M, POSTORDER computes
a given tree T using W (T ) I/Os.

Proof. We prove this result by induction on the size of T . We
introduce new notation: for any node v of T we define W (v)
as W (v) = W (T (v))− c(v). In other words, W (v) intuitively
represents the total volume of communications performed
during the execution of the tree T (v) if we had nothing
to execute but T (v) (in practice T (v) may be a strict sub-
tree of T and, therefore, the execution of T (v) in the midst
of the execution of T can induce more communications).
Note that W (v) =W (T (v)) if v is the root of T . We prove by
induction on the size of T (v) that W (v) I/Os are performed
during the execution of T (v).

Let us assume that v is a leaf. Then W (v) = 0. Because we
have assumed (in Section III-A) that M was large enough
for a single node to be processed without I/Os, c(v) = 0 and
thus W (T (v)) = 0 =W (v)+ c(v).

Now assume that v is not a leaf. By the induction
hypothesis, for any i ∈ [1;k], POSTORDER executes the tree
T (vi ) alone using W (vi ) I/Os. We prove that to process
the tree T (vi ), after the trees T (v1) through T (vi−1) were
processed, we need to perform W (T (vi )) = W (vi ) + c(vi )
I/Os.

Let us consider the (i + 1)-th child of v . If c(vi+1) = 0,
then l (vi+1)+∑

1≤ j<i+1(1− c(v j )) ≤ M . Then, according to
Lemma 1, no I/Os are required to execute T (vi+1) under
POSTORDER even after the processing of T (v1) through
T (vi ). Indeed, before the start of the processing of T (vi+1)
the memory contains exactly

∑
1≤ j<i+1(1 − c(v j )) nodes.

Therefore W (vi+1) = c(vi+1) =W (T (vi+1)) = 0.
We are now in the case c(vi+1) = 1; thus l (vi+1) +∑

1≤ j<i+1(1 − c(v j )) > M . Recall that for l ∈ [1; i ], l (vl ) ≥
l (vi+1). Thus, if l (vi+1) ≥ M , then for l ∈ [2; i ], l (vl ) ≥ M
and c(vl ) = 1 (because m(vl ) ≥ (1− c(v1)) = 1). Therefore,
after the completion of T (vi ) there is only one node
remaining in the memory: vi . Then with a single I/O
POSTORDER writes vi to disk, the memory is empty and
T (vi+1) can then be processed with W (vi+1) I/Os, giving
a total of W (vi+1) + c(vi+1) = W (T (vi+1)) I/Os. The only
remaining case is the case l (vi+1) < M . The processing of
T (vi ) requires at least l (vi+1) empty memory slots because
l (vi ) ≥ l (vi+1). Hence, after the completion of T (vi ) there
are at least l (vi+1)− 1 empty memory slots (the memory
including the node vi itself). Then with a single I/O



POSTORDER writes vi to disk and there are enough empty
memory slots to process T (vi+1) without any additional
I/Os. Therefore W (T (vi+1)) = 1 = W (vi+1) + c(vi+1). This
concludes the proof.

Lemma 5 relies on the following intermediate result.

Lemma 4. Consider a node v of a tree T with a child, a,
whose label l (a) satisfies l (a) > M. Now, consider any tree T ′
identical to T , except that the subtree rooted at a has been
replaced by any tree whose new label l ′(a) satisfies l ′(a) ≤
l (a) and l ′(a) ≥ M. Then w ′(v) = w(v).

Proof. Let v1, . . . , vk be the children of v , ordered so that
l (v1) ≥ ·· · ≥ l (vk ). Let j be the index of a: a = v j . As the
label of a in T ′, l ′(a), is not larger than l (a), we can have
l ′(a) < l ′(v j+1). Therefore, we define another ordering of the
children of v denoted by v ′

1, . . . , v ′
k such that l ′(v ′

1) ≥ ·· · ≥
l ′(v ′

k ). Let j ′ be the index of a in this ordering: v ′
j ′ = a = v j .

Note that j ′ ≥ j . For i ∈ [ j +1; j ′], we have vi = v ′
i−1; at j ,

we have v j = v ′
j ′ ; and for i ∉ [ j ; j ′], we have vi = v ′

i .

If j ′ = 1 then j = 1. This case means that a remains
the node with the largest label. The labels of the other
children of v remain unchanged. Because c(v1) = c ′(v1) = 0
by definition, then c ′(vi ) = c(vi ) for any child vi of v and,
thus, w(v) is equal to w ′(v).

