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Abstract

We analyze a mean field game model of SIR dynamics (Susceptible,
Infected, Recovered) where players choose when to vaccinate. We show
that this game admits a unique mean field equilibrium that consists in
vaccinating at maximal rate until a given time and then not vaccinat-
ing. The vaccination strategy that minimizes the total cost has the same
structure as the mean field equilibrium. We prove that the vaccination
period of the mean field equilibrium is always smaller than the one mini-
mizing the total cost. This implies that, to encourage optimal vaccination
behavior, vaccination should always be subsidized. Finally, we provide
numerical experiments to study the convergence of the equilibrium when
the system is composed by a finite number of agents (N) to the mean
field equilibrium. These experiments show that the convergence rate of
the cost is 1/N and the convergence of the switching curve is monotone.

1 Introduction

We consider a system in which the dynamics of the population is given by the
classical SIR (Susceptible-Infected-Recovered) model [19] to which we add a
control action for each player: each individual player can choose how and when
she gets vaccinated. Each individual player tries to minimize a cost composed
of a vaccination cost plus a cost function of the duration of infection. Potential
applications include controlling disease spreading in a large population, anti-
virus usage in computer systems or limiting the propagation of advertisements.

In this paper, we model the problem of selfish vaccination in the SIR model
as a finite state mean field game in continuous time. Because all players have a
finite state space, the state evolution will become a Kolmogorov equation and
the best response strategy will be given by a Bellman optimality equation. Here,
the state space only has three states, and the dynamics is simple enough so that
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one can show that this Bellman optimality equation has a unique solution. We
show that the game admits a unique and pure equilibrium. Furthermore, we
show that this unique equilibrium consists in a bang-bang strategy : each player
chooses to vaccinate at maximal rate until some critical time τeq and then stops
vaccinating thereafter.

We also compare the global cost of the mean field equilibrium to the cost
of a centralized optimal control. It is known that the solution of this problem
is also a bang-bang strategy [4]: it consists in vaccinating at maximum rate
until a given jump time τ∗ is reached and to stop vaccinating after this. We
show that the time at which the global optimum stops vaccinating is always
larger than that of the mean field equilibrium : τeq ≤ τ∗, with equality only in
degenerate cases. This shows that if the decision of whether to vaccinate or not
is left to individual, then vaccination should be subsidized in order to reduce the
total cost of the mean field equilibrium down to the one of the socially optimal
strategy. Similar results have been obtained on SIR models with vaccination
(see the related work section).

One of the main contribution of our paper is to recast the problem of selfish
vaccination as a finite state mean field game (FMFG). This allows to

• Use the general theory of FMFG to assert the existence of an equilibrium;

• Use a generic approach to solve the problem, i.e. instantiate the coupled
equations of a FMFG (Kolmogorov + Bellman) in the current case (this
is done in §4) , and solve them symbolically or numerically §4 and §5);

We also assess the relations between the mean field case and the case with a
finite number of players. In Section 6, we present how the equilibrium strategy
of the N -player game, as well as the social optimum, can be computed using the
Bellman equation. Moreover, in Section 7, we study numerically the convergence
of the case with N players to the mean field case. Our numerical experiments
show that, for the equilibrium and for the social optimum, the convergence rate
of the cost is 1/N and the convergence of the switching curve is monotone.
Finally, we study the efficiency of the Nash equilibrium with a small number of
players and of the mean field equilibrium.

The rest of the paper is organized as follows. In Section 2, we introduce
the FMFG model of the problem. In Section 3, we describe the model and we
define the notion of mean field equilibrium. We characterize the equilibrium of
the mean field game in Section 4. We analyze the centralized control problem
in Section 5. We comment on the difference between the mean field equilibrium
and the Nash equilibrium of a game with a finite number of players in Section 6.
We compare numerically the mean field equilibrium and the global optimum in
Section 7. Finally, we conclude in Section 8.

2 Related Work

The SIR dynamics is one of the simplest and one of the most studied model of
virus propagation in a moving population or information diffusion in social net-



works, since the work of Kermack and McKendrick [19]. The problem of optimal
vaccination that allows the population to be immune to the infection has been
analyzed in several papers, see for example [1, 9] for monographs in this topic.
The authors in [21] show that the optimal social cost is the unique viscosity
solution of an Hamilton-Jacobi-Bellman equation. Using the Pontryagin’s Max-
imum Principle, the authors in [4] characterize the vaccination strategy that
minimizes the total cost of a model that covers most of the literature regarding
deterministic control of SIR epidemics, see [23] for a particular case of the model
of [4] where f(x, y) = xy, g, c constant and T → ∞. As we will see below, the
centralized control problem we consider is also a particular case of the model
of [4] and, therefore, we can use their result to study the compare with the
efficiency of individual vaccinations. The authors in [14] and in [2] also perform
this comparison considering, respectively, the disease eradication and the SIR
dynamics in steady state.

