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Abstract. In this paper, the problem of radio access technology (RAT)
selection in heterogeneous wireless networks (HWNs) is tackled from an
operator’s perspective, with the objective of maximizing the generated
revenue. Two user profiles are considered with different priority levels.
An integrated 3GPP Long Term Evolution (LTE) and Wireless Fidelity
(WiFi) network is considered as an example of HWN, where LTE is used
mainly for the high-priority class, while a portion of its resources, defined
by a load threshold, can be shared by the low-priority class. A Markovian
model is defined and validated by simulation. Subsequently, the value of
the load threshold for resource sharing in LTE is investigated, and an op-
timization problem is formulated to find the optimal threshold for which
the revenue is maximized.

Keywords: Heterogeneous Wireless Networks, Resource Management,
Revenue Maximization.

1 Introduction

With the tremendous evolution of wireless network technologies and the ever
increasing demand from users to be always best connected, various radio access
technologies (RATs) have been standardized and deployed. It has become very
likely to encounter geographical areas covered by more than one RAT, each
with different characteristics in terms of latency, coverage, and link capacity. By
providing more connection options than a single-RAT network, a heterogeneous
wireless network (HWN) offers the operator additional tuning knobs to meet the
users’ needs and at the same time generate higher revenues.

In this paper, we consider the scenario of a HWN that is run by a single
operator and where two RATs are integrated, namely 3rd Generation Partner-
ship Project (3GPP) Long Term Evolution (called LTE hereafter) and Wireless
Fidelity (WiFi). This network scenario is rather practical and can be found
from real networks. Moreover, mobile devices and smartphones supporting both
technologies are now available in the market. With these factors combined, it
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becomes of interest to investigate mechanisms that allocate users’ connections
effectively, allowing an efficient utilization of the system resources.

In order to take advantage of the combined features of the different coexisting
RATs in a HWN, a good coordination among these RATs is required. This in-
volves the adoption of common radio resource management (CRRM) strategies,
a critical factor for the success of HWNs. Among the various CRRM functional-
ities [1], RAT selection is known to be most fundamental. It can be user-centric

or operator-centric. Typically, a user-centric RAT selection scheme considers
the user’s preferences as objective, such as signal strength and access cost. An
operator-centric one is oriented towards maximizing the operator’s interests, e.g.
the overall HWN capacity, and takes into consideration the network-related pa-
rameters such as RATs’ loads and capabilities as well as the existing service
types [1]. In this paper, we address an operator-centric RAT selection with spe-
cific objective of maximizing the operator’s revenue.

A thorough analysis and classification of the recently proposed radio resource
management procedures in HWNs can be found in [1, 2]. In [1], the authors pro-
vided a case study that illustrated the potential gain offered by CRRM especially
in terms of capacity enhancement. In [3], a CRRM scheme that minimizes the
vertical handover rate and service cost while achieving the desired quality of
service (QoS) was proposed. In CRRM, RAT selection functionality has gained
a particular attention in the literature. For example, Gelabert et al. provided in
[4] a framework to allocate services in HWNs with the help of Markov chain. The
model was used to compare and evaluate the performance of various RAT selec-
tion policies that fall into three categories: service-based, load-balancing based
and multi-mode terminal driven strategies. However, the users’ perceived QoS
was the main focus of most of the proposed RAT selection algorithms e.g., [5–7].

Very few operator-centric approaches with the objective of maximizing the op-

erator’s revenue can be found. In [8], a fuzzy neural-based CRRM strategy was
presented. Both techno-economic cognitive mechanisms and user differentiation
concepts were investigated, with the aim of guaranteeing the user satisfaction
maintained at a certain target level, while also considering the network’s gener-
ated revenue. However, the proposed CRRM strategy, based on a fuzzy neural
network, is complex for implementation in real networks. In our early work [9],
CRRM strategies based on call admission control and vertical handover were
presented and compared. It was shown that a significant increase of revenue
could be incurred by the adoption of CRRM policies. However, the evaluation
in [9] was only based on simulation. Other admission control where decisions are
taken dynamically to maximize the operator’s revenue can also be found in the
literature [10, 11].

