
HAL Id: hal-01497857
https://inria.hal.science/hal-01497857v2

Preprint submitted on 17 Jan 2019 (v2), last revised 4 May 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Backward Type Inference for XML Queries
Hyeonseung Im, Pierre Genevès, Nils Gesbert, Nabil Layaïda

To cite this version:
Hyeonseung Im, Pierre Genevès, Nils Gesbert, Nabil Layaïda. Backward Type Inference for XML
Queries. 2018. �hal-01497857v2�

https://inria.hal.science/hal-01497857v2
https://hal.archives-ouvertes.fr

Backward Type Inference for XML Queries

Hyeonseung Ima,∗, Pierre Genevèsb,e, Nils Gesbertc,e, Nabil Layäıdad,e

aKangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, 24341 Republic of Korea
bCNRS, France

cGrenoble INP – Ensimag, France
dInria, France

e655 avenue de l’Europe, 38330 Montbonnot, France

Abstract

Although XQuery is a statically typed, functional query language for XML data, some of its features such as
upward and horizontal XPath axes are typed imprecisely. The main reason is that while the XQuery data
model allows us to navigate upwards and between siblings from a given XML node, the type model, e.g.,
regular tree types, can describe only the subtree structure of the given node. Recently, Castagna et al. (2015)
and Genevès and Gesbert (2015) independently proposed a precise forward type inference system for XQuery
using an extended type language that can describe not only a given XML node but also its context. In this
paper, as a complementary method to such forward type inference systems, we propose a novel backward
type inference system for XQuery, based on the extended type language proposed by Genevès and Gesbert
(2015). Our backward type inference system provides an exact typing result for XPath axes and a sound
typing result for XQuery expressions.

Keywords: XPath, XQuery, Static type system, Type inference, Regular tree types, Mu-calculus

1. Introduction

XQuery [1] is a statically typed, functional, World Wide Web Consortium (W3C) standard query language
for XML data. Its type language is based on regular tree types (i.e., regular tree languages) [2] and its
static and dynamic semantics are formally defined [3]. One of the key features of XQuery is its use of
XPath [4, 5] to navigate and extract XML data. Although XPath navigational expressions greatly facilitate5

XML manipulation, they are also a main source of undesired, imprecise type inference in the XQuery formal
semantics. Specifically, when upward or horizontal XPath axes such as parent and following-sibling

are used, the formal semantics simply deduces the most general type (e.g., AnyElt for parent and AnyElt∗
for following-sibling where AnyElt denotes the type of all XML elements), which essentially conveys no
information, regardless of the type of the initial XML document. In the end, in the recent recommendations10

of XPath 3.0 [6] and XQuery 3.0 [7], static typing became “implementation defined” and hence optional.
The over-approximation in type inference is in particular due to the discrepancy between the XQuery

data model and the type model. Specifically, in XQuery, values are sequences of pointers to XML tree nodes
and each pointer can point anywhere in the corresponding tree. Moreover, given such a pointer, it is always
possible to obtain a pointer to its parent or sibling node, thus allowing us to navigate upwards and between15

siblings. In clear contrast, given a pointer value, its type (e.g., a regular tree type) can describe only the
subtree structure to which the pointer points, but not its context, i.e., part of the whole tree except the
subtree pointed by the pointer value. Therefore, with this type language, only downward axes such as child
and desc can be precisely typed at best (e.g., [8]).

∗Corresponding author
Email addresses: hsim@kangwon.ac.kr (Hyeonseung Im), pierre.geneves@cnrs.fr (Pierre Genevès),

nils.gesbert@grenoble-inp.fr (Nils Gesbert), nabil.layaida@inria.fr (Nabil Layäıda)

September 19, 2018

There are two different approaches to alleviate this limitation. The first approach is to develop a type-20

checking algorithm based on backward type inference (also known as inverse type inference) [9, 10, 11, 12,
13, 14]. Given an XQuery expression e and an expected output type ρo, backward type inference computes
the pre-image ρi of ρo with respect to e such that it is guaranteed that for any XML document of type
ρi, e always produces a document of type ρo. Since the pre-image of a regular tree language with respect
to a macro tree transducer (MTT) is also regular [15], MTTs and their variants have often been used as25

a model of XML transformations in the context of backward type inference [11, 12, 14]. Although exact
typechecking can be done with backward type inference, its complexity is hyper-exponential (i.e., a stack of
exponentials) [10, 12, 16]. To our knowledge, both practical and exact backward type inference for general
XML transformations exploiting backward axes such as parent and anc has not been reported yet.

In contrast, the second approach is to develop an approximate but practical forward type inference system30

by using a refined type language that can describe not only XML nodes but also their contexts. For example,
Castagna et al. [17] extend regular tree types with zipper data structures [18] and propose a precise type
system for XQuery 3.0. Their type system supports all navigational XQuery expressions including type and
value case analysis and higher-order functions. Genevès and Gesbert [19] also develop a precise type system
for XQuery by combining regular tree types with modal logic formulas [20]. By encoding context information35

using modal formulas, their type system also deduces precise types for backward axes as well as forward
axes. However, although practical implementation is feasible, forward type inference cannot be exact as it
infers an output type given an input type and a general transformation does not preserve regularity.

In this paper, we propose a novel backward type inference system for XQuery as a complementary method
to forward type inference systems such as in [17, 19]. In particular, we develop an XQuery source language40

type system using the refined type language proposed in [19]. While tree transducers can be used as an
intermediate language for XQuery, having a source language type system in itself is useful as it is usually
easier to understand. Moreover, by building a backward type inference system on the XQuery syntax and
the existing type language, it would be possible to combine it with forward type inference, for example, in
order to develop a more precise and practical bidirectional typechecking algorithm. Thus, this work can be45

considered as a stepping stone towards such bidirectional type systems.
To develop a backward type inference system, we first define the syntax and semantics of an XQuery

core by representing XML nodes as focused trees [20] (Section 2). A focused tree is a variant of zipper data
structures [18], which describes a whole tree “seen” from a given internal node, that is, a subtree and its
context. As focused trees support functional navigation in any direction from a given tree node, we can50

simplify the semantics of the XQuery core, without resorting to an external store for node pointers as in the
XQuery formal semantics. With focused trees, our semantics is a straightforward extension of the one given
in [8] with non-downward XPath axes.

As for our type language, we use formula-enriched sequence types [19], which combine the usual regular
tree types with tree logic formulas [20] to describe both a tree node and its context (Section 3). Then,55

using formula-enriched sequence types, we define an exact backward type inference system for XPath axes
(Section 4). That is, given an XPath axis and an output type ρ, if our inference system infers an input type
ρ′, the result of evaluating the axis is of type ρ if and only if an input focused tree is of type ρ′. Then,
building on the inference rules for XPath axes, we define a sound backward type inference system for the
XQuery core (Section 5). In the presence of an arbitrary for-expression with a formula-enriched sequence60

type as an output type, both practical and exact typing is nontrivial or even may be infeasible, and therefore
we introduce an approximation.

We summarize the main contributions as follows:

• We formulate a novel backward type inference system for a large fragment of XQuery, including all
the XPath axis expressions. In particular, we show that our backward type inference for XPath axes65

is exact and its complexity is simple exponential.

• We prove soundness of our backward type inference system for the XQuery core, from which we can
obtain a typechecking algorithm. We also formally analyze the complexity of our inference system,
and show that its complexity is double exponential in terms of the given expression.

2

h2i

h1i

h1̄i

focus

A

B C D

E F G H I

A

B C D

E F G H I

context of B

Figure 1: An example XML tree structure and its corresponding binary representation

2. Syntax and Semantics of an XQuery Core70

In this section, we introduce an XQuery Core, a minimal XQuery fragment supporting all the navigational
XPath axes. Our XQuery core is an extension of miniXQuery proposed in [8] with non-downward axes.

2.1. Focused Trees

We first define XML trees as focused trees, inspired by Huet’s zipper data structure [18]. A focused tree
is an XML node with its context: the siblings and the parent of the node, including the parent’s context75

recursively. Intuitively a context records the path covered when traversing an XML tree from its root to a
certain node. Thus focused trees allow us to easily navigate XML trees in any direction: both forward and
backward navigation.

Below we formally define the syntax of our data model. We assume an alphabet Σ of labels, ranged over
by σ.

Trees t ::= σ[tl]
Tree lists tl ::= ε | t :: tl
Contexts c ::= Top | (tl ; c[σ]; tl)
Focused trees f ::= (t, c)

A focused tree (t, c) is a pair consisting of a focused node (or a tree) t and its context c. A context c is Top
if the focused node is at the root. Otherwise it is a triple (tl l; c[σ]; tlr): tl l is a list of the left siblings of the80

current focused node in reverse order (the first element of the list is the tree immediately to the left of the
current node), c[σ] the context above the current node where σ is the label of the parent, and tlr a list of
the right siblings.

We now describe how to navigate a focused tree in a binary fashion. Given a focused tree f , forward
navigation f 〈1〉 and f 〈2〉 respectively change the focus to the leftmost child and to the next right sibling of85

the current focused node. Conversely backward navigation f 〈1̄〉 and f 〈2̄〉 respectively change the focus to
the parent and the preceding left sibling of the current node. In particular, f 〈1̄〉 is defined if and only if the
current node is the leftmost node, i.e., it has no left sibling. Definition 2.1 formally defines the navigation
of focused trees.

Definition 2.1 (Navigation of focused trees).

(σ[t :: tl], c) 〈1〉 def
= (t, (ε; c[σ]; tl))

(t, (tl l; c[σ]; t′ :: tlr)) 〈2〉
def
= (t′, (t :: tl l; c[σ]; tlr))

(t, (ε; c[σ]; tl)) 〈1̄〉 def
= (σ[t :: tl], c)

(t′, (t :: tl l; c[σ]; tlr)) 〈2̄〉
def
= (t, (tl l; c[σ]; t′ :: tlr))

If the focused tree does not have the required shape, these operations are undefined.90

3

Expressions e ::= ε | <σ>{e}</σ> : u | e, e | for $v in e return e
| let $v := e return e | if nempty(e) then e else e
| $v/axis::n | $var

Variables $var ::= $v | $v | $doc
Axis names axis ::= self | child | desc | nsibl | parent | anc | psibl
Name tests n ::= σ | ∗
Values s ::= ε | f :: s

Figure 2: Syntax of the XQuery core

Example 2.2. Consider the example XML tree in Figure 1. If the node labeled B is a focus, then the
focused tree fB and its navigations are defined as follows. For simplicity, for each node, we write only its
label and omit the child nodes unless necessary.

fB = (B, (ε;Top[A];C ::D :: ε))
fB 〈1〉 = (E, (ε; c[B];F ::G :: ε)) where c = (ε;Top[A];C ::D :: ε)
fB 〈2〉 = (C, (B :: ε;Top[A];D :: ε))
fB 〈1̄〉 = (A[B :: C ::D :: ε],Top)
fB 〈2̄〉 = undefined

2.2. XQuery Core

Figure 2 defines the abstract syntax of a simplified navigational fragment of the XQuery core, defined
in the XQuery 1.0 and XPath 2.0 Formal Semantics [3]. In the XQuery core, navigational (i.e., structural)
expressions are well separated from data value expressions (e.g., ordering and node identity testing) which
make typechecking undecidable (see for instance [21]). Since the full language of XQuery can be compiled95

into the XQuery core and we are mainly interested in typechecking, we consider only navigational expressions
in this paper.

