G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Machine Learning, vol.27, issue.11, pp.69-101, 1996.
DOI : 10.1007/BF00116900

M. D. Muhlbaier, A. Topalis, and R. Polikar, Learn<formula formulatype="inline"><tex Notation="TeX">$^{++}$</tex> </formula>.NC: Combining Ensemble of Classifiers With Dynamically Weighted Consult-and-Vote for Efficient Incremental Learning of New Classes, IEEE Transactions on Neural Networks, vol.20, issue.1, pp.152-168, 2009.
DOI : 10.1109/TNN.2008.2008326

G. Hulten, L. Spencer, and P. Domingos, Mining time-changing data streams, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '01, pp.97-106, 2001.
DOI : 10.1145/502512.502529

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.6104

M. M. Lazarescu, S. Venkatesh, and H. H. Bui, Using multiple windows to track concept drift, Intell. Data Anal, vol.8, pp.29-59, 2004.

L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, IEEE Transactions on Neural Networks, vol.18, issue.3, 2004.
DOI : 10.1109/TNN.2007.897478

D. H. Wolpert, The Supervised Learning No-Free-Lunch Theorems, Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
DOI : 10.1007/978-1-4471-0123-9_3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.3151

M. Wozniak, M. Grana, and E. Corchado, A survey of multiple classifier systems as hybrid systems, Information Fusion, vol.16, 2013.
DOI : 10.1016/j.inffus.2013.04.006

A. Jain, R. Duin, and J. Mao, Statistical pattern recognition: a review. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, pp.4-37, 2000.
DOI : 10.1109/34.824819

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.8151

L. Hansen and P. Salamon, Neural network ensembles. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.12, pp.993-1001, 1990.
DOI : 10.1109/34.58871

URL : http://orbit.dtu.dk/en/publications/neural-network-ensembles(492f6c68-703a-4b6d-97bb-8509d817d00f).html

L. Xu, A. Krzyzak, and C. Suen, Methods of combining multiple classifiers and their applications to handwriting recognition. Systems, Man and Cybernetics, IEEE Transactions on, vol.22, pp.418-435, 1992.

K. Tumer and J. Ghosh, Analysis of decision boundaries in linearly combined neural classifiers, Pattern Recognition, vol.29, issue.2, pp.341-348, 1996.
DOI : 10.1016/0031-3203(95)00085-2

T. K. Ho, J. J. Hull, and S. N. Srihari, Decision combination in multiple classifier systems, IEEE Trans. Pattern Anal. Mach. Intell, vol.16, pp.66-75, 1994.

L. Breiman, Bagging predictors, Machine Learning, vol.10, issue.2, pp.123-140, 1996.
DOI : 10.1007/BF00058655

R. E. Schapire, The strength of weak learnability, Mach. Learn, vol.5, pp.197-227, 1990.

Y. Freund, Boosting a Weak Learning Algorithm by Majority, Information and Computation, vol.121, issue.2, pp.256-285, 1995.
DOI : 10.1006/inco.1995.1136

URL : http://doi.org/10.1006/inco.1995.1136

M. J. Kearns and U. V. Vazirani, An introduction to computational learning theory, 1994.

D. Angluin, Queries and concept learning, Machine Learning, vol.27, issue.4, pp.319-342, 1988.
DOI : 10.1007/BF00116828

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.454.4681

G. Giacinto, F. Roli, and G. Fumera, Design of effective multiple classifier systems by clustering of classifiers, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, pp.160-163, 2000.
DOI : 10.1109/ICPR.2000.906039

T. K. Ho, Complexity of Classification Problems and Comparative Advantages of Combined Classifiers, Proceedings of the First International Workshop on Multiple Classifier Systems. MCS '00, pp.97-106, 2000.
DOI : 10.1007/3-540-45014-9_9

F. Roli and G. Giacinto, DESIGN OF MULTIPLE CLASSIFIER SYSTEMS, 2002.
DOI : 10.1142/9789812778147_0008

A. Krogh and J. Vedelsby, Neural network ensembles, cross validation, and active learning, Advances in Neural Information Processing Systems, pp.231-238, 1995.