In this paper, we propose a new scheme for RAT selection that is intuitive
and easy to implement. In addition, the proposed approach is devised to work
at a different level in the sense of providing the operator with the initial setting
of an important parameter i.e., the load threshold in LTE, at the early planning
phase of the system. With an appropriate setting of the load threshold, system
resources can be used efficiently and the revenue be maximized. To demonstrate
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its use, a specific example of HWN, which is an integrated LTE/WiFi network,
is considered. Also, for practical reasons, only two user profiles with different
priority levels are offered and a load threshold is defined in LTE to reserve
resources to the high-priority users. Importantly, an analytical model for the
proposed scheme is presented and validated by simulation. In addition, we in-
vestigate the impact of the choice of the load threshold on the revenue and solve
the corresponding optimization problem.

The paper is organized as follows. Sec. 2 describes the system model and
the proposed RAT selection scheme. In Sec. 3, the different elements of the
Markovian model are introduced. Sec. 4 presents the results obtained by the
model and the simulation. In Sec. 5 we introduce and solve the optimization
problem for finding the optimal threshold value, and Sec. 6 concludes the paper.

2 The System Model and User Profile-Based RAT

Selection

We consider an integrated LTE/WiFi heterogeneous network. While WiFi offers
broadband data transmission for a limited coverage area at low cost and simple
control plane, LTE provides more efficient services and better QoS with wider
coverage area, at bandwidth and cost comparable to that of the WLAN [12, 13].

In the considered scenario, a user can be either residing in an area covered
by LTE only, or in a dual coverage area with a probability Pdual. Two user
profiles C1 and C2 are provided. Class C1 has higher priority than class C2.
Practically, the prioritized class C1 targets the business sector, known to be
more sensitive to the perceived QoS than the charged price. The low-priority
class C2 targets the individual users who care mainly about the access cost, and
don’t have strict requirements with respect to the QoS. Naturally, C1 users get
faster connection speed by paying higher connection fees as compared to users
belonging to C2 class. In terms of admission to LTE, C1 users have a privilege in
using LTE resources over C2. For this purpose, a load threshold θ is defined as
the percentage of LTE capacity that the low-priority users are allowed to share
with C1 users.

The RAT selection block, as illustrated in Fig. 1, requires mainly two types of
inputs: network parameters (LTE and WiFi loads and the value of θ), and user
parameters (the user’s class of service, and whether the user is in a dual-coverage
area or not). It generates as output the decision of admitting or blocking the
arriving session, as well as the selected RAT in the case where the admission of
the session is successful.

Based on the RATs characteristics and the considered user profile differenti-
ation, we propose the following RAT selection strategy:

– When a new C1 session arrives, it is admitted to LTE as long as LTE has
enough available resources. This policy reflects the operator’s willingness
to offer better QoS for C1 users whose contribution, in terms of generated
revenue, is more significant than C2 users.
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Fig. 1. RAT selection block.

– When a new C2 session arrives, the RAT selection module tries to admit this
session into WiFi first. This way, the operator benefits from WiFi capacity
to accommodate sessions belonging to the low-priority profile, keeping more
resources in LTE available for C1 class. In the case where the admission of
the new C2 session to WiFi is not possible (user out of WiFi coverage or
WiFi is overloaded), and with traffic load in LTE below the threshold θ, the
RAT selection module allows the admission of the new C2 session to LTE.

– When the load in LTE exceeds θ, only C1 sessions are admitted.
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Fig. 2. Algorithm for RAT selection.
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Corresponding to the above strategy, Fig. 2 illustrates the RAT selection
algorithm. Note that though the proposed RAT selection scheme gives higher
priority to C1 class in using LTE, it also tries to keep the QoS of C2 class from
degrading drastically. This is realized by not allowing C1 users to compete with
C2 users in using WiFi resources, even when LTE is overloaded.

3 The Analysis

The considered scenario can be modeled by the means of a 3D Markov chain.
Each state S(i, j, k) represents a state of the network in which i sessions of class
C1, and j sessions of class C2 are being served in LTE, and k sessions of class
C2 are being served in WiFi.

The transition from one state to another is initiated upon the arrival/departure
of a C1 or C2 session to/from any of the two RATs. We assume the traffic gener-
ated in both classes C1 and C2 to be inelastic, and arriving according to Poisson
processes with rates λ1 and λ2 respectively. As for the session holding times, they
follow exponential distributions with mean values 1/µ1 and 1/µ2 for classes C1

and C2 respectively. We would like to stress that, at the session level, these
assumptions are rather realistic [14].