First of all, we assume that an XML element constructor <σ>{e}</σ> is always annotated with a type
u (the precise definition of u is given in Section 3.1). In XQuery, the result of a construction expression of
the form <σ>{e}</σ> is considered untyped (both statically and dynamically) unless it is validated, e.g.,100

using a validate expression. The validate expression checks if the constructed XML element conforms to
the expected type at runtime, and if not, it raises a dynamic type error. Our element constructor may thus
be considered as a combination of XQuery’s untyped element constructor and a validate expression, but
its typechecking is done statically. For untyped element constructors in XQuery, i.e., without validate, we
assume that they are annotated with AnyElt which is the type of all XML elements.105

As for other expressions, $doc is a special variable for reading the input document, and ε denotes an empty
sequence, i.e., e, ε = ε, e = ε. In a for-loop expression, an item variable $v is bound to a single element node
(or a single “item” in the XQuery terminology), whereas in a let-binding expression, a sequence variable $v is
bound to a possibly empty sequence of nodes. In a conditional expression if nempty(e) then e1 else e2, if
the condition e evaluates to a non-empty sequence of nodes, then e1 is evaluated; otherwise, e2 is evaluated.
An axis expression $v/axis::n extracts the nodes reachable from the current node $v through axis and that
also satisfy name test n. Path navigation can start only from an item variable. A name test n is either a
node label σ or a wildcard pattern ∗ that matches any label. For path navigation, we consider only self,
child, desc, nsibl, parent, anc, and psibl axes because other axes can easily be encoded.1 We use the
following syntactic sugar:

$v/desc-or-self::n ≡ $v/self::n, $v/desc::n

1We use abbreviated names instead of the full name of the XPath axes. In particular, following-sibling is denoted by
nsibl.

4

JεKη = ε

J<σ>{e}</σ> : uKη = f if

{
JeKη = [(t1, c1), . . . , (tn, cn)]
f = (σ[t1 :: . . . :: tn :: ε],Top)

Je1, e2Kη = Je1Kη, Je2Kη
J$varKη = η($var)

Jfor $v in e1 return e2Kη = Πf1,...,fnJe2Kη,$v 7→ fi if Je1Kη = [f1, . . . , fn]
Jfor $v in e1 return e2Kη = ε if Je1Kη = ε
Jlet $v := e1 return e2Kη = Je2Kη,$v 7→ Je1Kη

Jif nempty(e) then e1 else e2Kη = Je1Kη if JeKη = f, s
Jif nempty(e) then e1 else e2Kη = Je2Kη if JeKη = ε

J$v/axis::nKη = Jη($v)/axis::nK

Jf/self::nK = [f] if name(f) = n or n = ∗
Jf/self::nK = ε if name(f) 6= n and n 6= ∗

Jf/child::nK = Jf ′/self::nK, Jf ′/nsibl::nK if f ′ = f 〈1〉
Jf/child::nK = ε if f = (σ[ε], c)

Jf/parent::nK = Jf ′/self::nK if f ′ = f 〈1̄〉
Jf/parent::nK = Jf ′/parent::nK if f ′ = f 〈2̄〉
Jf/parent::nK = ε if f = (t,Top)
Jf/nsibl::nK = Jf ′/self::nK, Jf ′/nsibl::nK if f ′ = f 〈2〉
Jf/nsibl::nK = ε if f = (t, (tl ;σ[c]; ε))
Jf/psibl::nK = Jf ′/psibl::nK, Jf ′/self::nK if f ′ = f 〈2̄〉
Jf/psibl::nK = ε if f = (t, (ε;σ[c]; tl))

Jf/anc::nK = Jf ′/anc::nK, Jf ′/self::nK if f ′ = f 〈1̄〉
Jf/anc::nK = Jf ′/anc::nK if f ′ = f 〈2̄〉
Jf/anc::nK = ε if f = (t,Top)

Jf/desc::nK = Πf1,...,fmJfi/self::nK, Jfi/desc::nK if Jf/child::∗K = [f1, . . . , fm]
Jf/desc::nK = ε if Jf/child::∗K = ε

Auxiliary definitions: name((σ[tl], c)) = σ

Figure 3: Semantics of the XQuery core

An XQuery expression e evaluates to a value s, which is defined as a sequence of focused trees. This
definition of values allows us to define the semantics in a compositional way. We write [f1, . . . , fn] for
f1 :: . . . :: fn :: ε and s1, s2 for a sequence concatenation of s1 and s2. In XQuery, all values are sequences
and a single item (or tree) is considered a singleton sequence that contains that item (or tree). Hence in the
rest of the paper we use f and [f] interchangeably.110

2.3. Semantics

Figure 3 shows the semantics of the XQuery core, which is defined using the following denotation function:

J K : Substitution → Expression → Value

where a substitution η is a mapping from variables to values.
While most of the rules are straightforward and compositional, we took special care for an element con-

structor (<σ>{e}</σ> : u). First, suppose that the inner expression e evaluates to a sequence [f1, . . . , fn] of
focused trees, where fi = (ti, ci). Then we embed them into a new tree structure, namely σ[f1 :: . . . :: fn :: ε],115

whose context is Top. When navigating it, we need to update the context with respect to the new tree node.
Therefore, we remove the old context from each focused tree fi and obtain f = (σ[t1 :: . . . :: tn :: ε],Top).

5

To evaluate a for-loop expression for $v in e1 return e2 with substitution η, we first evaluate Je1Kη.
If the result is not an empty sequence, say [f1, . . . , fn], then for each focused tree fi, we evaluate the for-
loop body e2 with an extended substitution η, $v 7→ fi. Finally we concatenate the results of evaluating120

Je2Kη,$v 7→ fi for i = 1, . . . , n in order. In contrast, if Je1Kη evaluates to an empty sequence, then the for-loop
expression also evaluates to an empty sequence.

To evaluate an axis expression $v/axis::n, we analyze the shape of the focused tree bound to the for-loop
variable $v. The definition of Jf/axis::nK follows from the intuition behind the axis axis. For example,
Jf/self::nK evaluates to a singleton sequence [f] if and only if the label of f matches the name test n. The125

semantics of child is defined using self and nsibl applied to the child node. Note that f 〈1̄〉 and f 〈2̄〉
are never both defined for the same f and thus the definitions for the semantics of parent are mutually
exclusive (the same is true for anc). Jf/nsibl::nK and Jf/psibl::nK recursively apply nsibl and psibl

to the next and preceding sibling of f , respectively, if there exists such a node. Jf/desc::nK applies self

and desc recursively to each child node of f and concatenates the results into a sequence.130

3. Type Language

Our type language is based on regular tree types [2] and a tree logic, which is a sub-logic of the alternation
free modal µ-calculus with converse [20]. In this section, we first briefly introduce regular tree types and
the tree logic, together with their semantics in terms of sets of focused trees. Then we introduce our type
language, regular tree types enriched with tree logic formulas [19].135

3.1. Regular Tree Types
We use a slight variant of XDuce’s regular expression type language [22] to type sequences of XML

trees (or elements), which is expressive enough to capture standard XML types such as DTD and XML
Schema [23]. Formally we define our regular tree types as follows.

Definition 3.1 (Regular tree types).

Unit types u ::= element n {τ}
Name tests n ::= σ | ∗
Sequence types τ ::= u | () | τ, τ | (τ | τ) | τ∗ | x

A sequence type τ is a regular expression over unit types, where a unit type u, or a “prime type” in140

the XQuery terminology, corresponds to an XML element. (In general, u may also include primitive types
such as Int or String, but for simplicity, we consider only element types.) As usual, we use the following
abbreviations: τ+ ≡ τ, τ∗ and τ ? ≡ () | τ . (We use ≡ both for syntactic equivalence and syntactic sugar.)

While the Kleene star ∗ operator supports horizontal recursion, we use a type environment and type
variables to support vertical recursion. A type environment E is a finite mapping from type variables x to145

types τ . For example, we assume that every E that we consider in this paper maps a type variable AnyElt
into element ∗ {AnyElt∗}, which is the type of all elements. The variables bound in E may be defined in
a mutually recursive way, but recursion must be guarded by an element type to ensure well-formedness of
types, i.e., contractiveness of recursive types [24]. We also assume that regular expressions defined by E are
composed of mutually exclusive unit types and 1-unambiguous [25], which is standard and comes from XML150

Schema.
As usual, the semantics of regular tree types is defined as sets of forests, i.e., sets of sequences of trees,

and the subtyping relation is semantically defined as the set inclusion relation.

Definition 3.2. Given a type environment E, the semantics of types is defined as the smallest function
J KE that satisfies the following set of equations:

JxKE = JE(x)KE Jτ0KE = {ε}
J()KE = {ε} Jτn+1KE = Jτ, τnKE

Jτ | τ ′KE = JτKE ∪ Jτ ′KE Jelement σ {τ}KE = {[σ[tl]] | tl ∈ JτKE}
Jτ∗KE =

⋃
n∈N JτnKE Jelement ∗ {τ}KE = {[σ[tl]] | σ ∈ Σ and tl ∈ JτKE}

Jτ, τ ′KE = {[t1, . . . , tn, t′1, . . . , t′m] | [t1, . . . , tn] ∈ JτKE and [t′1, . . . , t
′
m] ∈ Jτ ′KE}

6

Then, a type τ1 is a subtype of τ2, denoted by τ1 <: τ2, if and only if Jτ1KE ⊆ Jτ2KE .

In the following, we assume that E is always well-formed and contains bindings for all variable references155

appearing in the types, and write JτK as a shorthand for JτKE . We also assume that references x are implicitly
replaced with their bindings at top level, so that a type τ is really a regular expression of unit types.

3.1.1. Limitations

The regular tree type language we gave above is standard and used to define the static type system in
the XQuery standard and its various improvements in the literature. In such a type system, an XQuery160

expression is associated with a regular tree type, and the notion of a value (i.e., a sequence of tree nodes)
matching a type can be defined as follows when nodes are represented as focused trees.

Definition 3.3. The focused-tree interpretation JτK↑ of a type τ is defined as the set:

{[(t1, c1) . . . (tn, cn)] | [t1 . . . tn] ∈ JτK}

A value s is said to match a type τ if s ∈ JτK↑.

Example 3.4. Consider the example XML tree in Figure 1 again. Let fB , fC , and fD be the focused trees
focusing on the nodes labeled B, C, and D, respectively. For leaf nodes, we write only its label.

fB = (B[E :: F ::G :: ε], (ε;Top[A];C ::D[H :: I :: ε] :: ε))
fC = (C, (B[E :: F ::G :: ε] :: ε;Top[A];D[H :: I :: ε] :: ε))
fD = (D[H :: I :: ε], (C ::B[E :: F ::G :: ε] :: ε;Top[A]; ε))

Then, fB , fC , and fD match regular tree types τB , τC , and τD, respectively.