In this paper, we consider a game scenario in which each player chooses
when and how to vaccinate. On this topic, the paper closest to ours is [11] that
studies a model aiming to minimize the cost of infection and of vaccination in
a SIR model within a given population. Similarly to our case, the authors of
[11] show that an equilibrium can be characterized by a switching curve, which
is the set of points such that individuals see no difference between vaccinating
and not doing when no one else vaccinates. They prove the uniqueness of such a
curve and conclude thus that individual vaccinations consists of vaccinating with
maximum rate until the switching curve is reached and then not to vaccinate
again. One of the main contribution of our work is to recast the model of [11] in
the more precise context of mean field game and show that an equilibrium under
their definition corresponds to a fixed point of the best response correspondence
for each player (MFG were not yet defined when [11] was published).

Our model is very close to the one of [22] in which the authors consider a
mean field game model of vaccination, but with a few differences. First, the
authors of [22] model the problem following closely the notion of timing games
whereas we formulate our model directly as a discrete-space mean field games.
The authors in [18] extend the results of [22] considering additional birth and
death rates on the population. We believe that our formulation is simple and
serves as a good illustration of the expressive power and simplicity of discrete-
space mean field games, as our formulation is not specific to the vaccination
problem and could be easily generalized. Besides, as in [11], the vaccination
policies in [22] do not depend explicitly on the susceptible population whereas
our rate does: Essentially, the dynamics of our Equation (1) includes a term
π(t)ms(t) whereas the one of [22] has only the term π(t). Using a term π(t)ms(t)
makes our model fall in the category of discrete-space mean field game of [10].
In terms of results, we see two main contributions of our paper with respect to
[22]. First, we provide alternative proofs to the results of [22] that are based
on structural properties of the discrete-space mean field game and that rely less
on the explicit form of the dynamics. Second, we provide a detailed comparison
with the finite-player model.

Mean field games with discrete and finite state space have been explored in



discrete time ([10, 15]) as well as in continuous time ([16, 17]). Our model is a
particular case of a mean field game with finite state space evolving in continuous
time (see [10]). The existence of an equilibrium in our mean field game follows
directly from their result. Here, however, we go beyond this existence result
and we show that there is a unique mean field equilibrium that happens to be
a deterministic strategy and we characterize it.

3 Model Description

3.1 System Dynamics

We consider a population of homogeneous players that evolve in continuous time
from 0 to a finite time horizon T . The players can be in one of the following
states: susceptible (S), infected (I) or recovered or vaccinated (R). We denote
bymS(t), mI(t) andmR(t) the proportion of the population that is, respectively,
in state S, in state I or in state R at time t.

The dynamics of one player is a Markov process in continuous time that can
be described as follows. A player encounters other players at rate γ. If a player
is susceptible and encounters an infected player, then she becomes infected. An
infected player recovers at rate ρ. We also consider that a susceptible player can
choose a vaccination strategy π. A strategy π is a measurable function from
[0, T ] to [0, θ], where θ < ∞ is the maximal vaccination rate and π(t) is the
rate at which the player becomes vaccinated. Once a player is vaccinated or
has recovered, her state does not change. The Markovian behavior of a player
is represented in Figure 1.

S I R
γmI(t)

π(t)

ρ

Figure 1: The dynamics of a player in the epidemic model. A player has three
possible states: S (susceptible), I (infected), R (recovered or vaccinated).

The cost incurred by one player is assumed to be of the sum of two costs :

• Vaccination cost: The vaccination cost of a susceptible player is a linear
function of her vaccination rate: cV π(t), where cV > 0.

• Infection cost: Whenever a player is infected, it suffers a cost of cI (cI > 0)
per time unit.

We are interested in the analysis of this epidemic model with an infinite
number of players. In this case, the dynamics of the population is given by the
Kolmogorov Equation that takes the form of a system of ordinary differential



equations, the state space being finite.
ṁS(t) = −γmS(t)mI(t)− π(t)mS(t)

ṁI(t) = γmS(t)mI(t)− ρmI(t)

ṁR(t) = ρmI(t) + π(t)mS(t).

(1)

If the strategy π(t) is not continuous in time, the differential equation (1)
may not be well-defined at time-points where π is not continuous. The existence
of a continuous solution for (1) is guaranteed by the Carathéodory’s Existence
Theorem. This solution is essentially unique (i.e. unique up to a set of measure
zero). It is the essentially unique fixed point of the following integral equation:

mS(t) = mS(0) +
∫ t
0
(−γmS(u)mI(u)− π(u)mS(u))du

mI(t) = mI(0) +
∫ t
0
(γmS(u)mI(u)− ρmI(u))du

mR(t) = mR(0) +
∫ t
0
(ρmI(u) + π(u)mS(u))du.

The same is true for all differential equations used in the paper, without
further mention to this point: all solutions can be considered continuous every-
where and differentiable at all points except over a set of measure 0.

From this equation, we note that the vaccination strategy we consider can
be interpreted as a time varying parameter, whereas the authors in [22] consider
a general function that do not depend explicitly on the susceptible population.
Indeed the dynamics of the system of the mean field game analyzed in [22]
coincide with (1) if we replace π(t)mS(t) by dU(t).

3.2 Best Response

We focus on a particular player, that we call Player 0. As we consider a mean
field game model, the dynamics of the global population is not affected by
Player 0 alone and is driven by Equation (1). Player 0 chooses her vaccination
strategy π0, where π0(t) ∈ [0, θ] for all t. The probability that Player 0 is in
a given state depends not only on π0, but also on the population distribution,
which is the vector m(t) = (mS(t),mI(t),mR(t)).

