User Relevance for Item-Based Collaborative Filtering

Abstract : A Collaborative filtering (CF), one of the successful recommendation approaches, makes use of history of user preferences in order to make predictions. Common drawback found in most of the approaches available in the literature is that all users are treated equally. i.e., all users have same importance. But in the real scenario, there are users who rate items, which have similar rating pattern. On the other hand, some users provide diversified ratings. We assign relevance scores to users based on their rating pattern in order to improve the quality of predictions. To do so, we incorporate probability based user relevance scores into the similarity calculations. The improvement of predictions of benchmark item based CF approach with the inclusion of user relevance score is demonstrated in the paper.
Type de document :
Communication dans un congrès
Khalid Saeed; Rituparna Chaki; Agostino Cortesi; Sławomir Wierzchoń. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. Springer, Lecture Notes in Computer Science, LNCS-8104, pp.337-347, 2013, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-40925-7_31〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01496080
Contributeur : Hal Ifip <>
Soumis le : lundi 27 mars 2017 - 11:01:39
Dernière modification le : mardi 28 mars 2017 - 01:07:11
Document(s) archivé(s) le : mercredi 28 juin 2017 - 12:52:23

Fichier

978-3-642-40925-7_31_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

R. Latha, R. Nadarajan. User Relevance for Item-Based Collaborative Filtering. Khalid Saeed; Rituparna Chaki; Agostino Cortesi; Sławomir Wierzchoń. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. Springer, Lecture Notes in Computer Science, LNCS-8104, pp.337-347, 2013, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-40925-7_31〉. 〈hal-01496080〉

Partager

Métriques

Consultations de la notice

39

Téléchargements de fichiers

178