3.1 The Set of Feasible States

In the proposed scenario, we assume a fixed total bandwidth for each of the
RATs, namely Clte and Cwifi for LTE and WiFi respectively, each being parti-
tioned into a fixed set of basic bandwidth units (bbu) as in, e.g. [15, 16].
A state of the network is called feasible if each of its dimensions does not exceed
the limit defined by the RATs capacities. Let I, J and K denote the maximum
values of i, j and k that can be accommodated by the system. Since C1 class has
the priority in using LTE up to the totality of its resources, and so does C2 in

WiFi, The values of I and K can be defined as: I =
⌊

Clte

b1

⌋

, and K =
⌊

Cwifi

b2

⌋

,

where bi is the number of bbu required for a Ci session, and bxc is the largest
integer not greater than x. Here, we highlight that while the main interest of
network operators is to increase their revenue, it is also critical that the QoS
level remains acceptable, which can be ensured with properly chosen bi. There
are various techniques for calculating bi, and a promising technique is effective

bandwidth [17], but this is out of the scope of the present paper. Here we assume
bi is given.

As for J , it can be expressed as the minimum of two quantities, namely the
maximum number of C2 sessions allowed to be in LTE assuming that no C1

sessions are being served in the system, and the number of C2 sessions that can
be admitted to LTE after serving the i ongoing C1 sessions. Hence, J can be
defined as follows:

J(i) = min(

⌊

θ
Clte

b2

⌋

,

⌊

Clte − b1 · i

b2

⌋

). (1)
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Table 1. Transition rates from generic state S(i, j, k).

To State Rate Condition

S(i + 1, j, k) λ1 i < I
S(i− 1, j, k) i.µ1 i > 0
S(i, j, k + 1) λ2.Pdual k < K
S(i, j, k − 1) k.µ2 k > 0
S(i, j + 1, k) λ2.(1− Pdual) j < J(i) ∧ k < K

λ2 j < J(i) ∧ k = K
S(i, j − 1, k) j.µ2 j > 0

Hence, the set of feasible states in the proposed system can be written as:

S = {S(i, j, k)| 0 ≤ i ≤ I , 0 ≤ j ≤ J(i), 0 ≤ k ≤ K}. (2)

3.2 State Transitions

Having defined the set of feasible states, we need to specify the transitions be-
tween the different states in order to build the transition rate matrix Q. The
transition rates from a given state S(i, j, k) to any of its neighboring states are
provided in Table 1. After creating Q matrix, the next step is to find the station-
ary probability vector. This can be obtained with the help of numerical methods,
and specifically we use the Successive Overrelaxation Method (SOR) [18]. The
steady state probability allows us to derive the needed performance metrics as
shown in the following subsection.

3.3 Performance Metrics

Average Number of Sessions The average number of sessions admitted in
the system for both classes is defined as follows:

E[x] =
∑

S(i,j,k)∈S

x · P(i,j,k) , x ∈ {i, j, k} . (3)

where E[x] is the average value of x, and P(i,j,k) is the steady state probability
for the state S(i, j, k).

Blocking Probability By (3), the average number of users is found, which also
represents the carried traffic in the system. This latter can be computed as the
portion of the offered traffic A (A = λ/µ) that has been admitted successfully
to the system as follows:

E[x] = Aγ · (1 − Pb,γ), γ ∈ {1, 2} . (4)

where Pb,γ is the blocking probability of class Cγ , x = i for γ = 1, and x = j +k
(with E[j + k] = E[j] + E[k]) for γ = 2. Therefore, the blocking probability of
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Table 2. System Parameters.