τB = element B {element E {()}, element F {()}, element G {()}}
τC = element C {()}
τD = element D {element H {()}, element I {()}}

Of course, they also match a more general type such as AnyElt. Note however that we cannot describe the
context information using Definition 3.1.165

As shown in the above definition and example, regular tree types denote sequences of trees, and their
interpretation is lifted to sequences of focused trees by simply ignoring the context part. In other words,
using regular tree types, the type system cannot properly address expressions that analyze the shape of the
context of a given focused tree: given f of type τ , we cannot deduce a precise type for f 〈1̄〉, f 〈2̄〉, and
f 〈2〉 because when f = (t, c), τ only contains information about t, but those expressions require information170

about c.
More specifically, consider an expression for $v in e return $v/psibl::∗. Let us consider forward type

inference; reasoning with backward type inference is similar. Suppose that e is of type τD and reduces to fD.
Then, we need to compute fD/psibl::∗, which reduces to [fB , fC]. The type of this result, however, should
be determined by analyzing τD only, without evaluating the given expression. Since τD does not contain175

any useful information about its preceding siblings, we cannot deduce a meaning type for fD/psibl::∗, and
thus for the entire for-loop expression. Therefore, every type system for XQuery built solely on the type
language given in Definition 3.1 simply gives to this expression the most general type AnyElt∗.

In the next section, we propose to use a tree logic to solve this problem.

3.2. A Tree Logic180

To describe sets, i.e., types, of focused trees rather than just sets of trees, we use a variant of the logic
language defined in [20]. The tree logic, defined below, is expressive enough to support all XQuery types,
and the satisfiability problem for a logical formula of size n can efficiently be decided with an optimal 2O(n)

worst-case time complexity bound [26].

7

Definition 3.5 (Logic formulas).

a ::= 〈1〉 | 〈2〉 | 〈1̄〉 | 〈2̄〉
ϕ,ψ ::= > | σ | ¬σ | ϕ ∨ ψ | ϕ ∧ ψ | 〈a〉ϕ | ¬ 〈a〉> | X | µ(Xi = ϕi)i∈I in ψ

a ∈ {1, 2, 1̄, 2̄} are programs, corresponding to the four directions where trees can be navigated. A185

program is used in an existential formula 〈a〉ϕ, denoting the existence of a subtree at the direction of a that
satisfies the subformula ϕ. Other formulas include the truth predicate >, atomic propositions σ (denoting
the label of the focused tree), disjunction and conjunction of formulas, and least n-ary fixed points. We also
use the following abbreviations: ⊥ to mean ¬>, [a]ϕ for ¬ 〈a〉> ∨ 〈a〉ϕ, and µX.ϕ for µ(X = ϕ) in ϕ. The
universal modality [a]ϕ encodes that a subtree at the direction of a does not exist, or else it satisfies ϕ.190

The semantics of a logical formula is defined as the set of focused trees such that the formula is satisfied
at the current node. We use the following interpretation function:

〈〈−〉〉 : Formula → Substitution → FocusedTreeSet

where a substitution V is a finite map from recursion variables to sets of focused trees. In the definition
below, we use F to denote the set of all focused trees and name(f) to denote the label at the current node
of f .

Definition 3.6 (Interpretation of formulas).

〈〈>〉〉V
def
= F 〈〈〈a〉ϕ〉〉V

def
= {f 〈a〉 | f ∈ 〈〈ϕ〉〉V }

〈〈X〉〉V
def
= V (X) 〈〈¬ 〈a〉>〉〉V

def
= {f | f 〈a〉 undefined}

〈〈σ〉〉V
def
= {f | name(f) = σ} 〈〈ϕ ∨ ψ〉〉V

def
= 〈〈ϕ〉〉V ∪ 〈〈ψ〉〉V

〈〈¬σ〉〉V
def
= {f | name(f) 6= σ} 〈〈ϕ ∧ ψ〉〉V

def
= 〈〈ϕ〉〉V ∩ 〈〈ψ〉〉V

〈〈µ(Xi = ϕi)i∈I in ψ〉〉V
def
=

let S = {(Ti)i∈I ∈ P(F)
I | ∀j ∈ I, 〈〈ϕj〉〉V [Ti/Xi]

⊆ Tj} in

let ∀i ∈ I, Ui =
⋂

(Tj)∈S Ti in 〈〈ψ〉〉
V [Ui/Xi]

where V [Ti/Xi](X)
def
=

{
V (X) if X 6∈ {Xi}i∈I
Ti if X = Xi

In the rest of the paper, we consider only closed formulas and write 〈〈ψ〉〉 for 〈〈ψ〉〉∅. We say that a focused
tree f matches a formula ψ if f ∈ 〈〈ψ〉〉.195

Example 3.7. Consider the focused trees fB , fC , and fD given in Example 3.4. fD matches a formula ψD
where the underlined part describes the subtree rooted at D and the other part describes its context.

ψD = D ∧ 〈1〉 (H ∧ 〈2〉 I) ∧ 〈2̄〉 (C ∧ 〈2̄〉 (B ∧ 〈1〉 (E ∧ 〈2〉 (F ∧ 〈2〉G)) ∧ 〈1̄〉A))

From ψD, we can now infer formulas ψC and ψB for fC and fB which are the preceding siblings of fD.

ψC = 〈2〉ψD = 〈2〉 (D ∧ 〈1〉 (H ∧ 〈2〉 I)) ∧ C ∧ 〈2̄〉 (B ∧ 〈1〉 (E ∧ 〈2〉 (F ∧ 〈2〉G)) ∧ 〈1̄〉A)
ψB = 〈2〉 〈2〉ψD = 〈2〉 (〈2〉 (D ∧ 〈1〉 (H ∧ 〈2〉 I)) ∧ C) ∧B ∧ 〈1〉 (E ∧ 〈2〉 (F ∧ 〈2〉G)) ∧ 〈1̄〉A

Note however that we cannot deduce a formula for a sequence of focused trees [fB , fC].

3.3. Formula-Enriched Sequence Types

In order to type sequences of focused trees, which are values of our XQuery core, we simply enrich the
type language in Definition 3.1 by associating a formula to each unit type. The enriched types, which we
call formula types, are thus regular expressions of pairs of unit types and formulas, as defined below.200

8

Definition 3.8 (Formula types).

ρ ::= (ϕ, u) | () | ρ, ρ | (ρ | ρ) | ρ+

A formula type (ϕ, u) describes a focused tree (t, c) where u describes only t while ϕ may describe both
t and c. The interpretation of a pair (ϕ, u) is defined as a set of singleton sequences of focused trees which
match both ϕ and u:

J(ϕ, u)K = {[(t, c)] | t ∈ JuK and (t, c) ∈ 〈〈ϕ〉〉}

From this, the semantics of formula types in terms of sets of sequences of focused trees is defined in the
obvious manner. Then, the subtyping relation ρ1 <: ρ2 is semantically defined as the set inclusion relation
Jρ1K ⊆ Jρ2K.

Example 3.9. Consider a for-loop expression for $v in fD return $v/psibl::∗. If the type of fD is given
as (ψD, τB), then the type of the whole expression may be deduced as (µX. 〈2〉 (ψD ∨X),AnyElt)∗. The type205

states that the for-loop expression will reduce to a possibly empty sequence of focused trees, each of which
has a following sibling of type (ψD,AnyElt). As discussed in Section 3.1, we cannot deduce any meaning
information in the regular tree type part, and thus simply use AnyElt.

The rationale behind the use of formula types is that it provides more flexibility. From the example,
one might think that regular expressions of formulas would be sufficient, which is true for backward type210

inference for XPath axes. However, sometimes, we may want to ignore context information, for example, to
construct a new XML tree node using existing focused trees. In this case, we need to eliminate the context
information from the formula matched with each focused tree. Unfortunately, it is nontrivial to eliminate
only context information in the presence of recursive formulas. Thus, by combining formulas with regular
tree types, we can make use of the usual regular tree type part, ignoring the formula part, if necessary.215

Moreover, although we do not investigate in this paper, by using the same type language as in [19], it would
be easier to integrate our backward type inference with their forward type inference.

In Section 2.2, we assumed that every XML element constructor was annotated not with a formula type
(ϕ, u) but with a unit type u. The reason is that an element constructor always reduces to a single tree
node whose context is Top, and thus there is no need to use a formula type for the annotation. We simply220

consider u to be (>, u).

4. Inference for XPath Axes

In this section, we present a sound and complete backward type inference system for XPath axes, and
based on this we will develop a backward type inference system for the XQuery core in Section 5.

In backward type inference, we are given an expression e and an output type ρo for a sequence of focused225

trees that e may produce. Then we infer an input type ρi such that for any tree t of type ρi, e(t) always
produces a sequence of nodes of type ρo. When considering XPath axes, this means that we infer a type
describing a set of input trees such that when applied to an axis, each input tree produces a sequence of
nodes that has the output type ρo. More precisely, since XPath axes can only be applied to a for-loop
variable in our XQuery core, we infer from a given axis axis and an output type ρ, a single formula type230

(ϕ, u) (possibly their union) that the input tree, i.e., the for-loop variable, must satisfy. In particular, we
design the inference rules in such a way that the following invariant holds.

Invariant 4.1. In our backward type inference system for XPath axes, if (ϕ, u) is an inferred input type, a
subtype relation ϕ <: u holds, that is, for any t and c, if (t, c) ∈ 〈〈ϕ〉〉, then t ∈ JuK.

The implication of this invariant is that for type inference for XPath axes, we can safely ignore the regular235

tree type part because it is always less precise than the formula part.
Formally, the subtype relation ϕ <: u between formula ϕ and unit type u can be checked in two steps.