G. Zenobi and P. Cunningham, Using Diversity in Preparing Ensembles of Classifiers Based on Different Feature Subsets to Minimize Generalization Error, Machine Learning: ECML 2001, pp.576-587, 2001.
DOI : 10.1007/3-540-44795-4_49

A. J. Sharkey and N. E. Sharkey, Combining diverse neural nets, The Knowledge Engineering Review, vol.12, issue.3, pp.231-247, 1997.
DOI : 10.1017/S0269888997003123

G. Brown, J. L. Wyatt, R. Harris, and X. Yao, Diversity creation methods: a survey and categorisation, Information Fusion, vol.6, issue.1, pp.5-20, 2005.
DOI : 10.1016/j.inffus.2004.04.004

W. N. Street and Y. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '01, pp.377-382, 2001.
DOI : 10.1145/502512.502568

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9697

H. Wang, W. Fan, P. S. Yu, and J. Han, Mining concept-drifting data streams using ensemble classifiers, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.226-235, 2003.
DOI : 10.1145/956750.956778

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.4071

J. Kolter and M. Maloof, Dynamic weighted majority: a new ensemble method for tracking concept drift, Third IEEE International Conference on Data Mining, pp.123-130, 2003.
DOI : 10.1109/ICDM.2003.1250911

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.9867

I. Zliobaite, Change with delayed labeling: When is it detectable?, Proceedings of the 2010 IEEE International Conference on Data Mining Workshops. ICDMW '10, pp.843-850, 2010.

L. I. Kuncheva, Classifier ensembles for detecting concept change in streaming data: Overview and perspectives, pp.5-10, 2008.

M. M. Gaber and P. S. Yu, Classification of changes in evolving data streams using online clustering result deviation, Proc. Of Internatinal Workshop on Knowledge Discovery in Data Streams, 2006.

M. Markou and S. Singh, Novelty detection: a review-part 1: statistical approaches. Signal Process, pp.2481-2497, 2003.
DOI : 10.1016/j.sigpro.2003.07.018

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.3578

M. Salganicoff, Density-Adaptive Learning and Forgetting, Machine Learning: Proceedings of the Tenth Annual Conference, 1993.
DOI : 10.1016/B978-1-55860-307-3.50042-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.3146

R. Klinkenberg and T. Joachims, Detecting concept drift with support vector machines, Proceedings of the Seventeenth International Conference on Machine Learning. ICML '00, pp.487-494, 2000.

M. Baena-garcía, J. Del-campo-´-avila, R. Fidalgo, A. Bifet, R. Gavaldá et al., Early drift detection method, Fourth International Workshop on Knowledge Discovery from Data Streams, 2006.

S. Ramamurthy and R. Bhatnagar, Tracking recurrent concept drift in streaming data using ensemble classifiers, Sixth International Conference on Machine Learning and Applications (ICMLA 2007), pp.404-409, 2007.
DOI : 10.1109/ICMLA.2007.80

URL : https://etd.ohiolink.edu/!etd.send_file?accession=ucin1196103577&disposition=inline

P. D. Turney, Exploiting context when learning to classify, Proceedings of the European Conference on Machine Learning. ECML '93, pp.402-407, 1993.
DOI : 10.1007/3-540-56602-3_158

URL : http://arxiv.org/abs/cs/0212035

G. Widmer, Tracking context changes through meta-learning, Machine Learning, vol.27, issue.3, pp.259-286, 1997.
DOI : 10.1023/A:1007365809034

J. Brtolo-gomes, E. M. Ruiz, and P. A. Sousa, Learning recurring concepts from data streams with a context-aware ensemble, Proceedings of the 2011 ACM Symposium on Applied Computing (SAC), pp.994-999, 2011.

I. Katakis, G. Tsoumakas, and I. Vlahavas, Tracking recurring contexts using ensemble classifiers: an application to email filtering, Knowledge and Information Systems, vol.49, issue.3, pp.371-391, 2010.
DOI : 10.1007/s10115-009-0206-2

M. J. Hosseini, Z. Ahmadi, and H. Beigy, Pool and Accuracy Based Stream Classification: A New Ensemble Algorithm on Data Stream Classification Using Recurring Concepts Detection, 2011 IEEE 11th International Conference on Data Mining Workshops, pp.588-595, 2011.
DOI : 10.1109/ICDMW.2011.137

D. Partridge and W. Krzanowski, Software diversity: practical statistics for its measurement and exploitation, Information and Software Technology, vol.39, issue.10, pp.707-717, 1997.
DOI : 10.1016/S0950-5849(97)00023-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.111

R. Klinkenberg and I. Renz, Adaptive information filtering: Learning in the presence of concept drifts, pp.33-40, 1998.

M. Wozniak, A. Kasprzak, and P. Cal, Application of Combined Classifiers to Data Stream Classification, Proceedings of the 10th International Conference on Flexible Query Answering Systems FQAS 2013. Volume to be published of Lecture Notes in Computer Science, 2013.
DOI : 10.1007/978-3-642-40925-7_2

URL : https://hal.archives-ouvertes.fr/hal-01496078

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, pp.10-18, 2009.
DOI : 10.1145/1656274.1656278

E. Alpaydin, Introduction to Machine Learning, Second Edition, 2010.