Let xπ
0,π
i (t) be the probability that Player 0 is in state i at time t, where

i ∈ {S, I,R}. The quantities xπ
0,π
i (t) satisfy the following system of differential

equations: 
ẋπ

0,π
S (t) = −γxπ

0,π
S (t)mI(t)− π0(t)xπ

0,π
S (t)

ẋπ
0,π
I (t) = γxπ

0,π
S (t)mI(t)− ρxπ

0,π
I (t)

ẋπ
0,π
R (t) = ρxπ

0,π
I (t) + π0(t)xπ

0,π
S (t).

Note that the above equation is similar to Equation (1) except that it is linear
in x whereas Equation (1) is not linear in m. We will exploit this linearity in
Section 4 to show that the optimal strategy can be computed easily by solving
the Bellman’s equation.



The expected individual cost of Player 0 over interval [t,T] is:

V π
0,π(t) =

∫ T

t

[cV π
0(u)xπ

0,π
S (u) + cIx

π0,π
I (u)]du.

We call the best response to π and denote by BR(π) the set of vaccination
strategies that minimize the expected cost of Player 0 for a given population
strategy π, that is,

BR(π) ∈ arg min
π0

V π
0,π, (2)

which is a non-empty set by compactness of the strategy space1.
As in [10, 15] we define a mean field equilibrium as a fixed point of the

best-response function:

Definition 1 (Symmetric Mean Field Equilibrium). The vaccination strategy
πMFE is a symmetric mean field equilibrium if and only if

πMFE ∈ BR(πMFE).

This is the classical definition of an equilibrium in a mean field game. The ra-
tionale behind this definition is that in a homogeneous population, each player’s
best-response is the same as for Player 0. For a given vaccination strategy of
the population π, any player of the population choose the vaccination strategy
BR(π). As in classical games, a mean field equilibrium is a situation where
no player has incentive to deviate unilaterally from the selected vaccination
strategy.

4 Mean Field Equilibrium Characterization

In this section, we analyze the mean field equilibrium described in Section 3.2.
Before going further, we observe that the rate at which susceptible population
becomes infected is linear in the proportion of infected population and the rest
of the rates and costs do not depend on the population distribution. Thus,
our model is a particular case of the finite mean field games whose equilibrium
existence is proven in [10]. In this section, we use a direct method to further
characterize an equilibrium.

We define a bang-bang policy with at most one jump the policy that vacci-
nates at maximum rate until a given jump time τ and does not vaccinate after
time τ . We denote this policy by πτ . More precisely,

πτ (t) =

{
θ if t < τ,
0 if t ≥ τ .

1The set of strategies is the set of bounded measurable functions on [0, T ] endowed with
the weak topology. It is a compact set.



In this section we show that the mean field equilibrium is unique, deterministic
(or pure), in the sense that players do not randomize when the equilibrium is
reached, and is a bang-bang strategy that jumps at a time that we denote by
τeq.

The first step in our proof is to show that, for any strategy π (not necessarily
bang-bang) there exists a unique best response to π that is bang-bang strategy
with at most one jump.

Proposition 1. For any population strategy π, the best-response to π is unique,
up to a set of measure 0. It is a bang-bang strategy with at most one jump. The
jump time is denoted by τBR(π).

Proof. From the discussion in Section 3.2, the minimization problem that con-
sists in computing the best-response of Player 0 to the population can be seen
as a continuous time Markov decision process with finite horizon T . Let us de-
note by JS(t) (resp. JI(t)) the optimal cost to go, starting in state S (resp. I),
from time t. The optimal costs and the best response to π, satisfy the Hamilton
Jacobi Bellman equations [5]:

JS(T ) = JI(T ) = 0 (3)

−J̇S(t) = inf
π0

[π0(t)(cV − JS(t)) + γmI(t)(JI(t)− JS(t))] (4)

−J̇I(t) = cI − ρJI(t). (5)

BR(π) = arg min
π0

[π0(t) (cV − JS(t)) + γmI(t)(JI(t)− JS(t))]

= arg min
π0

[
π0(t) (cV − JS(t))

]
(6)

First, let us remark that if the strategy of Player 0, π0(t), is modified over a
set of Lebesgue measure 0, then the costs and the states are not modified. This
means that strategies are only defined up to a set of measure 0.

The solution of Equation (3)-(5) is JI(t) = cI
ρ (1 − eρ(t−T )). Therefore, the

cost JI(t) is decreasing from cI
ρ (1− e−ρT ) to 0. At time T , JS(T ) = 0 = JI(T )

so that J̇S(T ) = 0. Also, by (4), −J̇S(t) ≤ γmI(t)(JI(t)− JS(t). By continuity
of the functions JS and JI , this implies that JS(t) < JI(t) for all t ∈ [0, T ).