Parameter Symbol Value

Capacity of LTE Clte 10
Capacity of WiFi Cwifi 5
Number of bbu required per C1 session b1 2
Number of bbu required per C2 session b2 1
Throughput per bbu in LTE rlte 1Mbps
Throughput per bbu in WiFi rwifi 1Mbps
Arrival rate of C1 class λ1 1/60 s−1

Arrival rate of C2 class λ2 1/30 s−1

Session holding time of C1 class 1/µ1 200 s
Session holding time of C2 class 1/µ2 150 s
Dual coverage probability Pdual 0.6

class Cγ is computed as:

Pb,γ = 1 −
E[x]

Aγ

, γ ∈ {1, 2} . (5)

Throughput The throughput of a certain class of service is the product of its
carried traffic by the throughput of the total allocated bbu for this class in the
serving RAT. Hence, the throughput for service class Cγ can be defined as:

Thγ =
∑

α

E[x] · bγ · rα , γ ∈ {1, 2} . (6)

where: rα is the throughput (in Mbps) per bbu of RAT α, x = i for γ = 1, x = j
for (γ = 2 ∧ α = LTE), and x = k for (γ = 2 ∧ α = WiFi).

4 Validating the Analysis

To validate the analytical model, a system-level simulation has been conducted
in Matlab. The simulation was run for 5000 time units, and the same simu-
lation repeated 100 times to get its average performance. The applied RAT
selection policy in simulation follows the state feasibility conditions imposed for
the Markov model. For ease of presentation, we used the settings in Table 2 to
analyze the performance of the proposed RAT selection policy. The analysis may
be further extended for other more realistic settings. The results are plotted in
Fig. 3 and Fig. 4, with the 95% confidence intervals provided. the results show
a good matching between the model and the simulation, proving the validity of
our proposed Markovian model.

Fig. 3 depicts the blocking probabilities for classes C1 and C2, considering
different values of θ, ranging from 0 i.e., no C2 sessions can be admitted to LTE,
to 1 where the whole capacity of LTE can be shared by traffic of both classes.
It is shown that, when the admission to LTE is restricted to C1 class solely, the
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Fig. 3. C1 and C2 blocking probabilities for dif-
ferent values of θ.
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Fig. 4. C1 and C2 throughput variations for dif-
ferent values of θ.

low-priority class suffers from extremely high blocking probability. This is a con-
sequence of the limited coverage and smaller capacity of WiFi as compared to
LTE. Therefore, denying the access of C2 sessions to LTE decreases their proba-
bility of being admitted to the system. However, when the admission of C2 class
to LTE is allowed, through an increase of the value of θ, the blocking probability
of C2 class drops fast, leading to an enhancement of the QoS perceived by the
low-priority users. On the other hand, the blocking probability of class C1 is not
severely affected by the admission of C2 sessions to LTE.

Another performance metric is depicted in Fig. 4, namely the throughput.
With the increase of the value of θ, the throughput of C2 sessions increases fast.
This is directly related to the decrease of the blocking probability of C2 class in
similar conditions as discussed earlier. Also, even when C2 sessions are allowed
to share the entire capacity of LTE, this does not cause a dramatical decrease
of the throughput of C1 sessions, which are granted the double number of bbu
per session as compared to C2 class.

5 Revenue Maximization

In the previous sections, a RAT selection strategy in HWNs with profile differ-
entiation has been proposed, and several performance metrics have been derived
with the help of a Markovian model. According to the proposed scenario, the
number of users that can be admitted to LTE is directly related to the value of
the load threshold θ. Therefore, the parameter θ plays a key role in determining
the revenue generated in the overall system, and any variation of its value can
cause an increase or decrease of the operator’s profit. In this section, we aim to
find the optimal value of θ that leads to maximizing the network revenue, while
guaranteeing that the user’s perceived QoS in terms of blocking probability stays
below a predefined threshold β.
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Let R1 and R2 denote the prices that users pay for C1 and C2 connections
respectively, with R1 > R2. A simple way to formulate the operator’s average
revenue is:

Avg Rev = R1 · E[i] + R2 · (E[j] + E[k]) (7)

where the detailed expressions of E[i], E[j] and E[k] are given by (3) with x = i,
x = j and x = k respectively.

The optimization problem for revenue maximization can be formulated as:

maximize
θ

Avg Rev

subject to θ ∈ Sθ

Pb,i ≤ βi , i ∈ {1, 2} .

(8)

where Sθ is the set of values of θ chosen as: Sθ = {0, 0.1, 0.15, 0.2, .., 1}.
The admission of C2 sessions to LTE is dependent on the value of θ. For each

combination of values of the offered traffic loads A1 and A2 of C1 and C2 respec-
tively, we intend to find the optimal threshold θ∗ that solves the optimization
problem in (8). For this purpose, we use Algorithm 1.