First, we translate u into a downward-only formula which is true at any tree node matching this unit type,

9

Self-Empty

(¬k(n),AnyElt) ← self::n, ()

Self-Formula

(ϕ ∧ k(n) ∧ form(u), u) ← self::n, (ϕ, u)

Self-Seq1

¬nullable(ρi) nullable(ρj) ρ′ ← self::n, ρi

ρ′ ← self::n, (ρ1, ρ2)
(i, j = 1, 2, i 6= j)

Self-Seq2

nullable(ρ1) nullable(ρ2) ρ′i ← self::n, ρi

ρ′1 | ρ′2 ← self::n, (ρ1, ρ2)
(i = 1, 2)

Self-Or
ρ′i ← self::n, ρi

ρ′1 | ρ′2 ← self::n, (ρ1 | ρ2)
(i = 1, 2)

Self-Plus
ρ′ ← self::n, ρ

ρ′ ← self::n, ρ+

Parent
ρ′ ← self::n, ρ

child-type(ρ′,nullable(ρ)) ← parent::n, ρ

Auxiliary definitions:

k(∗) = > k(σ) = σ

nullable(()) = true nullable(ρ1, ρ2) = nullable(ρ1) ∧ nullable(ρ2)
nullable((ϕ, u)) = false nullable(ρ1 | ρ2) = nullable(ρ1) ∨ nullable(ρ2)

nullable(ρ+) = nullable(ρ)

Prime(()) = () Prime(τ1, τ2) = Prime(τ1) | Prime(τ2)
Prime(u) = u Prime(τ1 | τ2) = Prime(τ1) | Prime(τ2)

Prime(τ+) = Prime(τ)

child-type(ρ1 | ρ2, b) = child-type(ρ1, b) | child-type(ρ2, b)
child-type((ϕ, element n {τ}), b) = (has-parent(ϕ, b),Prime(τ))

has-parent(χ, true) = (µZ. 〈1̄〉χ ∨ 〈2̄〉Z) ∨ ϕroot

has-parent(χ, false) = µZ. 〈1̄〉χ ∨ 〈2̄〉Z
ϕroot = ¬ 〈1̄〉> ∧ ¬ 〈2̄〉> ∧ ¬ 〈2〉>

Figure 4: Inference rules for self and parent

regardless of its context. Technically, this translation can be done using an auxiliary function form(u),
which is defined and proved correct in [19]. (For its precise definition, we refer the reader to Figure 10 in240

[19].) Next, we test the satisfiability of the formula ϕ∧¬form(u), for example, using the decision procedure
presented in [26]; in fact, 〈〈ϕ∧¬form(u)〉〉 = ∅ if and only if any focused tree matching ϕ also satisfies u, i.e.,
〈〈ϕ〉〉 ⊆ JuK↑.

Below we present inference rules using a judgment of the form ρi ← axis::n, ρo where input type ρi is
always of the form (ϕ1, u1) | . . . | (ϕn, un). We first look into the inference rules for self and parent.245

4.1. Inference Rules for self and parent

4.1.1. Self

Figure 4 shows inference rules for self. Basically self::n returns a singleton sequence containing the
input tree if it satisfies name test n; otherwise it returns an empty sequence. Conversely, if the output type
is (), it means that the input tree fails the name test and thus has type ¬k(n) (rule Self-Empty). Here250

k(n) is the translation of n into a corresponding formula, i.e., k(∗) = > and k(σ) = σ.
If the output type is a single formula type (ϕ, u), it means that the input tree has that type: more precisely,

the input tree should satisfy both ϕ and k(n), and at the same time should have type u (rule Self-Formula).

10

All these constraints are encoded in the formula ϕ ∧ k(n) ∧ form(u) where we translate the unit type u into
a formula using the function form(u). Since ϕ ∧ k(n) ∧ form(u) <: u holds in the rule Self-Formula,255

Invariant 4.1 holds. In addition, when u = element σ {τ}, inference fails if n = σ′ and σ 6= σ′. In this case,
there is no input tree that when applied to self::n, produces a tree of type element n ′ {τ} because no
tree node can have different labels at the same time.

If the output type is a sequence type (ρ1, ρ2), at least one type needs to be nullable (i.e., the interpretation
of the type includes an empty sequence ε) since self::n returns at most one tree as output. The type of260

the input tree is then the type inferred from the non-nullable part of the output type (rule Self-Seq1). If
both ρ1 and ρ2 are nullable, we take the union of the input types inferred from them (rule Self-Seq2).
When the output type is a union type, the input tree may also have a union type of the two, each of which
is inferred from one summand of the output type (rule Self-Or). Lastly, if the output type is a plus type
ρ+, the input type should be inferred from ρ since self::n returns at most one node (rule Self-Plus).265

4.1.2. Parent

The intuition behind type inference for parent is simple. Given an output type ρ, it is the type of the
parent of the input context node. Moreover, if we infer ρ′ using the inference rules for self with ρ, then the
parent node is also of type ρ′. In other words, the input node is a child of the node of type ρ′. Therefore,
for the input node, we extract a child type from ρ′ using an auxiliary function child-type().270

To illustrate, assume that the output type ρ is given as (A, τA)+ where τA = element A {τB , τC , τD}
and τB , τC , and τD are defined in Example 3.4. Note that ρ is a type for the focused tree fA rooted at
the node labeled A in Figure 1. By applying the inference rules for self::n, we obtain ρ′ = (ϕA, τA)
where ϕA = A ∧ k(n) ∧ form(τA). Note that ρ′ is also a type for fA. Suppose that given an input node
f , f/parent::n reduces to fA. This means that f must be one of fB , fC , and fD, which are the child275

nodes of fA. To deduce the type of f , first consider the formula part. Any child of fA matches a formula
µZ. 〈1̄〉ϕA ∨ 〈2̄〉Z which simply states that the context node has a parent matching ϕA. For the regular
expression type part, we can deduce from τA that any child of fA matches a regular tree type τB | τC | τD.
Finally, we obtain an input type (µZ. 〈1̄〉ϕA ∨ 〈2̄〉Z, τB | τC | τD).

In general, given an output type ρ, when we infer a parent type (ϕ, element n {τ}) using the inference280

rules for self, τ may be an arbitrary regular expression. Therefore, for the regular expression type part, we
compute a child type using an auxiliary function Prime(τ) [8] which extracts all unit types at the top level
of τ and constructs their disjunction. Moreover, if the output type ρ is nullable, then the input node may
be a root. In this case, we add a formula ϕroot to the inferred formula for the input node using a disjunction
∨. Here ϕroot specifies that a given node is a root and is defined as ¬ 〈1̄〉>∧¬ 〈2̄〉>∧¬ 〈2〉>. Note that we285

cannot specify the fact that the input node may be a root in the regular tree type part.

4.2. Other Axes

Given an axis other than self and parent and an output type (ϕ, u), whereas we can specify the exact
shape of the input tree using the formula ϕ, we cannot using the unit type u because it does not contain
enough information about the context of the input node. Hence, for other axes, we approximate the unit290

type part in the inferred input type. Still, we do not lose any precision since the formula part of the input
type is exact and Invariant 4.1 holds. In other words, for type inference for XPath axes, we can safely ignore
the regular tree type part of the inferred input type. Nevertheless, we try to infer a more precise type than
AnyElt for the regular tree type part if possible. More precisely, we simply infer AnyElt for psibl, nsibl, and
desc, while inferring a more precise type for child and anc. As studied in [8, 19], in forward type inference295

systems using only regular tree types as its type language, one can infer precise types only for self, child,
and desc. In contrast, in our backward type inference system, we infer precise regular tree types only for
self, parent, and child (the formula part is still exact for all XPath axes).

One important difference between self and parent and other axes is that while the former requires us
to inspect only a single node in the input tree, the rest of the axes requires us to inspect a sequence of300

nodes reached by navigating the axis from the input node and combine the constraints for all those nodes.
In order to combine a set of constraints on the input tree, we use an additional judgment of the form

11

context
nodeA CB

h2̄ih2̄ih2̄i h2̄i

h1̄i of type

h2̄i
· · ·

produce a sequence of nodes of type ρ

of type '

Figure 5: Interpretation of ϕ ← psibl::n, ρ with ψ when the context node is C: A and B are some nodes reached by navigating
psibl from C.

Psibl
ϕ ← psibl::n, ρ with µX. [2̄] (¬k(n) ∧X)

(ϕ,AnyElt) ← psibl::n, ρ

Psibl-Formula
ϕ′ = 〈2̄〉 (µX.(ϕ ∧ k(n) ∧ form(u) ∧ ψ) ∨ (¬k(n) ∧ 〈2̄〉X))

ϕ′ ← psibl::n, (ϕ, u) with ψ

Figure 6: Inference rules for psibl

ϕ ← axis::n, ρ with ψ, which means that when applied to axis::n, some fragment of the input tree at the
direction of axis from the context node produces a sequence of nodes of type ρ, and at the same time, ψ is
true at the lastly reached node by navigating axis within the fragment. Note that using this judgment, we305

infer only a formula. We infer a unit type for the input node using auxiliary functions.
To illustrate the meaning of the judgment ϕ ← axis::n, ρ with ψ, consider an example input tree node

represented as a binary tree in Figure 5. Suppose that axis is psibl and C is the context node. Then, some
nodes between A and B are chosen if they satisfy name test n, and they have type ρ. Moreover, ψ is true
at the node A. In this case, the with parameter ψ specifies the constraints on the nodes reached by further310

navigating psibl from A. Finally, the context node C has the inferred type ϕ. In the subsection below,
we give a more precise interpretation of the judgment when the output type is a sequence type of the form
(ρ1, ρ2).

With this interpretation, given axis::n and output type ρ, we first infer a formula ϕ by choosing the
correct initial formula ψinit and using the judgment ϕ ← axis::n, ρ with ψinit . Then, we compute a unit
type u using an appropriate auxiliary function depending on axis. When computing u, we ensure a subtype
relation ϕ <: u. Finally, the input type is determined as a pair (ϕ, u) as shown below:

ϕ ← axis::n, ρ with ψinit u = aux func(ρ)

(ϕ, u) ← axis::n, ρ

4.2.1. Preceding Sibling

psibl::n returns in document order (i.e., pre-order) the preceding siblings of the context node that315

satisfy name test n. Thus, given psibl::n and an output type, we only infer the constraint (i.e., type) on
the preceding siblings. The rest of the nodes can have arbitrary structure.

Figure 6 shows the inference rules for psibl. In the rule Psibl, we initially assume that there is no
preceding sibling satisfying name test n, that is, µX. [2̄] (¬k(n) ∧X). Then, we analyze the output type ρ
using the judgment of the form ϕ ← psibl::n, ρ with ψ. In this judgment, one important invariant is320

that ψ is true at the leftmost preceding sibling returned by psibl::n when the output type is ρ. When
the inferred input formula is ϕ, the final input type is a pair (ϕ,AnyElt). Since we cannot extract any
meaningful information about the context node from the regular tree types of its preceding siblings, we
simply use AnyElt.

12

Axis-Empty

ψ ← axis::n, () with ψ

Axis-Or
ϕi ← axis::n, ρi with ψ

ϕ1 ∨ ϕ2 ← axis::n, (ρ1 | ρ2) with ψ
(i = 1, 2)

Axis-Backward-Seq

ϕ1 ← axis::n, ρ1 with ψ ϕ2 ← axis::n, ρ2 with ϕ1

ϕ2 ← axis::n, (ρ1, ρ2) with ψ
(axis is psibl or anc)

Axis-Forward-Seq

ϕ2 ← axis::n, ρ2 with ψ ϕ1 ← axis::n, ρ1 with ϕ2

ϕ1 ← axis::n, (ρ1, ρ2) with ψ
(axis is nsibl or desc)

Axis-Plus
ϕ ← axis::n, ρ with X ∨ ψ
µX.ϕ ← axis::n, ρ+ with ψ

(X fresh)

Figure 7: Common inference rules for psibl, anc, nsibl, and desc

context
nodeA CA0

of type

· · ·

produce nodes of type ρ1

of type '2

· · · B B0

of type '1

· · ·

produce nodes of type ρ2 psibl or anc

Figure 8: Interpretation of ϕ ← axis::n, (ρ1, ρ2) with ψ when axis is a backward axis psibl or anc: we analyze the sequence
type from left to right. We first infer ϕ1 and then ϕ2.