By (6), the best response strategy to π is 0 if JS(t) < cV and θ if JS(t) > cV .
Therefore, to show the result, it suffices to show that JS(t) crosses cV at most
once. Let t1 be the first time when JS(t) = cV (otherwise, we set t1 = 0).
Equation (4), together with the fact that JS(t) < JI(t) implies that−J̇S(t1) > 0.
By continuity, for all t > t1, once has −J̇S(t) > 0. This implies that JS is
decreasing from t1 to T . Hence, JS(t) crosses level cV at most once (at a time
t1). This implies that the best response to π is a bang-bang strategy with at
most one jump:

BR(π) =

{
θ if t < t1
0 if t ≥ t1.

(7)



Notice that the best response is not necessarily well-defined at the jump
time. This is in accordance with the fact that two strategies that differ up to
a set of measure 0 will lead to the same costs. Another consequence of the
previous proof is that the jump time BR(π) is “monotonous” in π in a sense
precised in the following result.

Lemma 1. Let πτ be a bang-bang strategy that jumps at τ . Then, the jump time
τBR(πτ ) of the response to πτ decreases when the original jump time τ increases.

Proof. We first observe that if τ increases, then the number of vaccinated pop-
ulation increases, which implies that the number of infected population mI(t)
decreases. From the proof of Proposition 1, we know that JI(t) ≥ JS(t) for all
t ≥ τBR(πτ ). Thus, in (4) mI(t) is multiplied by JI(t)−JS(t), which is positive.
Therefore, if the number of infected population mI(t) decreases then JS(t) also
decreases for all t ≥ τBR(πτ ). This implies that τBR(πτ ) decreases.

The population distribution is a continuous function of the threshold τ
and, as a consequence, so are JS(t) and JI(t). This implies that the map-

ping (τ0, τ) 7→ V π
τ0 ,πτ is also continuous. By Proposition 1, the best re-

sponse τBR(πτ ) = arg minτ0 V π
τ0 ,πτ is unique. This implies that the mapping

τ → τBR(πτ ) is continuous. From Lemma 1, and by letting τ increase from 0 to
T , the jump time τBR(πτ ) is equal to τ exactly once. This proves the following
proposition.

Proposition 2. There exists a unique pure mean field equilibrium and it is a
bang-bang strategy with at most one jump.

An important consequence of this result is that it provides a simple way of
computing numerically the mean field equilibrium as it can be done by solving
a fixed point problem over a scalar value. Notice also that it is in accordance
with the results obtained in [22] and [11]: the vaccination of individuals have
the same structure as the mean field equilibrium we have presented.

In the following section, we present that the global optimum of the problem
is also a bang-bang strategy with at most one jump and we compare the jump
times of both strategies.

5 Social Optimum Characterization

In this section, we consider the social optimum strategy, that minimizes the
total cost of the whole population (also called the social cost).

5.1 Centralized Control Problem

Let us focus on a centralized control problem for this epidemic model. Here, we
seek to find the vaccination strategy of the population π such that the total cost



of the system is minimized. We denote by C(π) the social cost incurred under
the population vaccination strategy π, i.e.,

C(π) =

∫ T

0

(cImI(t) + cV π(t)mS(t)) dt.

The control strategy that minimizes C(π) among all the measurable func-
tions from [0, T ] to [0, θ] is denoted by πopt and satisfies

πopt ∈ arg min
π

C(π).

As for the case of the mean field equilibrium, a strategy is essentially defined
up to a set of measure 0 in the following sense: If two strategies differ on a null
set (i.e. of measure 0), then the cost and the state remain identical.

5.2 Social Optimum Characterization

In this section, we study the vaccination strategy that minimizes the total cost
of the SIR model. The authors in [4] consider a model that covers most of the
literature regarding deterministic vaccination strategies of SIR dynamics and
show the vaccination strategy that minimizes the cost of the system a bang-
bang strategy with at most one jump. We note that the centralized control
problem we present in Section 5.1 is a particular case of their result, where
f(S(t), I(t)) = βS(t)I(t), a = d = 0 and c(S(t)) = S(t)cV /cI . Therefore, their
result can be used to conclude that the social optimum of the SIR model is
reached by a bang-bang strategy with at most one jump. In the rest of the
section, the jump time of the social optimum will be denoted by τ∗.

Proposition 3. [4, Theorem 2.1.] There is a unique strategy that minimizes
the total cost of the population and it is a bang-bang strategy, i.e., πopt = πτ

∗
.

In the following result, we show that, unless for trivial cases, the mean field
equilibrium and the social optimum never coincide. More interestingly, we also
prove that the jump time of the mean field equilibrium τeq is always smaller
than the optimal jump time τ∗. This implies that rational individuals who try to
minimize their own cost would tend to be less vaccinated than what a centralized
controller would do, essentially because they benefit from the vaccination of the
others. Hence, in order to encourage individuals to vaccinate optimally, a central
planner should subsidize vaccination.

Proposition 4. The jump time τ∗ of the socially optimal strategy is always
equal or larger than the jump time of the mean field equilibrium τeq, with equality
only if τ∗ = 0.

