S. Y. Lim and A. Jones, Network Anomaly Detection System: The State of Art of Network Behaviour Analysis, 2008 International Conference on Convergence and Hybrid Information Technology, pp.459-465, 2008.
DOI : 10.1109/ICHIT.2008.249

C. Ko, M. Ruschitzka, and K. Levitt, Execution monitoring of security-critical programs in distributed systems: a specification-based approach, Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat. No.97CB36097), 1997.
DOI : 10.1109/SECPRI.1997.601332

E. Lemonnier, Protocol Anomaly Detection in Network-based IDSs, 2001.

R. Sekar, A. Gupta, J. Frullo, T. Shanbag, A. Tiwari et al., Specificationbased anomaly detection: A New Approach for Detecting Network Intrusions, ACM Computer and Communication Security Conference, 2002.
DOI : 10.1145/586143.586146

Z. Shan, P. Chen, Y. Xu, and K. Xu, A Network State Based Intrusion Detection Model, Proc. of the 2001 Int. Conf. on Computer Networks and Mobile Computing (ICCNMC'01), 2001.

R. Buschkes, M. Borning, and D. Kesdogan, Transaction-based Anomaly Detection, Proc. of the Workshop on Intrusion Detection and Network Monitoring, 1999.

D. Anderson and T. Frivold, Valdes: A Next-generation Intrusion Detection Expert System (NIDES) Summary, 1995.

S. Owens and R. Levary, An adaptive expert system approach for intrusion detection, International Journal of Security and Networks, vol.1, issue.3/4, pp.3-4, 2006.
DOI : 10.1504/IJSN.2006.011780

W. Lee and S. J. Stolfo, Data mining approaches for intrusion detection, Proc. of the 7th USENIX Security Symposium, 1998.

A. Bivens, P. Ch, R. Smith, B. Szyma?ski, and M. Embrechts, Network-based intrusion detection using neural networks, Proc. Intelligent Eng. Systems through Neural Networks ANNIE 2002, pp.579-584, 2002.

A. K. Ghosh and A. Schwartzbard, A Study in Using Neural Networks for Anomaly and Misuse Detection, Proc. of the 8th USENIX Security Symposium, 1999.

S. Han and S. Cho, Evolutionary Neural Networks for Anomaly Detection Based on the Behaviour of a Program, IEEE Transactions on Systems, Man and Cybernetics, 2006.

A. Bivens, Network-based intrusion detection using neural networks, Proc. of Intelligent Engineering Systems through Artificial Neural Networks ANNIE-2002, pp.579-584, 2002.

M. Ceci, A. Appice, C. Caruso, and D. Malerba, Discovering Emerging Patterns for Anomaly Detection in Network Connection Data, LNAI, pp.179-188, 2008.
DOI : 10.1007/978-3-540-68123-6_20

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Denning and P. Neumann, Requirements and Model for IDES-A Real-Time Intrusion- Detection Expert System. SRI Project 6169, SRI International, 1985.

S. Masum, E. M. Ye, C. Q. Noh, and K. , Chi-square statistical profiling for anomaly detection, Proceedings of the 2000 IEEE Workshop on Information Assurance and Security, 2000.

N. Ye and Q. Chen, An anomaly detection technique based on a chi-square statistic for detecting intrusions into information systems, Quality and Reliability Engineering International, vol.34, issue.2, pp.105-112, 2001.
DOI : 10.1002/qre.392

M. Tarka, Anomaly detection in SOA systems, 2011.

G. Munz, S. Li, and G. Carle, Traffic Anomaly Detection Using K-Means Clustering, 2007.

D. Guozhu and L. Jinyan, Efficient Mining of Emerging Patterns: Discovering Trends and Differences, 2007.

J. A. Hanley, Receiver operating characteristic (ROC) methodology: the state of the art, Crit Rev Diagn Imaging, 1989.

I. Bluemke and M. Tarka, Detection of Anomalies in a SOA System by Learning Algorithms, Complex Systems and Dependability. Advances in Intelligent and Soft Computing, pp.69-85, 2012.
DOI : 10.1007/978-3-642-30662-4_5

T. Kohonen, The self-organizing map, Proc. IEEE, pp.1464-1480, 1990.