Let us now consider the case j ′ > 1. From what precedes,
v ′

j ′−1 = v j ′ . Then l (v j ′ ) = l ′(v ′
j ′−1) ≥ l ′(v ′

j ′ ) = l ′(a) ≥ M .

However, for any i ∈ [1; j ′], l ′(v ′
i ) ≥ l ′(v ′

j ′ ) ≥ M and l (vi ) ≥
l (v j ′ ) ≥ M . Therefore, for any i ∈ [2; j ′], l ′(v ′

i )+m′(v ′
i ) > M

(because m′(v ′
i ) ≥ 1 − c ′(v ′

1) = 1 ) and, thus, c ′(v ′
i ) = 1.

Similarly, for any i ∈ [2; j ′], l (vi ) + m(vi ) > M (because
m(vi ) ≥ m(v1) = 1 ) and, thus, c(vi ) = 1. Therefore, for
i ∈ [1; j ′], c(vi ) = c ′(v ′

i ). Then, for i ∈ [ j ′ + 1;k], vi = v ′
i ,

m(vi ) = m′(v ′
i ), and c(vi ) = c ′(v ′

i ) by an obvious induction.
Therefore, w ′(v) =∑k

i=2 c ′(v ′
i ) =∑k

i=2 c(vi ) = w(v).

The following lemma gives a lower bound on the I/Os
performed by any schedule.

Lemma 5. No schedule can compute a tree T performing
strictly less than W (T ) I/Os.

Proof. This proof has been deferred to the companion
research report [15], due to its technicality and its length.
The main ideas of this proof are thus summarized here. The
result is proved by induction on the size of the tree. The
case where no I/O is required is deduced from Lemma 2.

Now, we consider a tree T for which any schedule
performs at least one I/O, and an optimal schedule P
on this tree. We focus on the first node s to be stored
under this schedule, and define the tree T ′ in which T (s)
is replaced by s. Using the induction hypothesis, we know
that any schedule on T ′, including the restriction of P on
T ′, performs at least W (T ′) I/Os. Therefore, we deduce that
P performs at least W (T ′)+1 I/Os on T . Thus, the objective
is to prove that W (T ′) ≥W (T )−1.

In order to prove this result, we focus on the closest
ancestor of s to have a label l larger than M , and denote
it as µ. We first prove that in the new tree T ′, we have
l (µ) ≥ M . This means, by Lemma 4, that the w labels of
the ancestors of µ are unchanged in T ′. Then, we prove
through an extensive case study that w(µ) in T ′ cannot be
smaller than w(µ) in T minus one. Finally, we conclude that
all the others w labels are equal in T and in T ′, therefore,
W (T ′) ≥W (T )−1.

We are now ready to prove Theorem 4.

Proof of Theorem 4. Because of Lemma 3 and of Lemma 5,
POSTORDER is optimal for homogeneous trees. However,
POSTORDERMINIO is a post-order that minimizes the vol-
ume of I/O operations. Hence, it is also optimal for homo-
geneous trees.

Note that, on homogeneous trees, POSTORDER and POS-
TORDERMINIO are almost identical: POSTORDER sorts chil-
dren by non-increasing li , while POSTORDERMINIO sorts
them by non-increasing Ai = mi n(M , li −1). In particular,
for children with li > M , the order is not significant for
POSTORDERMINIO.

C. Postorder traversals are not competitive

Previous research has shown that the best postorder
traversal for the MINMEM problem is arbitrarily far from the
optimal traversal [3]. We prove here that postorder traversals
may also have bad performance for the MINIO problem.
More specifically, we prove that there exist problem in-
stances on which POSTORDERMINIO performs arbitrarily
more I/O than the optimal I/O amount. We could exhibit
an example where the optimal traversal does not perform
any I/O and POSTORDERMINIO performs some I/O, but we
rather present a more general example where the optimal
traversal performs some I/O: in the following example, the
optimal traversal requires 1 I/O, when POSTORDERMINIO
requires Ω(nM) I/Os. The tree used in this instance is
depicted on Figure 1(a).

It is possible to traverse the tree of Figure 1(a) with a
memory of size M using only a single I/O, by executing
the nodes in increasing order of the labels next to the
nodes. After processing the minimal subtree including the
two leftmost leaves, our strategy is to process leaves from
left to right. Before processing a new leaf, we complete the
previous subtree up to a node of weight 1; this way the leaf
and the actives nodes can both fit in memory.