When the output type is just a pair (ϕ, u) and the with parameter is ψ, it means that there should be a325

preceding sibling satisfying name test n such that both ϕ and ψ are also true. Moreover, that sibling node
should also have type u. All these constraints are encoded in the inferred formula ϕ′ in the rule Psibl-
Formula. As in the rule Self-Formula, we use function form(u) to translate the unit type u to a
corresponding formula. In addition, since the initial with parameter given in the rule Psibl guarantees that
there is no preceding sibling satisfying name test n, the two rules guarantee that if psibl::n returns a single330

node, then the context node has only one preceding sibling satisfying n.
The rest of the inference rules for empty, sequence, union, and repetition types are generic and are also

used for other axes—anc, nsibl, and desc. (When the output type is a sequence type, we distinguish
backward axes from forward axes, and thus present two inference rules.) The common rules are given in
Figure 7. The first two rules are easy. If the output type is an empty type, the inferred input type is335

simply the formula ψ given as the with parameter (rule Axis-Empty). Therefore, in combination with the
rule Psibl, the inferred formula in the rule Axis-Empty specifies that no preceding sibling of the input
node should satisfy the name test. If the output type is a union type of two, we infer a formula from each
and return the union of the two inferred formulas (rule Axis-Or).

When the output type is a sequence type (ρ1, ρ2), our analysis begins with the last node among the nodes340

reached by navigating the given axis and proceeds towards the context node. Therefore, if the given axis is a
backward axis such as psibl and anc, we analyze the output type from left to right (rule Axis-Backward-
Seq). More precisely, as depicted in Figure 8, given a judgment ϕ ← axis::n, (ρ1, ρ2) with ψ, we can
conceptually divide the nodes reached by navigating axis from context node C into two parts: the nodes
from A to A′ and those from B to B′ that produce a sequence of nodes of type ρ1 and ρ2, respectively, where345

13

context
node AC A0

of type '2

· · ·

produce nodes of type ρ1

of type '1

· · ·B B0

of type

· · ·

produce nodes of type ρ2nsibl or desc

Figure 9: Interpretation of ϕ ← axis::n, (ρ1, ρ2) with ψ when axis is a forward axis nsibl or desc: we analyze the sequence
type from right to left. We first infer ϕ2 and then ϕ1.

context
node

C

of type
µX:'

· · · An

of type
[µX:'=X]'

· · ·

produce nodes
of type ρ

· · ·A1

of type
[µX:'=X]'

· · ·

produce nodes
of type ρ

A0

of type

· · ·

produce nodes
of type ρ

Figure 10: Interpretation of ϕ ← axis::n, ρ+ with ψ when axis is a backward axis. A similar illustration can be applied to
forward axes.

the first part precedes the second part in document order. In particular, ψ is true at node A which is the first
node in the first part. We first infer a formula ϕ1 from ρ1 and ψ using the judgment ϕ1 ← axis::n, ρ1 with ψ.
Then ϕ1 is true at node B which is next to A′ in document order and also the first node in the second part.
Next, we infer a formula ϕ2 from ρ2 and ϕ1 using the judgment ϕ2 ← psibl::n, ρ2 with ϕ1. Finally, ϕ2 is
true at the context node and is returned as the input type.350

The interpretation of the judgment ϕ ← axis::n, (ρ1, ρ2) with ψ is dual if axis is a forward axis such
as nsibl and desc. In this case, we analyze the output type from right to left, i.e., ρ2 first (rule Axis-
Forward-Seq). For example, as depicted in Figure 9, from ρ2 and ψ, we first infer a constraint on the
last node B′ at which ψ is true, among the nodes reached by navigating axis from context node C, and
subsequently infer constraints on the nodes appearing before B′ in reverse order, e.g., from B through A′ to355

A, until finally inferring the constraint on the context node.
When the output type is a repetition type ρ+, we introduce a fresh recursion variable X (rule Axis-

Plus). Then, we infer a formula ϕ from output type ρ and parameter X ∨ ψ using the judgment ϕ ←
axis::n, ρ with X ∨ ψ. More precisely, as depicted in Figure 10, there exists a block of nodes reached by
navigating axis from context node C, e.g., the nodes from An to the node before C, that produce a sequence360

of nodes of type ρ, each of which satisfies name test n. Moreover, the lastly reached node An and C should
respectively satisfy X ∨ψ and ϕ (where ϕ contains X ∨ψ as a subformula, for example, see the rule Psibl-
Formula). If An satisfied X, that is, [µX.ϕ/X]ϕ, there would be more blocks of nodes reached by further
navigating axis from An that would produce nodes of type ρ, where the lastly reached node in each block,
e.g., A1, would also satisfy X. This recursion terminates when some node satisfies ψ rather than X, e.g.,365

A0 (where the block of nodes containing A0 should also produce a sequence of nodes of type ρ). Lastly, the
closed recursive formula µX.ϕ is returned as the input type of the context node.

4.2.2. Ancestor

Inference rules for anc::n are the same as those for psibl::n with two exceptions (they are both
backward axes and use the same set of rules in Figure 7): first the interpretation of the judgment and the370

initial value of the with parameter, and second the input type inferred when the output type is a single
formula type (ϕ, u). We briefly explain them in turn.

14

Anc
ϕ ← anc::n, ρ with ¬ has-anc(k(n))

(ϕ, desc-type(ρ)) ← anc::n, ρ

Anc-Formula
ϕ′ = µX. 〈1̄〉 ((ϕ ∧ k(n) ∧ form(u) ∧ ψ) ∨ (¬k(n) ∧X)) ∨ 〈2̄〉X

ϕ′ ← anc::n, (ϕ, u) with ψ

has-anc(χ) = µZ. 〈1̄〉 (χ ∨ Z) ∨ 〈2̄〉Z
desc-type(()) = ()

desc-type((ϕ, element n {τ})) = desc-type(τ)
desc-type(ρ1, ρ2) = desc-type(ρ1) | desc-type(ρ2)
desc-type(ρ1 | ρ2) = desc-type(ρ1) | desc-type(ρ2)

desc-type(ρ+) = desc-type(ρ)
desc-type(element n {τ}) = element n {τ} | desc-type(τ)

desc-type(τ1, τ2) = desc-type(τ1) | desc-type(τ2)
desc-type(τ1 | τ2) = desc-type(τ1) | desc-type(τ2)

desc-type(τ+) = desc-type(τ)

Figure 11: Inference rules for anc

Nsibl
ϕ ← nsibl::n, ρ with µX. [2] (¬k(n) ∧X)

(ϕ,AnyElt) ← nsibl::n, ρ

Nsibl-Formula
ϕ′ = 〈2〉 (µX.(ϕ ∧ k(n) ∧ form(u) ∧ ψ) ∨ (¬k(n) ∧ 〈2〉X))

ϕ′ ← nsibl::n, (ϕ, u) with ψ

Figure 12: Inference rules for nsibl

First, the interpretation of a judgment ϕ ← anc::n, ρ with ψ is as follows: there is a block of nodes
reached by navigating anc from the context node such that it produces a sequence of nodes of type ρ, each
of which satisfies name test n. Moreover, ψ is true at the lastly reached node, or equivalently, the first375

node in document order, in that block. (We may reuse the example in Figure 5 for anc by interpreting the
left arrow in the figure as 〈1̄〉 followed by a possibly empty sequence of 〈2̄〉.) In the rule Anc, we thus set
the with parameter to ¬ has-anc(k(n)) to mean that there is no (more) ancestor satisfying name test n.
has-anc(χ) is a formula that describes any tree node such that it has at least one ancestor at which χ is
true and ¬ has-anc(χ) is its negation.2 Note that 〈2̄〉 denotes the left sibling of the context node if any, and380

〈1̄〉 its parent if the context node has no left sibling and is not a root.
When the output type is (ϕ, u) and the parameter is ψ, it means that the context node has an ancestor

t that satisfies name test n and is of type (ϕ, u) (rule Anc-Formula). Moreover, ψ should be also true at
t. The invariant here is that ψ describes the structure of the ancestors of t. The inferred input formula ϕ′ is
thus a recursive formula that denotes a tree node having an ancestor t satisfying all these constraints, i.e.,385

ϕ∧ k(n)∧ form(u)∧ψ. Furthermore, the ancestors between t and the context node should not satisfy name
test n and thus have type ¬k(n) ∧X, which is also encoded in the inferred input formula ϕ′.

As for the regular tree type part, we use an auxiliary function desc-type() which is a recursive version
of Prime() and computes the type of all possible descendants. Note that for anc, the output type is the type
of the ancestors of the input context node. In other words, the context node is one of their descendants.390

4.2.3. Next Sibling

nsibl is the converse of psibl. To obtain inference rules for nsibl, we just replace 〈2̄〉 and [2̄] in the
rules Psibl and Psibl-Formula with 〈2〉 and [2], respectively, and use rule Axis-Forward-Seq instead

2Technically this encoding allows the presence of hedges satisfying the formula (we do not impose the invariant that there
is only a single root), but our semantics ensures that a formula accepts trees only.

15

of rule Axis-Backward-Seq. More precisely, given a judgment ϕ ← nsibl::n, ρ with ψ, the invariant is
that there is a block of nodes reached by navigating nsibl from the context node that produces a sequence395

of nodes of type ρ, each of which satisfies name test n. Moreover, the lastly reached node in that block
and the context node satisfy ψ and ϕ, respectively. Since our analysis always starts with the lastly reached
node, i.e., the rightmost sibling in the case of nsibl, in the rule Nsibl, we set the initial with parameter to
µX. [2] (¬k(n)∧X) which means that there is no (more) next sibling satisfying name test n. For the regular
tree type part, we simply use AnyElt because of the lack of information about the context in the regular tree400

types of the next sibling nodes.
If the output type is a single formula type (ϕ, u) and the parameter is ψ, it means that the context node

has a next sibling t that satisfies name test n and is of type (ϕ, u) (rule Nsibl-Formula). Moreover, ψ
should be also true at t. The invariant here is that ψ describes the structure of the next siblings of t. In
addition, the next siblings between the context node and t, if any, should not satisfy name test n and thus405

have type ¬k(n) ∧ 〈2〉X. All these constraints are encoded in the inferred input formula ϕ′.
Lastly, from the rules in Figures 7 and 12, we can conclude that the input formula inferred for nsibl

always begins with either [2] or 〈2〉 and thus describes the structure of the next sibling of the context node.