Proof. The proof is based on the Pontryagin’s maximum principle applied to our
optimization problem. The Pontryagin’s maximum principle gives a necessary
condition for optimality [25]. In our case, it translates into the following: If



π∗ is an optimal strategy, then there exist two Lagrange multipliers λS(t) and
λI(t) such that λS(T ) = 0, λI(T ) = 0 and for any t < T ,

−λ̇S = cV π
∗(t) + (−γm∗I(t)− π∗(t))λS + γm∗I(t)λI

−λ̇I = cI − γm∗S(t)λS + (γm∗S(t)− ρ)λI

π∗(t) = arg min[cV π(t)m∗S(t) + cIm
∗
I(t)

+ (γm∗S(t)m∗I(t)− π(t)m∗S(t))λS

+ (γm∗S(t)m∗I(t)− ρm∗I(t))λI ],

where m∗I(t),m
∗
S(t) are the proportions of the population in states I and S

respectively, at time t, under the optimal strategy. By straightforward simplifi-
cations, one gets

−λ̇S = inf
π

(π(t)(cV − λS) + γm∗I(t)(λI − λS)) (8)

−λ̇I = cI − ρλI + γm∗S(t)(λI − λS) (9)

π∗(t) = arg min (π(t)m∗S(t)(cV − λS)) . (10)

Equations (8)-(9) are similar to the equation for the costs of the best response
strategy (4)-(5) up to the additional term γm∗S(t)(λI − λS) for λI . Using this,
the comparison between the optimal strategy and the mean field equilibrium
bowls down to the comparisons of the Lagrange Multipliers λS , λI and the costs
JS , JI .

One easy case is where cV is larger than cI/ρ. In this case, for all t, λS ≤
λI ≤ cI/ρ ≤ cV so that the jump time of the mean field equilibrium is τeq = 0.
Therefore, the socially optimal jump time τ∗ can only be larger than τeq.

Let us now consider the case where cV < cI/ρ. In this case, τ∗ is the
time when λS gets below cV . By examining the Lagrange multipliers λS and λI
between τ∗ and T , one can show that they must satisfy the following properties:

• λS(T ) = 0, λI(T ) = 0,

• ∀t ∈ [τ∗, T ], λS(t) ≤ λI(t).

Indeed, if there is a time t such that λS(t) = λI(t), then their deriva-
tives become comparable (λ̇S(t) ≤ λ̇I(t)). Therefore, the additional term
γm∗S(t)(λI − λS) in (8) remains positive so that λI(t) ≤ JI(t), ∀τ∗ ≤ t ≤ T . In
turn this implies that λS(t) ≥ JS(t), ∀τ∗ ≤ t ≤ T .

This implies that JS(τ∗) ≤ λS(τ∗) = cV . Finally, this implies that τeq

(the time when JS crosses level cV ) is smaller that τ∗ (with equality only when
τ∗ = 0).

This result shows the difference between the vaccination of the individuals
when they behave in a selfish manner and the vaccination that minimizes the
cost of the SIR model. Indeed, we have proven that the jump time of the social
optimum is always larger that the jump time of the mean field equilibrium. In
Section 7, we compare both vaccination policies numerically (see [6] for a related



comparison between the forward-backward stochastic differential equations of a
mean field game and the centralized control problem over controlled dynamics
of McKean-Vlasov type). Prior to that, we study this SIR model with finite
number of players in the following section.

6 Analysis with N <∞ players

An alternative model would have been to consider a population made of a finite
number of players (N). In this section, we present vaccination models with
N < ∞ players. We give the Bellman equation for this model and we discuss
how it can be used to compute the Nash equilibrium and the social optimum.
We first consider the Nash equilibrium and then we focus on the social optimum.

6.1 Nash Equilibrium

We consider a population formed by a finite number of players, that interact
through a stochastic game. The existence of Nash equilibria for such a model
follows from classical results on stochastic games [24].

The state of the N + 1 players (N players plus Player 0) can be seen as a
triplet (X,MS ,MI) where X is the state of Player 0: X ∈ {S, I,R}, Ms (resp
MI) is the number of the other players in state S (resp. I).

When all the other players use strategy π, the best response of Player 0 is
given by the following Bellman equation (after uniformization of the rates) over
T (N + 1) time steps:

Ct(S,MS ,MI) = min
π0
t (MS ,MI)∈[0,θ]

pV cV + pICt+1(I,MS ,MI) + qV Ct+1(S,MS − 1,MI)

+ qRCt+1(S,MS ,MI − 1) + qICt+1(S,MS − 1,MI + 1)

+ pSCt+1(S,MS ,MI),

Ct(I,MS ,MI) = cI + qV Ct+1(I,MS − 1,MI) + qRCt+1(I,MS ,MI − 1)

+ q′ICt+1(I,MS − 1,MI + 1) + pICt+1(I,MS ,MI),

where the probabilities are

pV = Ωπ0
t (MS ,MI),

pI = ΩγMI/N,

pR = Ωρ,

qV = Ωπt(Ms,MI)MS ,

qR = ΩρMI ,

qI = ΩγMSMI/N,

q′I = ΩγMS(MI + 1)/N,

pS = 1− pV − pI − qV − qR − qI ,
pI = 1− pR − qV − qR − q′I ,



with a normalization Ω = ((N + 1)(θ + ρ+ γ))−1.
Using [10, Theorem 3], we can claim that the MFE computed in Section