On the other hand, the best postorder traversal must
perform a volume of I/O equal to M/2− 1 before it can
start any leaf except for the first leaf it processes. This is
because the least common ancestor of any two leaf nodes
has two children of size M/2, and all leaves have size at
least M − 1. Thus, any postorder traversal incurs at least
M/2− 1 I/Os for all but one leaf node (3M/2− 2 for the
example here). We can extend the tree in Figure 1(a): we
replace root by a node of size 1, add to it a parent of size
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Figure 1: The label inside node i represents wi . The label next to the nodes indicate in (a) the optimal schedule, and in
(b) and (c) the OPTMINMEM schedule.

M/2 which is the left child of the new root; the right child of
the new root is then a chain containing a leaf of size M −1
and its parent of size M/2. Doing this repeatedly until n
nodes are used gives the lower bound of Ω(nM). Therefore,
POSTORDERMINIO is not constant-factor competitive.

D. OPTMINMEM is not competitive

Minimizing the amount of I/O in an out-of-core execu-
tion seems close to minimizing the peak memory when
the memory in unbounded. Thus, in order to derive a
good solution for MINIO, it seems reasonable to use an
optimal algorithm for MINMEM, such as the OPTMINMEM

algorithm presented by Liu [2], to compute a schedule
σ and then to perform I/Os using the FiF policy. In the
following, we also use OPTMINMEM to denote this strategy
for MINIO. We prove here that there exist problem instances
on which this strategy will also perform arbitrarily more
I/Os than the optimal traversal.

We first exhibit in Figure 1(b) a tree showing that OPT-
MINMEM does not always lead to minimum I/Os in our
model. Let M = 6. The tree of Figure 1(b) can be completed
with 3 I/Os, by doing one chain after the other. This
corresponds to a peak memory of 9. But OPTMINMEM

achieves a peak memory of 8 at the cost of 4 I/Os by
executing the nodes in increasing order of the labels next
to the nodes.

This example can be extended to show that OPTMIN-
MEM may perform arbitrarily more I/Os than the optimal
strategy. The extended tree is illustrated on Figure 1(c). It
contains two identical chains of length 2k +2, for a given
parameter k, and the memory size is set to 4k. The weights

of the tasks in each chain (in order from root to leaf) are
defined by interleaving two sequences: {2k,2k−1, . . . ,k} and
{3k,3k +1, . . . ,4k}. As above, it is possible to schedule this
tree with only 2k I/Os, but with a memory peak of 6k, by
computing first one entire chain. However, OPTMINMEM

achieves a memory peak of 5k by switching chains on each
node with a weight smaller than 2k, as represented by the
labels besides the nodes. Doing so, OPTMINMEM incurs k
I/Os on each of the k+1 smallest nodes, leading to a cost of
k(k+1) I/Os. The competitive ratio is then larger than k/2.
Therefore, OPTMINMEM is not constant-factor competitive
in the MINIO problem.

E. Complexity unknown

As shown above, polynomial-time approaches based on
similar problems fail to even give a constant-competitive
ratio. The main issue facing a polynomial approach is the
highly nonlocal aspect of the optimal solution. For example,
since postorder traversals are not optimal, it may be highly
useful to stop at intermediate points of a subtree’s execution
in order to process entirely different subtrees.

We conjecture that this problem is NP-hard due to these
difficult dependencies. As mentioned above, if we require
entire nodes to be written to disk, the problem has been
shown to be NP-hard by reduction to Partition [3]. However,
this proof highly depends on indivisible nodes, rather than
on the tree’s recursive structure. Taking advantage of the
structure of our problem to give an NP-hardness result
could lead to an interesting understanding of optimal
solutions, and possibly further heuristics. We leave this as
an open problem.
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Figure 2: Example of node expansion.

V. HEURISTIC

We now move to the design of a novel heuristic FULL-
RECEXPAND whose goal is to improve the performance of
OPTMINMEM for the MINIO problem. The main idea of
this heuristic is to run OPTMINMEM several times: when
we detect that some I/O is needed on some node, we force
this I/O by transforming the tree. This way, the following
iterations of OPTMINMEM will benefit from the knowledge
of this I/O. We continue transforming the tree until no more
I/Os are necessary.

In order to enforce I/Os, we use the technique of ex-
panding a node (illustrated on Figure 2). Under an I/O
function τ, we define the expansion of a node i as the
substitution of this node by a chain of three nodes i1, i2, i3

of respective weights wi , wi −τ(i ) and wi . The expansion
of a node actually mimics the action of executing I/Os:
the weight of the three tasks represent which amount of
main memory is occupied by this node 1) when it is first
completed (wi1 = wi ), 2) when part of it is moved to disk
(wi2 = wi −τ(i )), and 3) when the whole data is transferred
back to main memory (wi3 = wi ).

