Learning Algorithms in the Detection of Unused Functionalities in SOA Systems

Abstract : The objective of this paper is to present an application of learning algorithms to the detection of anomalies in SOA system. As it was not possible to inject errors into the “real” SOA system and to analyze the effect of these errors, a special model of SOA system was designed and implemented. In this system several anomalies were introduced and the effectiveness of algorithms in detecting them were measured. The results of experiments can be used to select efficient algorithm for anomaly detection. Two algorithms: K-means clustering and Kohonen networks were used to detect the unused functionalities and the results of this experiment are discussed.
Type de document :
Communication dans un congrès
Khalid Saeed; Rituparna Chaki; Agostino Cortesi; Sławomir Wierzchoń. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. Springer, Lecture Notes in Computer Science, LNCS-8104, pp.389-400, 2013, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-40925-7_36〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01496112
Contributeur : Hal Ifip <>
Soumis le : lundi 27 mars 2017 - 11:09:28
Dernière modification le : lundi 27 mars 2017 - 11:14:02
Document(s) archivé(s) le : mercredi 28 juin 2017 - 13:09:06

Fichier

978-3-642-40925-7_36_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ilona Bluemke, Marcin Tarka. Learning Algorithms in the Detection of Unused Functionalities in SOA Systems. Khalid Saeed; Rituparna Chaki; Agostino Cortesi; Sławomir Wierzchoń. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. Springer, Lecture Notes in Computer Science, LNCS-8104, pp.389-400, 2013, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-40925-7_36〉. 〈hal-01496112〉

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

28