4 is an ε-Nash Equilibrium of the N player game for any N , and ε goes to 0
when N goes to infinity. We observe that the Bellman equations above can be
used to compute the best response of Player 0 to the population strategy if we
replace min by argmin in the first equation. This process can be carried out
iteratively to compute its fixed point (i.e. π0 is the best response to itself), i.e.,
the Nash equilibrium policy. We have not been able to prove convergence of this
best response dynamics nor to prove the uniqueness of its fixed point. However,
in Section 7.2, we study the Nash equilibrium for a finite number of players
with the parameters of [22] and, in all the experiments we have performed, the
iteration always converged to a unique point. Besides, when N = 5, the number
of iterations required to converge is two, but for larger values of N the number of
iterations increases substantially. For instance, when N = 20, the convergence
is given after more than 800 iterations and when N = 30 after more than 2200
iterations.

6.2 Social optimum

We now analyze the social optimum with N players. The state of the system
can be seen as a couple (MS ,MI) where Ms (resp MI) is the number of the
other players in state S (resp. I). We aim to find the strategy that minimizes
the expected cost of the system. This can be done by solving the following
Bellman equation (after uniformization of the rates) over T (N) time step:

Jt(MS ,MI) =cIMI + min
πt∈[0,θ]

(cV qVMS + qV Jt+1(MS − 1,MI)

+ qRJt+1(MS ,MI − 1) + qIJt+1(MS − 1,MI + 1))

+ qJt+1(MS ,MI),

where the probabilities are

qV = ΩπtMS ,

qR = ΩρMI ,

qI = ΩγMSMI/N,

q = 1− qV − qR − qI ,

with a normalization Ω = (N(θ + ρ+ γ))−1.
We observe that the computation of the strategy requires a single backward

computation of the Bellman equation. Note that while the socially optimal strat-
egy is not necessarily unique, its cost Jt(MS ,MI) is uniquely defined. Moreover,
its computation by the above backward recursion is much faster than the com-
putation of the Nash equilibrium we presented in Section 6.1 because one needs
only one pass of the backward recursion to obtain J0(MS ,MI). In Section 7.2,
we present numerical experiments that study the speed of convergence o the
global optimum strategy with N players to the mean field optimum strategy for
the parameters of [22].



7 Numerical Comparisons

7.1 Comparison of MFE and Social Optimum

Proposition 2 and Proposition 3 show that the mean field equilibrium and the
social optimum are characterized by their jump time τ . In this section, we report
a numerical evaluation of the jump time of these strategies2. We consider the
same system parameters as in [22], which is based on the epidemiological study
of the H1N1 epidemic of 2009-2010 in France : ρ = 36.5, γ = 73, θ = 10,
cI = 36.5 and cV = 0.5. Besides, we consider that the proportion of susceptible
and infected population at time 0 are both equal to 0.4.

Remark 1. The value of cI in [22] corresponds to our value of cI/ρ. Hence,
in [22] they use cI = 1 which corresponds to cI = ρ = 36.5. It is easy to see
that if the cost of infection is cI times ρ the Bellman equations of both models
coincide. The authors provide simulations where the proportion of susceptible
and infected population at time 0 is, respectively, 0.75 and 0.1 and, using their
approach, they obtain that the cost for the mean field equilibrium and in the
social optimum are, respectively, 0.55 and 0.53. Using our approach, the costs
are 0.542 for the mean field equilibrium and 0.524 for the social optimum.
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Figure 2: Population dynamics under the equilibrium strategy (dashed line)
and the socially optimal strategy (solid line). Three zones are displayed: (i)
in the white region, the social optimum and the equilibrium vaccinate with
maximum rate; (ii) in the dark gray region, the social optimum vaccinates
with maximum rate, while the equilibrium does not vaccinate; and (iii) in the
light gray region, neither the social optimum nor the equilibrium vaccinates.
mI(0) = mS(0) = 0.4.

For these parameters, we compute the optimal strategy and the mean field
equilibrium over a time horizon of a year, that is, T = 1. The results are reported

2The codes to reproduce these experiments are available at https://github.com/

josudoncel/MeanFieldGameAnalysisSIRModelVaccinations

https://github.com/josudoncel/MeanFieldGameAnalysisSIRModelVaccinations
https://github.com/josudoncel/MeanFieldGameAnalysisSIRModelVaccinations


in Figure 2 where the population state space is divided into three regions that
represent the decisions taken by both strategies at time 0, as a function of the
initial state. In the white region, both strategies vaccinate at maximum rate.
In the dark gray region, the strategy of the social optimum is to vaccinate at
maximum rate and the strategy of the equilibrium is to not vaccinate. In the
light gray region, both strategies are to not vaccinate.

We also plot the trajectories corresponding to both strategies when the pro-
portion of infected population and of susceptible population at time 0 are both
equal to 0.4. In the left plot of Figure 2 (see the right plot for a zoomed figure),
we plot with a solid line the behavior of the equilibrium vaccination strategy,
and with a dashed line, the behavior of the social optimum. The obtained cost
for the equilibrium vaccination strategy for the parameters under consideration
is 0.6824, whereas for the social optimum vaccination strategy is 0.6818.