4.2.4. Child

As inference rules for parent are defined in terms of those for self, rules for child can be defined in410

terms of those for self-nsibl (self or next sibling, a variant of nsibl, defined in the next subsection).
As shown in Figure 13, we first infer a formula ϕ for self-nsibl and then use it as a constraint for the
leftmost child of the context node by adding either [1] or 〈1〉 to ϕ. Specifically, if the output type is nullable,
which means that the context node may not have a child, then we use universal modality (rule Child-
Nullable). Otherwise, the context node always has a child and therefore we use existential modality415

instead (rule Child-NotNull).
In addition, to infer a unit type for the context node, we use an auxiliary function parent-type(ρ),

defined in Figure 13, which computes the type of any node that has some children of type ρ and possibly
more of arbitrary types. To this end, it exploits another auxiliary function add-anyelt(ρ) which extracts all
unit types at top level of ρ, while maintaining their order, and adds AnyElt∗ between unit types, indicating420

that there may be more child nodes. Note that parent-type(ρ) approximates the type of the context node.
For example, consider the tree in Figure 13. If only nodes A and Y are returned by C/child::n, then other
nodes such as X and Z must not satisfy name test n. This constraint is described in the inferred formula, as
discussed in the next subsection, but not in the inferred unit type. If we add negation of a name test, i.e.,
¬n, we could infer a more precise unit type. However, since all the constraints are already encoded in the425

inferred input formula, we do not add ¬n in the definition of regular tree types. Still, the more precise we
infer a unit type, more precise we can develop an inference system for XQuery in Section 5, and thus we do
not simply use AnyElt in the regular tree type part of the input type.

4.2.5. Self or Next Sibling

While inference rules for self-nsibl are similar to those for nsibl, there is a key difference. Suppose430

nsibl::n returns nothing (i.e., the output type is ()). Then it means that there is no next sibling satisfying
name test n, and thus the input tree should have type µX. [2] (¬k(n) ∧X) (either there is no next sibling
or if any, it does not satisfy n). In contrast, if self-nsibl::n returns nothing, it means that the context
node does not satisfy n and neither do its next siblings, i.e., µX.(¬k(n) ∧ [2]X).

This difference leads to two interpretations of the output type depending on whether it is nullable or435

not. To illustrate, assume that the output type is (ϕ, u), ρ. As in the inference rules for nsibl, we examine
it from right to left. Suppose that a formula ψ is inferred from ρ and that there exists a node t satisfying
(ϕ, u) (t can be either the context node or its next sibling). Then, ψ is a constraint on t’s next sibling. More
precisely, if ρ is nullable, then the exact constraint on t is ϕ ∧ [2]ψ indicating that it may not have a next
sibling. Otherwise, the exact constraint on t is ϕ ∧ 〈2〉ψ indicating that t’s next sibling exists and it has440

type ψ. In other words, given an output type (ρ1, ρ2), when examining ρ1, we need to exploit the nullability
of ρ2.

16

context
node

A

C

h2i

h1i

· · ·

h2i h2i h2i
X Y Z

The nodes in the box are C’s children and node A is its leftmost child. Therefore, JC/child::nK = JA/self-nsibl::nK.

If ϕ ← self-nsibl::n, ρ and ϕ is true at node A, then 〈1〉ϕ is true at node C.

Child-Nullable
ϕ ← self-nsibl::n, ρ nullable(ρ)

([1]ϕ, parent-type(ρ)) ← child::n, ρ

Child-NotNull
ϕ ← self-nsibl::n, ρ ¬nullable(ρ)

(〈1〉ϕ, parent-type(ρ)) ← child::n, ρ

parent-type(ρ) = element ∗ {AnyElt∗, add-anyelt(ρ), AnyElt∗ }
add-anyelt(()) = ()

add-anyelt((ϕ, u)) = u
add-anyelt(ρ1 | ρ2) = add-anyelt(ρ1) | add-anyelt(ρ2)
add-anyelt(ρ1, ρ2) = add-anyelt(ρ1), AnyElt∗, add-anyelt(ρ2)

add-anyelt(ρ+) = (AnyElt∗, add-anyelt(ρ))+

Figure 13: Inference rules for child

nullable ::= true | false
Self-Nsibl
ϕ ← self-nsibl::n, ρ with µX.(¬k(n) ∧ [2]X), true

ϕ ← self-nsibl::n, ρ

SNsibl-True
ϕ′ = µX.(ϕ ∧ k(n) ∧ form(u) ∧ [2]ψ) ∨ (¬k(n) ∧ 〈2〉X)

ϕ′ ← self-nsibl::n, (ϕ, u) with ψ, true

SNsibl-False
ϕ′ = µX.(ϕ ∧ k(n) ∧ form(u) ∧ 〈2〉ψ) ∨ (¬k(n) ∧ 〈2〉X)

ϕ′ ← self-nsibl::n, (ϕ, u) with ψ, false

Axis-Forward-Seq

ϕ2 ← axis::n, ρ2 with ψ, nullable ϕ1 ← axis::n, ρ1 with ϕ2, nullable ∧ nullable(ρ2)

ϕ1 ← axis::n, (ρ1, ρ2) with ψ, nullable

Figure 14: Inference rules for self-nsibl

17

To this end, we introduce a new judgment ϕ ← self-nsibl::n, ρ with ψ, nullable where nullable denotes
either true or false. In this judgment, the meaning of ψ is twofold: it denotes the constraint on either the
context node, i.e., self, or its next sibling i.e., nsibl. The former is when ρ is (). Otherwise, ψ is true at445

the lastly reached next sibling node among the sequence of nodes that is returned by self-nsibl::n and
that is of type ρ. In the rule Self-Nsibl, therefore, the initial with parameter is set to µX.(¬k(n) ∧ [2]X)
meaning that all the next siblings (including the context node if the given output type is ()) do not satisfy
name test n. The nullability is set to true since ρ ≡ ρ, ().

The nullability parameter is examined only when the output type is a single formula type (ϕ, u). Consider450

a judgment ϕ′ ← self-nsibl::n, (ϕ, u) with ψ, nullable. Then, there should be a node t1 that satisfies
name test n and is of type (ϕ, u) (it can be either the context node or its one of next siblings). Moreover,
t1’s next sibling t2 must have type ψ. If nullable is true, then t2 may not exist and thus t1 has type ϕ∧k(n)∧
form(u)∧ [2]ψ (rule SNsibl-True). Otherwise, t2 must exist and thus t1 has type ϕ∧k(n)∧ form(u)∧〈2〉ψ
(rule SNsibl-False).455

For the rest of the cases, we reuse the inference rules in Figure 7 with minor modifications. For the
rules Axis-Empty, Axis-Or, and Axis-Plus, we add one more parameter nullable in each judgment. The
nullability is updated when examining the first type of the given sequence type (ρ1, ρ2) as shown in the
modified rule Axis-Forward-Seq in Figure 14. Precisely, the last node t among the nodes returned by
self-nsibl::n with output type ρ1 may not have a next sibling if ρ2 is nullable and the given parameter460

nullable is true. In this case, we use [2]ϕ2 as a constraint on t (in combination with the rule SNsibl-True).
Otherwise, t must have a next sibling and we use 〈2〉ϕ2 as a constraint on t (in combination with the
rule SNsibl-False).

4.2.6. Descendant

Like other axes, we use a judgment of the form ϕ ← desc::n, ρ with ψ, but the with parameter ψ now465

denotes a constraint on the last node in document order among the descendants returned by desc::n with
output type ρ.

In the rule Desc in Figure 15, the initial with parameter is much more complicated than other axes
because we need to specify constraints only on the descendants of the context node, but not on others. More
precisely, if the output type is a sequence type of the form (ϕ1, u1), . . . , (ϕn, un), then desc::n returns a470

sequence t1, . . . , tn of descendants in document order, each of which has type (ϕi, ui). Now, to infer the
exact input type, we need to specify that all the nodes that follow tn but precede the leftmost next sibling
of the context node must not satisfy name test n. This constraint is encoded in noNextUpTo(k(n), α) which
exploits a nominal, denoted by a fresh variable α, i.e., an atomic proposition that holds only on the context
node on which desc is applied. The nominal is then used as a search bound for a descendant during the475

inference process and its property is ensured by noWhereElse(α) in the final input type.
If the output type is a single formula type (ϕ, u) and the with parameter is ψ, it means that the context

node has a descendant t of type (ϕ, u) that satisfies name test n and at which ψ is true (rule Desc-Formula).
Moreover, any node between the context node and t in document order should not satisfy name test n. All
these constraints are encoded in fstDescFoll(ϕ ∧ k(n) ∧ form(u) ∧ ψ, k(n)), which is defined in Figure 15.480

As for other cases, we simply use the inference rules in Figure 7.
To illustrate, consider an example tree in Figure 16. Suppose that the output type is (ϕ1, u1), (ϕ2, u2).

Then there exist only two descendants satisfying name test n, namely, D1 and D2. According to the
rule Axis-Forward-Seq, we first analyze the rightmost output type (ϕ2, u2). In other words, we first infer
a constraint on the node D2. Since D2 is the last node returned by desc::n, noNextUpTo(k(n), α) should be485

true at D2 which means that k(n) is not true at D2’s descendants, its next siblings and their descendants, its
parent’s next siblings and their descendants, its parent’s parent’s next siblings and their descendants, and
so on until the initial context node C, marked with a nominal α, is reached (rule Desc). Moreover, when
locally analyzing D2 with the output type (ϕ2, u2), the context node is D1. From D1’s perspective, D2 is the
first node satisfying name test n among D1’s descendants and following nodes. This constraint is expressed490

by using the function fstDescFoll(χ1, χ2) (rule Desc-Formula).

18

Desc
ϕ ← desc::n, ρ with noNextUpTo(k(n), α)

(ϕ ∧ noWhereElse(α), AnyElt) ← desc::n, ρ
(α fresh)

Desc-Formula
ϕ′ = fstDescFoll(ϕ ∧ k(n) ∧ form(u) ∧ ψ, k(n))

ϕ′ ← desc::n, (ϕ, u) with ψ

Auxiliary definitions:

χ ? ψ1 : ψ2 ≡ (χ ∧ ψ1) ∨ (¬χ ∧ ψ2)

has-desc(χ) = 〈1〉 (µZ.χ ∨ 〈1〉Z ∨ 〈2〉Z)

has-nsdesc(χ) = 〈2〉 (µZ.χ ∨ 〈1〉Z ∨ 〈2〉Z)

has-prec(χ) = µZ. 〈1̄〉Z ∨ 〈2̄〉 (χ ∨ has-desc(χ) ∨ Z)

has-foll(χ) = µZ. has-nsdesc(χ) ∨ has-parent(Z)

noNextUpTo(χ, α) = ¬ has-desc(χ) ∧ µZ. α ? > : (¬has-nsdesc(χ) ∧ has-parent(Z))

noWhereElse(χ) = χ ∧ ¬ (has-anc(χ) ∨ has-prec(χ) ∨ has-desc(χ) ∨ has-foll(χ))

fstSelfNsDesc(χ1, χ2) = µZ. χ1 ∨ (¬χ2 ∧ (has-desc(χ2) ? 〈1〉Z : 〈2〉Z))

fstFoll(χ1, χ2) = µZ. 〈2〉 fstSelfNsDesc(χ1, χ2) ∨ (¬has-nsdesc(χ2) ∧ has-parent(Z))

fstDescFoll(χ1, χ2) = 〈1〉 fstSelfNsDesc(χ1, χ2) ∨ (¬has-desc(χ2) ∧ fstFoll(χ1, χ2))

• has-desc(χ): there is a descendant satisfying χ.

