M. Aharon, M. Elad, and A. Bruckstein, <tex>$rm K$</tex>-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation, IEEE Transactions on Signal Processing, vol.54, issue.11, pp.4311-4322, 2006.
DOI : 10.1109/TSP.2006.881199

G. Aubert and P. Kornprobst, Mathematical problems in image processing, 2002.

D. Borkowski, Chromaticity Denoising using Solution to the Skorokhod Problem, Image Processing Based on Partial Differential Equations. Mathematics and Visualization , Part II, pp.149-61, 2007.
DOI : 10.1007/978-3-540-33267-1_9

D. Borkowski, Modified diffusion to Image Denoising, Adv. Soft Comp, vol.45, pp.92-99, 2007.
DOI : 10.1007/978-3-540-75175-5_12

D. Borkowski, Smoothing, Enhancing Filters in Terms of Backward Stochastic Differential Equations, LNCS, vol.6374, pp.233-240, 2010.
DOI : 10.1007/978-3-642-15910-7_26

D. Borkowski, Euler???s Approximations to Image Reconstruction, LNCS, vol.7594, pp.30-37, 2012.
DOI : 10.1007/978-3-642-33564-8_4

D. Borkowski and K. Ja´nczakja´nczak-borkowska, Application of Backward Stochastic Differential Equations to Reconstruction of Vector-Valued Images, LNCS, vol.7594, pp.38-47, 2012.
DOI : 10.1007/978-3-642-33564-8_5

A. Buades, B. Coll, and J. M. Morel, A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Buades, B. Coll, and J. M. Morel, A Review of Image Denoising Algorithms, with a New One, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2006.
DOI : 10.1137/040616024

URL : https://hal.archives-ouvertes.fr/hal-00271141

A. Buades, B. Coll, and J. M. Morel, Non-Local Means Denoising, Image Processing On Line, vol.1, 2011.
DOI : 10.5201/ipol.2011.bcm_nlm

URL : http://doi.org/10.5201/ipol.2011.bcm_nlm

F. Catte, P. L. Lions, J. M. Morel, and T. Coll, Image Selective Smoothing and Edge Detection by Nonlinear Diffusion, SIAM Journal on Numerical Analysis, vol.29, issue.1, pp.182-193, 1992.
DOI : 10.1137/0729012

T. F. Chan and J. J. Shen, Image Processing and Analysis ? Variational, PDE, wavelet, and stochastic methods, SIAM, 2005.
DOI : 10.1137/1.9780898717877

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering, IEEE Transactions on Image Processing, vol.16, issue.8, pp.2080-2095, 2007.
DOI : 10.1109/TIP.2007.901238

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Danielyan, V. Katkovnik, and K. Egiazarian, BM3D Frames and Variational Image Deblurring, IEEE Transactions on Image Processing, vol.21, issue.4, pp.1715-1728, 2012.
DOI : 10.1109/TIP.2011.2176954

URL : http://arxiv.org/abs/1106.6180

D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol.81, issue.3, pp.425-455, 1994.
DOI : 10.1093/biomet/81.3.425

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Geman and D. Geman, Stochastic relaxation, gibbs distributions and the bayesian restoration of images, IEEE Pat. Anal. Mach. Intell, vol.6, pp.721-741, 1984.

O. Juan, R. Keriven, and G. Postelnicu, Stochastic Motion and the Level Set Method in Computer Vision: Stochastic Active Contours, International Journal of Computer Vision, vol.21, issue.2, pp.7-25, 2006.
DOI : 10.1007/s11263-006-6849-5

V. Katkovnik, A. Danielyan, and K. Egiazarian, Decoupled inverse and denoising for image deblurring: Variational BM3D-frame technique, 2011 18th IEEE International Conference on Image Processing, 2011.
DOI : 10.1109/ICIP.2011.6116455

M. Lebrun, A. Buades, and J. M. Morel, Implementation of the Non-local Bayes image denoising, Image Processing on Line, 2011.

J. Mairal, M. Elad, and G. Sapiro, Sparse Representation for Color Image Restoration, IEEE Transactions on Image Processing, vol.17, issue.1, pp.53-69, 2008.
DOI : 10.1109/TIP.2007.911828

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.629-639, 1990.
DOI : 10.1109/34.56205

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. H. Richardson, Bayesian-Based Iterative Method of Image Restoration*, Journal of the Optical Society of America, vol.62, issue.1, pp.55-59, 1972.
DOI : 10.1364/JOSA.62.000055

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

L. Ss-lomi´nskilomi´nski, Euler's approximations of solutions of SDEs with reflecting boundary, Stochastic Processes and their Applications, vol.94, issue.2, pp.317-337, 2001.
DOI : 10.1016/S0304-4149(01)00087-4

H. Tanaka, Stochastic Differential Equations with Reflecting Boundary Condition in Convex Regions, Hiroshima Math. J, vol.9, issue.1, pp.163-177, 1979.
DOI : 10.1142/9789812778550_0013

G. Unal, H. Krim, and A. Yezzi, Stochastic differential equations and geometric flows, IEEE Transactions on Image Processing, vol.11, issue.12, pp.1405-1416, 2002.
DOI : 10.1109/TIP.2002.804568

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Unal, G. Ben-arous, D. Nain, N. Shimkin, A. Tannenbaum et al., Algorithms for stochastic approximations of curvature flows, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429), pp.2-3, 2003.
DOI : 10.1109/ICIP.2003.1246764

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/TIP.2003.819861

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Weickert, Theoretical Foundations of Anisotropic Diffusion in Image Processing, Computing Suppement, vol.11, pp.221-236, 1996.
DOI : 10.1007/978-3-7091-6586-7_13

J. Weickert, Coherence-Enhancing Diffusion Filtering, International Journal of Computer Vision, vol.31, issue.2/3, pp.111-127, 1999.
DOI : 10.1023/A:1008009714131

L. P. Yaroslavsky, <title>Local adaptive image restoration and enhancement with the use of DFT and DCT in a running window</title>, Wavelet Applications in Signal and Image Processing IV, pp.2-13, 1996.
DOI : 10.1117/12.255218