For any vaccination cost cV , while the other parameters remain fixed, we
denote by τ∗(cV ) (resp. τeq(cV )) the jump time of the socially optimal strategy
(resp. equilibrium strategy). It can be shown that in both cases, the jump times
are decreasing in cV : the more costly is the vaccination, the less people vaccinate
(for the socially optimal situation as well as for the mean field equilibrium).
Figure 3 confirms that the jump times decrease with cV and also shows that
the jump times are never equal for this range of parameters. This suggests
that, if the vaccination decisions are let to individuals, then vaccination should
be subsidized, by offering a grant g off the vaccination cost so that both jump
times coincide, i.e.,

τeq(cV − g) = τ∗(cV ).
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Figure 3: Jump times comparison when cV varies from 0.01 to 1. The jump
time of the mean field equilibrium (MFE) is represented with a dotted line and
the jump time of the social optimum (OPT) with a solid line. The horizontal
distance is the subsidy to be granted to incentive players to use the optimal
vaccination strategy.

For example, with the same parameters as in the simulation of Figure 2, and
for cV = 0.8, the jump time of the social optimum is 0.0106, while the jump



time of the equilibrium is 0. The jump time of the equilibrium is 0.034 when
cV = 0.65. This simulation shows that the subsidy required to encourage selfish
individuals to vaccinate optimally consists of a reduction of the vaccination cost
of g = 0.15.

7.2 Convergence of the N-player Nash Equilibrium to MFE

Using the same parameters as in the previous subsection, we compute the cost
of the Nash equilibrium with N players and compare with the cost of the MFE,
and let N grow to assess the convergence of the cost as N goes to infinity.

We first focus on the cost of the equilibria. As it can be observed in Figure
4, the cost of the equilibrium of the N - player game converges to the cost of
the mean field equilibrium when N is large. This illustration suggests that
convergence rate of the cost is in 1/N . This rate of convergence is in accordance
with the recent results of [3, 8] that show that for some specific games, the
sequence of equilibria of the N -player games converges at rate 1/N to the mean
field equilibrium3. This convergence rate is faster than the classical convergence
rate in 1/

√
N that holds for general mean field games (see for example [7],

that show that a mean field equilibrium is an 1/
√
N -Nash equilibrium). We

believe that there are two reasons for that. First, the dynamics at equilibrium is
piecewise smooth, which means that techniques similar to the ones of [12, 13, 20]
could most certainly be used to prove the 1/N rate of convergence. Second, we
focus here on the convergence of the cost of the equilibrium which tends to
converge faster than the policy.
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Figure 4: Cost of the Nash equilibrium with N players as N grows, and best fit
of the form a+ b/N

Figure 5 shows how the Nash policy (a switch curve for any N) converges

3Note that their results do not apply as is to our model because our model does not satisfy
all the assumptions of either [3] or [8]: in those papers the player controls directely the jump
rates. Moreover, those papers assume a strict convexity of costs whereas our cost is linear.



to the MFE policy. Notice that the convergence is monotone (switching curve
decreases to the limit curve). Note that the computation of the mean-field
equilibrium is much faster than the N-player equilibrium. In fact, we have
performed these experiments in a machine equipped with a 2.7 GHz CPU core
and 8 GB RAM and the computation time of the N-player equilibrium was more
than 2 hours for N = 20 and more than 100 hours for N = 50, whereas the
mean-field equilibrium has been computed in less than three minutes.
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Figure 5: Convergence of the Nash switching curve to to the MFE switching
curve

In the next set of experiments, we consider the social optimum policy. We
first show in Figure 6 that the cost of the social optimum policy with a finite
number of agents converges to the cost of the mean field optimum. We also
remark that the convergence rate of the cost is again in 1/N .

We compare the switching curve of the social optimum policy with N players
with that of the mean field optimum policy in Figure 7. We observe from this
plot that the convergence is also monotone in this case.

Note that here numerical experiments can be carried for larger values of N
because the computation of the social optimal is much faster (a single backward
computation of the Bellman equation) while computing the Nash equilibria re-
quires many backward computations to reach a fixed point.

7.3 Efficiency of the N-player equilibrium

For a given value of the parameters of the model, the efficiency ratio of an
equilibrium is defined as the ratio of its cost and the cost of the global optimum
strategy. When the efficiency ratio is close to one, we say that the N -players
equilibrium is efficient. Using this definition, the Price of Anarchy is defined
as the maximum over all the parameters of the system of the efficiency ratio.
From the arguments of the previous section, we know that, when the number of
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Figure 6: Cost of the social optimum with N players as N grows, and best fit
of the form a+ b/N
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players is large, the efficiency ratio of an Nash equilibrium is well approximated
by the mean-field efficiency ratio, i.e., the ratio of the cost of the mean-field
equilibrium over the cost of the mean-field optimum.