• has-nsdesc(χ): there is a node satisfying χ which is a next sibling or a descendant of a next sibling.

• has-prec(χ): there is a node satisfying χ which precedes the context node in document order and is
not an ancestor.

• has-foll(χ): there is a node satisfying χ which follows the context node in document order and is
not a descendant.

• noNextUpTo(χ, α): there is no node satisfying χ which appears strictly after the context node in
document order and before a node satisfying α (invariant: α should denote a nominal).

• noWhereElse(χ): only the context node satisfies χ.

• fstSelfNsDesc(χ1, χ2): the first node t in document order of the set {self, all next siblings, and all
their descendants} that satisfies χ1. Any node preceding t in the set does not satisfy χ2.

• fstFoll(χ1, χ2): the first node t satisfying χ1 among the nodes reachable by navigating following.
Any node between the context node and t reached by navigating following does not satisfy χ2.

• fstDescFoll(χ1, χ2): the first node t satisfying χ1 that appears strictly after the context node in
document order. Any node between the context node and t does not satisfy χ2.

Figure 15: Inference rules for desc

19

context
node C

h2i

h1i

h2i

h1i

h1i

· · ·

h2i
· · ·

' ^ noWhereElse(α) true

of type
('2; u2)

D2

noNextUpTo(k(n);α) w.r.t. D2

D1 · · ·

h2i

of type
('1; u1)

D2's nsdesc

D2's parent's nsdesc

D2's desc

D1's desc D1's nsdesc
D1's following nodes
among C's descendants

Figure 16: ϕ ← desc::n, ((ϕ1, u1), (ϕ2, u2)) with noNextUpTo(k(n), α) where C is the context node and D1 and D2 are the
only nodes satisfying name test n, each of which has type (ϕ1, u1) and (ϕ2, u2), respectively. D1 precedes D2 in document
order.

4.3. Properties of Backward Type Inference for XPath axes

In this section, we briefly discuss the soundness and completeness of our backward type inference system
for XPath axes. In other words, our backward inference is exact.

Theorem 4.2 (Exact type inference). If ρi ← axis::n, ρo, then f ∈ JρiK if and only if Jf/axis::nK ∈ JρoK.495

In Theorem 4.2, the only-if-direction states the soundness and the if-direction states the completeness.
More precisely, the soundness states that if some focused tree has the inferred input type ρi, then it always
produces a sequence of nodes of output type ρo. In contrast, the completeness states the opposite, that is,
if some focused tree produces a sequence of nodes of type ρo, then it has the inferred type ρi. To prove
Theorem 4.2, we use the following lemmas for the auxiliary judgment ϕ ← axis::n, ρ with ψ.500

Lemma 4.3 (Soundness). Suppose

• ϕ ← axis::n, ρ with ψ,
• f ∈ 〈〈ϕ〉〉, and
• Jf/axis::nK = f1, . . . , fn.

If axis is a backward axis:505

• Let f = fn+1.
• Then, ∃ 1 ≤ i ≤ n+ 1 s.t. fi ∈ 〈〈ψ〉〉 and fi, . . . fn ∈ JρK.

Otherwise, axis is a forward axis:

• Let f = f0.
• Then, ∃ 0 ≤ i ≤ n s.t. fi ∈ 〈〈ψ〉〉 and f1, . . . fi ∈ JρK.510

Lemma 4.3 is a one-way formalization of the interpretation of the judgment ϕ ← axis::n, ρ with ψ.
To illustrate, consider Figure 5 again. In the figure, fn+1 = C and fi = A where C ∈ 〈〈ϕ〉〉 and A ∈ 〈〈ψ〉〉.
Moreover, the sequence fi, . . . , fn of nodes selected by psibl::n from node A to node B has type ρ. Below
we show some cases of the proof of Lemma 4.3.

20

Proof of Lemma 4.3. By induction on a derivation of ϕ ← axis::n, ρ with ψ.515

If axis is a backward axis:
Case 1) ρ = ():

(1) ϕ = ψ from the rule Axis-Empty

(2) Let i = n+ 1.

(3) Then, fi ∈ 〈〈ψ〉〉 and fi, . . . , fn = ε ∈ J()K. from assumptions520

Case 2) ρ = ρ1, ρ2:

(1) ϕ1 ← axis::n, ρ1 with ψ from the rule Axis-Backward-Axis

(2) ϕ ← axis::n, ρ2 with ϕ1 from the rule Axis-Backward-Axis

(3) ∃ 1 ≤ j ≤ n+ 1 s.t. fj ∈ 〈〈ϕ1〉〉 and fj , . . . , fn ∈ Jρ2K by I.H. on (2)

(4) Jfj/axis::nK = f1, . . . , fj−1525

(5) ∃ 1 ≤ k ≤ j s.t. fk ∈ 〈〈ψ〉〉 and fk, . . . , fj−1 ∈ Jρ1K by I.H. on (1) and (4)

(6) Let i = k.

(7) Then, fi ∈ 〈〈ψ〉〉 and fi, . . . , fj−1, fj , . . . , fn ∈ J(ρ1, ρ2)K.

Below we state the completeness lemma for the auxiliary judgment.530

Lemma 4.4 (Completeness). Suppose

• ϕ ← axis::n, ρ with ψ and
• Jf/axis::nK = f1, . . . , fn.

If axis is a backward axis:

• Let f = fn+1.535

• Suppose ∃ 1 ≤ i ≤ n+ 1 s.t. fi ∈ 〈〈ψ〉〉 and fi, . . . fn ∈ JρK.
• Then, f ∈ 〈〈ϕ〉〉.

Otherwise, axis is a forward axis:

• Let f = f0.
• Suppose ∃ 0 ≤ i ≤ n s.t. fi ∈ 〈〈ψ〉〉 and f1, . . . fi ∈ JρK.540

• Then, f ∈ 〈〈ϕ〉〉.

Proof. By induction on a derivation of ϕ ← axis::n, ρ with ψ. Here, we only show the case where ρ = ρ1, ρ2
and axis is a backward axis.

(1) ϕ1 ← axis::n, ρ1 with ψ from the rule Axis-Backward-Axis

(2) ϕ ← axis::n, ρ2 with ϕ1 from the rule Axis-Backward-Axis545

(3) ∃ i ≤ j ≤ n s.t. fi, . . . , fj−1 ∈ Jρ1K and fj , . . . , fn ∈ Jρ2K from fi, . . . fn ∈ J(ρ1, ρ2)K
(4) Jfj/axis::nK = f1, . . . , fj−1
(5) 1 ≤ i ≤ j and fi ∈ 〈〈ψ〉〉 from (3) and assumptions

(6) fj ∈ 〈〈ϕ1〉〉 by I.H. on (1), (3), (4), (5)

(7) fn+1 ∈ 〈〈ϕ〉〉 by I.H. on (2), (3), (6)550

21

5. Inference for the XQuery Core

In this section, we present our backward type inference system for the XQuery core, building on the
results of the previous section. We first clarify what we infer from the given expression e and output type
ρ. Precisely, we use a judgment of the form S ← e : ρ which means that given an expression e and an555

output type ρ, it generates a set S of constraint-sets for free variables in e where free and bound variables
are defined in the usual way. Our goal is then to design inference rules that ensure that if we substitute
those free variables with any sequences of focused trees satisfying one of the constraint-sets in S , e evaluates
to a value, i.e., a sequence of focused trees, that has the type ρ. By convention, if S is an empty set, it
is unsatisfiable, and we denote it by 0. In contrast, a singleton set consisting of an empty set is always560

satisfiable, and we denote it by 1.
Formally, a constraint-set C is a set of bindings of variables with formula-enriched sequence types, where

each binding is denoted by ($var : ρ). Given a constraint-set C, we consider any for-loop and let-bound
variables not appearing in C to be implicitly bound to (>,AnyElt) and (>,AnyElt)∗, respectively. Moreover,
a constraint-set C is unsolvable if it contains a constraint specifying that a variable should satisfy ⊥, e.g.,
($var : (⊥, u)). We simply write {⊥} to denote such an unsolvable constraint-set. If S contains {⊥}, we
can safely remove it from S . We often consider a constraint-set C to be a mapping from variables to their
types and thus use the usual notations such as:

dom(C)
def
= {$var | ($var : ρ) ∈ C}

C($var)
def
= ρ if ($var : ρ) ∈ C

C($v)
def
= (>,AnyElt) if $v 6∈ dom(C)

C($v)
def
= (>,AnyElt)∗ if $v 6∈ dom(C)

We also introduce the following operations.

Definition 5.1. Let C1 and C2 be constraint-sets, which are not {⊥}, and S , S1, and S2 be sets of
constraint-sets. We define:

C1 u C2
def
= {($var : ρ) ∈ C1 | $var 6∈ dom(C2)} ∪
{($var : ρ) ∈ C2 | $var 6∈ dom(C1)} ∪
{($var : ρ1 ∧ ρ2) | ($var : ρ1) ∈ C1 and ($var : ρ2) ∈ C2}

C\$var0
def
= {($var : ρ) ∈ C | $var 6= $var0}

S1 uS2
def
= {C1 u C2 | C1 ∈ S1, C2 ∈ S2}

S1 tS2
def
= S1 ∪S2

S \$var
def
= {C\$var | C ∈ S }

For any constraint-set C, C u {⊥} = {⊥} u C = {⊥}.

In the definition above, we use ρ1 ∧ ρ2 to denote the intersection of ρ1 and ρ2 whose semantics Jρ1 ∧ ρ2K is
inductively defined as Jρ1K∩ Jρ2K. In other words, for any focused tree f , f ∈ Jρ1∧ρ2K if and only if f ∈ Jρ1K565

and f ∈ Jρ2K. Although we use intersection types only internally during type inference, they can seamlessly
be added into the external language [27].

5.1. Inference Rules

Figures 17 and 18 show our backward type inference rules for XQuery core. We first describe the case
where the output type is a union type ρ1 | ρ2 (rule I-Or). In this case, the input constraint is a union of570

S1 and S2, which are inferred from ρ1 and ρ2, respectively. If one of Si is unsatisfiable, i.e., 0, it is simply
ignored since Sj t 0 = Sj where i 6= j. If both S1 and S2 are unsatisfiable, the input constraint is 0
which means that expression e can never have the output type ρ1 | ρ2 in the first place. Similarly, if the
output type is an intersection type ρ1 ∧ ρ2, the input constraint is an intersection of S1 and S2, each of

22

which is inferred from ρi (rule I-And). In this case, if one of Si is unsatisfiable, then the input type is also575

unsatisfiable. During the inference, either rule I-Or or rule I-And should first be tried.
Rules I-Emp, I-FVar, I-LVar, and I-Axis are relatively easy. First, in the rule I-Emp, if the output

type ρ is nullable, then the input constraint is 1 which means that ε is of type ρ without further constraints.
In the rule I-FVar, we use the inference rules for the self axis since a for-loop variable is bound only to
an XML element, not a sequence. In contrast, rule I-LVar just binds a let-bound variable to the given580

sequence type since it can be bound to an arbitrary sequence. Rule I-Axis uses the inference rules for the
axis expression, and binds the for-loop variable to the inferred type.