This technique first allows us to prove Theorem 2, which
states that given an I/O function τ, we can find a schedule
σ such that (σ,τ) is a valid traversal if there exists one.

Proof of Theorem 2. Consider the tree G ′ obtained from G
by expanding all the nodes for which τ is not null. Then,
consider the schedule σ′ obtained by OPTMINMEM on G ′,
and let σ be the corresponding schedule on G . Then, the
memory used by σ on G during the execution of a node i is
the same as the one used by σ′ on G ′ during the execution
of the same node i , or of i1 if i is expanded. Then, as
OPTMINMEM achieves the optimal memory peak on G ′, we
know that σ uses as little main memory as possible under
the I/O function τ. Then, (σ,τ) is a valid traversal of G .

The heuristic FULLRECEXPAND is described in Algo-
rithm 2. The main idea of the heuristic is to expand nodes
in order to obtain a tree that can be scheduled without I/O,
which is equivalent to building an I/O function.

First, the heuristic recursively calls itself on the subtrees
rooted at the children of the root, so that each subtree can
be scheduled without I/O (but using expansions). Then,
the algorithm computes OPTMINMEM on this new tree,
and if I/Os are necessary, it determines which node should
be expanded next. This selection is the only part where
FULLRECEXPAND can deviate from an optimal strategy. Our
choice is to select a node on which the FiF policy would in-
cur I/Os; if there are several such nodes, we choose the one
whose parent is scheduled the latest. After the expansion,
the algorithm recomputes OPTMINMEM on the modified
tree, and proceeds until no more I/O are necessary.

At the end of the computation, the returned schedule
is obtained by running OPTMINMEM on the final tree
computed by FULLRECEXPAND, and by transposing it on
the original tree. The I/O performance of this schedule is
then equal to the sum of the expansions.

Algorithm 2: FULLRECEXPAND (G ,r, M)

Input: tree G , root of exploration r
Output: Return a tree Gr which can be executed

without I/O, obtained from G by expanding
several nodes

1 foreach child i of r do
2 Gi ← FULLRECEXPAND(G , i , M)

3 Gr ← tree formed by the root r and the subtrees Gi

4 while OPTMINMEM(Gr ,r ) needs more than a memory
M do

5 τ ← I/O function obtained from
OPTMINMEM(Gr ,r ) using the FiF policy

6 i ← node for which τ(i ) > 0 whose parent is
scheduled the latest in OPTMINMEM(Gr ,r )

7 modify Gr by expanding node i according to τ(i )

8 return Gr

FULLRECEXPAND is only a heuristic: it may give sub-
optimal results but also achieve better performance than
OPTMINMEM, as illustrated on several examples in the
companion research report [15] .

Unfortunately, the complexity of FULLRECEXPAND is not
polynomial, as the number of iterations of the while loop
at Line 3 cannot be bounded by the number of nodes, but
may depend also on their weights. We therefore propose a
simpler variant, named RECEXPAND, where the while loop
at Line 3 is exited after 2 iterations. In this variant, the
resulting tree G might need I/Os to be executed. The final
schedule is computed as in FULLRECEXPAND, by running
OPTMINMEM on this tree G . We later show that this variant
gives results which are very similar to the original version.

VI. NUMERICAL RESULTS

In this section, we compare the performance of the two
existing strategies OPTMINMEM and POSTORDERMINIO,
and the two proposed heuristics FULLRECEXPAND and RE-
CEXPAND. All algorithms are compared through simulations
on two datasets described below. Because of its high com-
putational complexity, FULLRECEXPAND is only tested on
the first smaller dataset.

A. Datasets

The first dataset, named SYNTH, is composed of 330
instances of synthetic binary trees of 3000 nodes, generated
uniformly at random among all binary trees. As we consid-
ered small trees, we simply used half-Catalan numbers in
order to draw a tree, similarly to the method described at
the beginning of [16]. The memory weight of each task is
uniformly drawn from [1;100].
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Figure 3: Performance profiles of FULLRECEXPAND, RECEXPAND, OPTMINMEM and POSTORDERMINIO on the SYNTH

dataset (right: same performance profile without POSTORDERMINIO).
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Figure 4: Performance profiles for the complete TREES dataset (left) and restricted to instances where the heuristics
differ (right)

The second dataset, named TREES, is composed of 329
elimination trees of actual sparse matrices from the Univer-
sity of Florida Sparse Matrix Collection1 (see [3] for more
details on elimination trees and the data set). Our datasets
corresponds to the 329 smallest of the 640 trees presented
in [3], with trees ranging from 2000 to 40000 nodes.