According to the results of Figure 4 and Figure 6, one can conclude that for
the parameters of [22] when the initial proportion of susceptible and infected
is mS(0) = mI(0) = 0.4, the equilibrium is efficient for all N . In fact, when
N = 10 and N = 20, the ratio of the cost at the equilibrium over the cost of
the global optimum strategy is 1.0188 and 1.0105, respectively. Besides, for this
instance, the mean-field efficiency ratio, whose value is 1.0015, approximates
not that well the efficiency ratio of the N-players equilibria. In this section, we
aim to study the efficiency of the equilibrium with a small number of players.
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Figure 8: Ratio between the cost of the N -player equilibrium and the optimum
social cost for the models with N players. We plot the ratio as a function of
the initial state (mS(0),mI(0)) and compare N = 10 (left figure) and N = 20
(right figure).

We first study the efficiency of the equilibrium with a finite number of players
N = 10 or N = 20. In Figure 8, we represent the efficiency ratio for all the
possible initial conditions of the proportion of susceptible and infected players.
As it can be observed, the efficiency ratio is close to one in most cases. In fact,
for N = 10, the maximum of the efficiency ratio is 1.072 and it is achieved when
mS(0) = 0.6 and mI(0) = 0.1. For N = 20, the cost of the equilibrium is at
most 1.102 times the cost of the global optimum. Note that when mI(0) = 0
or mS(0) = 0, the ratio is one because both the equilibrium and the socially
optimal strategy consist in non-vaccinating.

We report the efficiency of the equilibrium for the mean field model in Fig-
ure 9. To obtain this figure, we consider all initial conditions mI(0),mS(0) ∈
{0, 1/100, . . . , 1} and report the ratio between the cost of the mean field equilib-
rium and the cost of the socially optimal strategy. We observe that, as for the
finite player model, the ratio is often close to 1. It is maximal whenmS(0) ≈ 0.67
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Figure 9: Ratio between the cost of the mean field equilibrium and the opti-
mum mean field social cost. We plot the ratio as a function of the initial state
(mS(0),mI(0)).

and mI(0) = 1/100 (i.e. close to 0 but not equal to 0).

8 Conclusion

In this paper, we studied a mean field game model of a SIR dynamics where
players can vaccinate. We showed that this game has a unique equilibrium that
is of bang-bang type. We compared this equilibrium with the socially optimal
strategy. We conclude that, if people decide by themselves when to vaccinate,
then, in order to encourage a socially optimal behavior, vaccination should be
subsidized.

In addition of its per se interest, we think that this problem is a good example
where a mean field equilibrium can be computed under almost closed form while
an analysis of the N -player Nash equilibrium seems impossible.

Acknowledgments

Josu Doncel has received funding from the Department of Education of the
Basque Government through the Consolidated Research Group MATHMODE
(IT1294-19), from the Marie Sklodowska-Curie grant agreement No 777778 and
from the Spanish Ministry of Science and Innovation project with reference
PID2019-108111RB-I00 (FEDER/AEI).



References

[1] R. M. Anderson, R. M. May, and B. Anderson. Infectious diseases of
humans: dynamics and control, volume 28. Wiley Online Library, 1992.

[2] C. T. Bauch and D. J. Earn. Vaccination and the theory of games. Proceed-
ings of the National Academy of Sciences of the United States of America,
101(36):13391–13394, 2004.

[3] E. Bayraktar and A. Cohen. Analysis of a finite state many player game
using its master equation. arXiv preprint arXiv:1707.02648, 2017.

[4] H. Behncke. Optimal control of deterministic epidemics. Optimal control
applications and methods, 21(6):269–285, 2000.

[5] D. P. Bertsekas. Dynamic programming and optimal control, volume 1.
Athena scientific Belmont, MA, 1995.

[6] R. Carmona, F. Delarue, and A. Lachapelle. Control of mckean–vlasov
dynamics versus mean field games. Mathematics and Financial Economics,
7(2):131–166, 2013.

[7] A. Cecchin and M. Fischer. Probabilistic approach to finite state mean
field games. Applied Mathematics & Optimization, Mar 2018.

[8] A. Cecchin and G. Pelino. Convergence, fluctuations and large deviations
for finite state mean field games via the master equation. Stochastic Pro-
cesses and their Applications, 129(11):4510–4555, 2019.

[9] O. Diekmann and J. A. P. Heesterbeek. Mathematical epidemiology of
infectious diseases: model building, analysis and interpretation, volume 5.
John Wiley & Sons, 2000.

[10] J. Doncel, N. Gast, and B. Gaujal. Discrete Mean Field Games: Existence
of Equilibria and Convergence. Journal of Dynamics and Games, 6(3):1–19,
2019.

[11] P. J. Francis. Optimal tax/subsidy combinations for the flu season. Journal
of Economic Dynamics and Control, 28(10):2037–2054, 2004.

[12] N. Gast. Expected values estimated via mean-field approximation are 1/n-
accurate. Proceedings of the ACM on Measurement and Analysis of Com-
puting Systems, 1(1):1–26, 2017.

[13] N. Gast and B. V. Houdt. A Refined Mean Field Approximation. In ACM
SIGMETRICS 2018, page 1, Irvine, United States, June 2018.

[14] P.-Y. Geoffard and T. Philipson. Disease eradication: private versus public
vaccination. The American Econ. Review, 87(1):222–230, 1997.



[15] D. A. Gomes, J. Mohr, and R. R. Souza. Discrete time, finite state space
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