Algorithm 1 Algorithm for finding the optimal threshold θ∗.

Input: A1, A2

Output: θ∗, Avg Rev∗

Initialize: sol← 0 , Avg Rev∗ ← 0
for all θ in Sθ do

Find Pb,1, Pb,2, Avg Rev
if (Pb,1 ≤ β1) ∧ (Pb,2 ≤ β2) then

sol← 1
if Avg Rev > Avg Rev∗ then

Avg Rev∗ ← Avg Rev
θ∗ ← θ

end if

end if

end for

if sol=1 {a solution has been found} then

Return θ∗, Avg Rev∗

end if

As shown in Algorithm 1, to find θ∗ for some given values of the offered
load traffic of C1 and C2 profiles, we first start with the smallest value of θ (i.e.
θ = 0), and keep increasing it until we find the value that provides a feasible
solution for the considered optimization problem. Once found, we keep increasing
the value of θ to check if highest revenue could be achieved without violating
the blocking probability constraints. If there are more than one value of θ that
ensure the same highest revenue, we have interest in choosing the smallest θ∗,
as it corresponds to a smaller blocking probability for the high-priority class.
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Fig. 6. Revenue for arbitrary and optimal load thresholds, A1 = 0.8 Erlang.

Fig. 5 depicts the selected values of θ∗ for different traffic loads of C1 and C2

classes. It shows that, for small values of A1, C2 class can share up to 60% of
CLTE. When A1 increases, the value of θ∗ decreases, and it becomes less likely
to find a θ∗ that solves the optimization problem.

Finding the optimal threshold has an important impact on the generated
revenue. This can be deduced from Fig. 6 that depicts the revenue of the network
for arbitrary load thresholds compared to the revenue achieved with the optimal
threshold, for an offered traffic A1 = 0.8 of class C1. Fig. 6 clearly shows that
the optimal threshold always achieves the highest revenue.

When the offered traffic for C2 is low, e.g. A2 = 1.5, an arbitrary threshold
of 25% or 40% provide the same revenue as θ∗. However, for a load traffic of
C2 profile exceeding the value of 3, a threshold of 25% is no more sufficient. It
leads to significantly lower achieved revenue than the optimal threshold, because
it cannot satisfy the QoS constraint for C2 profile. This choice of the threshold
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Table 3. Values of Pb,1 and Pb,2, A1 = 0.8 Erlang.

θ = 25% θ = 40% θ∗

Pb,1 0.33 % 0.36 % 0.31 %
A2 = 1.1

Pb,2 2.2 % 0.77 % 2.52 %

Pb,1 0.55 % 0.99 % 0.99 %
A2 = 3.1

Pb,2 11.3 % 1.52 % 1.52 %

Pb,1 0.61 % 1.34 % 1.30 %
A2 = 4.1

Pb,2 16 % 3.44 % 3.7 %

results in blocking C2 sessions, and hence deprives the operator from the profit
that could be achieved from the potential admittance of the blocked C2 sessions
if a proper choice of the load threshold was initially made. These results are
indeed consistent with the ones given by Fig. 5. Similarly, when choosing the
value of 40% for the LTE load threshold, less revenue could be achieved due to
blocking of C2 sessions when the traffic load of this latter is high. The blocking
probabilities Pb,1 and Pb,2 for the same values of θ are presented in Table 3. For
targeted blocking probabilities β1 = 5% and β2 = 10%, a choice of threshold of
25% will cause unacceptable blocking probabilities for C2 class when the load of
this latter exceeds the value of 3. Therefore, the network operator has interest in
knowing, based on a pre-assessment of the users’ load and profiles, the optimal
setting of the load threshold in LTE that allows the maximum number of users
to be admitted to the system and leads to the highest achievable revenue.

6 Conclusion

In this paper, we present an algorithm for RAT selection in HWNs where differ-
ent user profiles are supported, with the objective of enhancing the system capac-
ity and maximizing the network operator’s revenue, without degrading the QoS.
An LTE/WiFi heterogeneous network is chosen as a representative of HWN,
and a load threshold in LTE is defined to reserve resources for the high-priority
user profile. Sessions of low-priority are preferably admitted to WiFi, unless the
user was not in a dual-coverage area or WiFi was overloaded. In these latter
cases, LTE’s load is considered to decide on whether to admit the low-priority
session to LTE or reject it. A 3-D Markov model is defined to study and ana-
lyze the proposed RAT selection scheme that is further validated by simulation.
Then, an optimization problem is presented, and a solution is provided in order
to find the optimal load threshold that ensures the highest achievable revenue,
while satisfying the blocking probability constraints. Finally, the importance of
defining the optimal value of the load threshold is highlighted.