For each tree of the two datasets, we first computed the
minimal memory size necessary to process the tree nodes:
LB = maxi w̄i . We also computed the minimal peak memory
for an incore execution Peakincore (using OPTMINMEM).
We eliminated some trees from the TREES dataset where
Peakincore = LB, leaving us with 133 remaining trees in this
dataset. In all other cases, note that the possible range for
the memory bound M such that some I/Os are necessary
is [LB,Peakincore −1]. We chose to set M to the middle of
this interval M = (LB+Peakincore −1)/2. In the companion
research report [15], we relate simulations using other
values of M in this interval which show similar trends.

1http://www.cise.ufl.edu/research/sparse/matrices/

B. Results

Our objective in this study is to minimize the total
amount of I/Os needed to process the tree. In order to
summarize and compare the performance of the different
strategies we choose here to consider the number of I/Os
and the memory bound M : performing 10 I/Os when the
optimal only needs 1 does not have the same significance
if the main memory consists of M = 10 slots or of M = 1000
slots. Therefore, in this section, if a schedule performs k
I/Os, we define its performance as (M + k)/M . Then, a
schedule with no I/O operations has a performance of 1
while a schedule needing M I/Os has a performance of 2.

In order to compare the performance of these algorithms,
we use a generic tool called performance profile [17]. For
a given dataset, we compute the performance of each
algorithm on each tree and for each memory limit. Then,
instead of computing an average above all the cases, a per-
formance profile reports a cumulative distribution function.
Given a heuristic and a threshold (or overhead) τ expressed
in percentage, we compute the fraction of test cases in
which the performance of this heuristic is at most τ% larger



than the best observed performance, and plot these results.
Therefore, the higher the curve, the better the method: for
instance, for an overhead τ = 5%, the performance profile
shows how often a given method lies within 5% of the
smallest performance obtained.

The left plot of Figure 3 presents the performance profile
of the four heuristics for the complete dataset SYNTH. The
first result is the poor performance of POSTORDERMINIO in
this dataset: it almost always has at least 50% of overhead,
and even a 100% overhead in 75% of the cases. Then, RE-
CEXPAND performs far better than OPTMINMEM. The right
plot of the figure presents the performance profiles of ex-
clusively OPTMINMEM, RECEXPAND and FULLRECEXPAND.
RECEXPAND performs strictly less I/Os than OPTMINMEM

on 90% of the instances, and on half of them, OPTMINMEM

has a 4% overhead. We can also note that FULLRECEXPAND

performs only slightly better than RECEXPAND, but both
heuristics are far ahead of OPTMINMEM, so the gain in the
complexity of the algorithm is only balanced by a small loss
of performance. For instance, RECEXPAND has an overhead
of more than 2% over FULLRECEXPAND on only 3% of the
instances.

The left plot of Figure 4 presents the performance profiles
of the three heuristics POSTORDERMINIO, RECEXPAND and
OPTMINMEM for the complete dataset TREES. The first
remark is that the three heuristics are equal on more than
90% of the 329 instances. Therefore, we now focus on the
right plot, which presents the same performance profile
for the 25 cases where the heuristics do not all give equal
performance. We can see that the hierarchy is the same as
in the previous dataset (RECEXPAND is never outperformed,
and OPTMINMEM performs better than POSTORDERMINIO)
but with smaller discrepancies between the heuristics. POS-
TORDERMINIO and OPTMINMEM respectively have more
than 5% of overhead on only 40% and 10% of these
instances.

VII. CONCLUSION

In this paper, we revisited the problem of minimizing
I/O operations in the out-of-core execution of task trees.
We proved that existing solutions allow us to optimally
solve the problem when all output data have identical size,
but that none of them has a constant competitive factor
compared to the optimal solution. We proposed a novel
heuristic solution that improves on an existing strategy
and is very efficient in practice. Despite our efforts, the
complexity of the problem remains open. Determining this
complexity would definitely be a major step, although our
findings already lay the basis for more advanced studies.
These include moving to parallel out-of-core execution
(as was already done for parallel incore execution [4]) as
well as designing competitive algorithms for the sequential
problem.
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