Two consistent estimators for the Skew Brownian motion

Abstract : The Skew Brownian motion is of primary importance in modeling diffusion in media with interfaces which arise in many domains ranging from population ecology to geophysics and finance. We show that the maximum likelihood estimator provides a consistent estimator of the parameter of a Skew Brownian motion observed at discrete times. The difficulties are that this process is only null recurrent and has a singular distribution with respect to the one of the Brownian motion. Finally, using the idea of the Expectation-Maximization algorithm, we show that the maximum likelihood estimator can be naturally interpreted as the expected number of positive excursions divided by the expected number of excursions.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.inria.fr/hal-01492853
Contributeur : Antoine Lejay <>
Soumis le : vendredi 19 mai 2017 - 08:01:18
Dernière modification le : mercredi 16 mai 2018 - 10:17:39

Fichier

consistency_sbm_R1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01492853, version 2

Collections

Relations

Citation

Antoine Lejay, Ernesto Mordecki, Soledad Torres. Two consistent estimators for the Skew Brownian motion. 2017. 〈hal-01492853v2〉

Partager

Métriques

Consultations de la notice

225

Téléchargements de fichiers

67