References

1. Da Silva, A.P., et al.: Common Radio Resource Management for Multiaccess Wire-
less Networks. In: F. Cavalcanti and S. Andersson, Optimizing Wireless Communi-



12 A Revenue-Maximizing Scheme for RAT Selection in HWNs

cation Systems, pp. 233–265. Springer, (2009)
2. Piamrat, K., et al.: Radio Resource Management in Emerging Heterogeneous Wire-

less Networks. Computer Communications, vol. 34, pp. 1066–1076, (2011)
3. Hasib, A., Fapojuwo, A.: Analysis of Common Radio Resource Management Scheme

for End-to-End QoS Support in Multiservice Heterogeneous Wireless Networks.
IEEE Trans. Vehic. Tech., vol. 57, pp. 2426–2439, (2008)

4. Gelabert, X., et al.: A Markovian Approach to Radio Access Technology Selection
in Heterogeneous Multiaccess/Multiservice Wireless Vetworks. IEEE trans. Mobile
Comput., vol. 7, pp. 1257–1270, (2008)

5. Song, W., et al.: Resource Management for QoS Support in Cellular/WLAN Inter-
working. IEEE Network Magazine, vol. 19, pp. 12–18, (2005)

6. Niyato, D., Hossain, E.: A NonCooperative Game-Theoretic Framework for Radio
Resource Management in 4G Heterogeneous Wireless Access Networks . IEEE trans.
Mobile Comput., vol. 7, pp. 332–345, (2008)

7. Falowo, O.E., et al.: Dynamic Pricing for Load-Balancing in User-Centric Joint Call
Admission Control of Next-Generation Wireless Networks. Int’l. J. Comm. Syst.,
vol. 23, pp. 335–368, (2010)

8. Giupponi, L., et al.: An Economic-Driven Joint Radio Resource Management with
User Profile Differentiation in a Beyond 3G Cognitive Network. In: IEEE Globecom,
(2006)

9. Khloussy, E., et al.: Maximizing Network Revenue Through Resource Management
in Heterogeneous Wireless Networks. In: IEEE Symp. Comp. and Comm., (2011)

10. Yu, F., Krishnamurthy, V.: Optimal Joint Session Admission Control in Integrated
WLAN and CDMA Cellular Networks with Vertical Handoff. IEEE trans. Mobile
Comput., vol. 6, pp. 126–139, (2007)

11. Chen, H., et al.: Guard-Channel-Based Incremental and Dynamic Optimization on
Call Admission Control for Next-Generation QoS-Aware Heterogeneous Systems.
IEEE trans. Veh. Tech., vol. 57, pp. 3064–3082, (2008)

12. Kim, D.K., et al.: A New Call Admission Control Scheme for Heterogeneous Wire-
less Networks. IEEE trans. Wirel. Comm., vol. 9, pp. 3000–3005, (2010)

13. The 3rd Generation Partnership Project, http://www.3gpp.org/lte-advanced
14. Bonald, T. and Roberts, J. W.: Internet and the Erlang formula. ACM SIGCOMM

Comput. Commun. Rev., vol. 42, pp. 23–30, (2012)
15. Falowo, O.E., Chan, H.A.: Multiple-RAT Selection for Reducing Call Block-

ing/Dropping Probability in Cooperative Heterogeneous Wireless Networks . J. on
Wirel. Comm. and Netw., (2012)

16. Nasser, N., Hassanein, H.: Dynamic Threshold-Based Call Admission Framework
for Prioritized Multimedia Traffic in Wireless Cellular Networks. In: Globecom, vol.
2, pp. 644–649, (2004)

17. Kelly, F.: Notes on effective bandwidths in Stochastic Networks: Theory and Appli-
cations, Royal Statistical Society Lecture Notes Series, 4. Oxford University Press,
(1996)

18. Stewart, W.J.: Probability, Markov Chains, Queues and Simulation, (2009)