In the rule I-Element, we consider only a type-annotated element constructor of the form (<σ>{e}</σ> : u).
The annotated type u should be a subtype of the output type ρ since we are using a backward type inference.
Specifically, since an element constructor always reduces to a root element, we check the subtype relation585

(ϕroot, u) <: ρ where ϕroot = ¬ 〈1̄〉> ∧ ¬ 〈2̄〉> ∧ ¬ 〈2〉> specifies that the given node is a root (the subtype
relation is explained shortly). Let u be element n {τ}. Then, node label σ should match name test n.
Finally, we infer input constraints from the body expression e which reduces to a sequence of child nodes
and from the output type form-enriched(τ) for the child nodes. We use form-enriched(τ) to support context-
erasing element construction: during the reduction, we remove the context of the result of e (see Figure 3).590

form-enriched(τ) enriches the given regular tree type τ by simply associating each unit type u that appears
in τ with an equivalent downward-only formula form(u), i.e., without context information.

To check the subtype relation (ϕroot, u) <: ρ, we first compute the type ρ′ for the set of all single focused
tree nodes that are contained in JρK. Then (ϕroot, u) <: ρ if (ϕroot, u) <: ρ′ because (ϕroot, u) denotes a set
of focused tree nodes. Next, we translate u and ρ′ into equivalent formulas ϕ and ψ, respectively, and then595

test the satisfiability of ϕroot ∧ ϕ ∧ ¬ψ. To this end, we use an auxiliary function single(ρ) which computes
a formula whose denotation includes only singleton sequences of focused tree nodes contained in JρK. That
is, (ϕroot, u) <: ρ if and only if 〈〈ϕroot ∧ form(u) ∧ ¬single(ρ)〉〉 = ∅ which can be tested in 2O(|u|+|ρ|) time by
the decision procedure in [26].

As for if-expressions, rules I-IfNonEmpty and I-IfEmpty respectively consider the cases where the600

condition expression e1 always reduces to a non-empty sequence and an empty sequence, regardless of the
input trees. If e1 can reduce to both a non-empty sequence and an empty sequence, depending on the
input trees, then we use the rule I-IfAny. It simply assumes that e1 reduces to any sequence and infers a
constraint Si from each subexpression ei. If all of S1, S2, and S3 are satisfiable, then the if-expression has
the specified output type ρ.605

For a let-binding let $v := e1 return e2, rule I-Let first infers a constraint S2 from e2 and output
type ρ. Then, for each constraint-set C ∈ S2 such that JC($v)K 6= ∅, we infer a constraint S1 from e1 and
C($v). Note that if JC($v)K = ∅, then C is unsatisfiable. In order for the whole let-expression to have type
ρ, both S1 and C \ $v should be satisfiable, i.e., S1 u {C \ $v}, where C \ $v removes the constraint for $v
from C because it is bound only in e2.610

For a sequence concatenation, rule I-Seq divides the output type ρ into two parts using an auxiliary
function split(), defined in Figure 18. Then, we infer an input constraint for each case in split(ρ), and returns
a union of all inferred constraints as a final result. Note that for any ρ, if (ρ1, ρ2) ∈ split(ρ) then ρ1, ρ2 = ρ.

Finally, let us consider for-loop expressions, which are the most challenging with respect to defining
precise inference rules. Indeed, they are the main source of the approximation introduced in our backward
type inference. To illustrate, consider the following expression:

for $v in $doc/desc::D return $v/child::∗

where $doc is bound to an input tree. If $doc/desc::D reduces to [f1, . . . , fn] for some n, then the whole
expression reduces to f1/child::∗, . . . , fn/child::∗. Suppose that an output type ρo is given as follows:

ρo ≡ <A/><C/><A/><C/><A/><C/>

where for simplicity we use <A/> to denote a formula type (>, element A {()}) and juxtaposition to denote
a sequence concatenation. In order to infer the exact type of $doc, we need to infer the exact type of each
fi. Since the output sequence type ρo is finite, it suffices to compute all possible (weak) compositions of

23

I-Or
Si ← e : ρi

S1 tS2 ← e : ρ1 | ρ2
(i = 1, 2)

I-And
Si ← e : ρi

S1 uS2 ← e : ρ1 ∧ ρ2
(i = 1, 2)

I-Emp
nullable(ρ)

1 ← ε : ρ

I-FVar
ρ′ ← self::∗, ρ

{{($v : ρ′)}} ← $v : ρ

I-LVar

{{($v : ρ)}} ← $v : ρ

I-Axis
ρ′ ← axis::n, ρ

{{($v : ρ′)}} ← $v/axis::n : ρ

I-Element
(ϕroot, u) <: ρ u = element n {τ} σ = n or σ = ∗ S ← e : form-enriched(τ)

S ← (<σ>{e}</σ> : u) : ρ

I-IfNonEmpty
S1 ← e1 : (>,AnyElt)+ S2 ← e2 : ρ

S1 uS2 ← if nempty(e1) then e2 else e3 : ρ

I-IfEmpty
S1 ← e1 : () S3 ← e3 : ρ

S1 uS3 ← if nempty(e1) then e2 else e3 : ρ

I-IfAny
S1 ← e1 : (>,AnyElt)∗ S2 ← e2 : ρ S3 ← e3 : ρ

S1 uS2 uS3 ← if nempty(e1) then e2 else e3 : ρ

I-Let
S2 ← e2 : ρ S = {S1 u {C\$v} | S1 ← e1 : C($v), C ∈ S2}⊔

S∈S S ← let $v := e1 return e2 : ρ

Auxiliary definitions:

form-enriched(()) = ()

form-enriched(u) = (form(u), u)
form-enriched(τ1, τ2) = form-enriched(τ1), form-enriched(τ2)

form-enriched(τ1 | τ2) = form-enriched(τ1) | form-enriched(τ2)
form-enriched(τ+) = form-enriched(τ)+

single(()) = ⊥
single((ϕ, u)) = ϕ ∧ form(u)

single(ρ1, ρ2) =


⊥ if ¬nullable(ρ1) and ¬nullable(ρ2)
single(ρ1) if ¬nullable(ρ1) and nullable(ρ2)
single(ρ2) if nullable(ρ1) and ¬nullable(ρ2)
single(ρ1) ∨ single(ρ2) if nullable(ρ1) and nullable(ρ2)

single(ρ1 | ρ2) = single(ρ1) ∨ single(ρ2)
single(ρ1 ∧ ρ2) = single(ρ1) ∧ single(ρ2)

single(ρ+) = single(ρ)

Figure 17: Backward type inference rules for the XQuery core

24

I-Seq

S = {S1 uS2 | Si ← ei : ρi, (ρ1, ρ2) ∈ split(ρ)}⊔
S∈S S ← (e1, e2) : ρ

I-Err
(if no other rule applies)

0 ← e : ρ

I-ForEmpty
S2 ← e2 : () S = {S1 u {C\$v} | S1 ← e1 : C($v)∗, C ∈ S2 }⊔

S∈SS ← for $v in e1 return e2 : ()

I-ForNonEmpty
S2 ← e2 : ρ 0 ← e2 : () S = { S1 u {C\$v} | S1 ← e1 : C($v).Quant(ρ), C ∈ S2 }⊔

S∈SS ← for $v in e1 return e2 : ρ
(ρ 6= ())

I-For
S ← e2 : ρ S ′ ← e2 : ()

S =

{
S ′′ u {C\$v u C ′\$v}

(C,C ′) ∈ S ×S ′,
S ′′ ← e1 : (C ′($v)∗, C($v), C ′($v)∗).Quant(ρ)

}
⊔

S∈SS ← for $v in e1 return e2 : ρ
(ρ 6= ())

Auxiliary definitions:

split(()) = {((), ())}
split((ϕ, u)) = {((), (ϕ, u)), ((ϕ, u), ())}

split(ρ1 | ρ2) = split(ρ1) ∪ split(ρ2)
split(ρ+) = {((), ρ+), (ρ+, ())} ∪ {((ρ∗, ρ1), (ρ2, ρ

∗)) | (ρ1, ρ2) ∈ split(ρ)}
split(ρ1, ρ2) = {(ρ1, ρ2)} ∪ {(ρ11, (ρ12, ρ2)) | (ρ11, ρ12) ∈ split(ρ1)} ∪

{((ρ1, ρ21), ρ22) | (ρ21, ρ22) ∈ split(ρ2)}

Quant(ρ) = + if ρ is of the form ρ′+

Quant(ρ) = 1 otherwise
ρ.+ = ρ+

ρ.1 = ρ

Figure 18: Backward type inference rules for the XQuery core, continued

R

CA B

D1

A A CCB B

D2 D3 D4 D5 D6

Figure 19: An example XML tree bound to the variable $doc: a for-loop expression for $v in $doc/desc::D return $v/child::∗
reduces to a sequence of focused tree nodes [A[ε], B[ε], C[ε], A[ε], B[ε], C[ε], A[ε], B[ε], C[ε]] where we omit the context of each node
for simplicity. In addition, the for-loop expression may have type (<A/><C/>)+, or less precisely (<A/> | | <C/>)∗.

25

ρo, infer an input constraint for each composition, and take a union of all inferred constraints [28]. We say
that (ρ1; . . . ; ρn) is a composition of ρ if (ρ1, . . . , ρn) <: ρ. A composition is said to be weak if it contains
an empty sequence type as an element. For example, we can infer the exact type of the example input tree
given in Figure 19 from the following weak composition:

((); <A/>; <C/>; <A/><C/><A/>; (); <C/>)

For this input tree, $doc/desc::D reduces to [f1, . . . , f6] where each fi is a focused tree rooted at the node
labeled Di (here, the subscript i is not part of the node label; it is used solely to distinguish the nodes with
the same label). Note that the composition above consists of the exact type of each fi/child::∗, given the
output type ρo. Assume that ρi is inferred from fi/child::∗ and the corresponding type in the composition
given above. Then, our backward type inference infers the following exact input type for the whole for-loop
expression (with some simplification):(

fstDescFoll(ρ1 ∧ fstDescFoll(ρ2 ∧ fstDescFoll(ρ3 ∧ fstDescFoll(ρ4 ∧ fstDescFoll(ρ5 ∧
fstDescFoll(ρ6 ∧ noNextUpTo(D,α), D), D), D), D), D), D) ∧ noWhereElse(α),AnyElt

)
which states that the input node has six descendants with label D and the first descedant in document order
is of type ρ1, the second is of type ρ2, and so on.615

The situation becomes more complex if we consider repetition types. In the presence of repetition
operators, the number of possible compositions is infinite in general. To illustrate, consider an output type
ρ′o defined as follows:

ρ′o ≡ (<A/><C/>)+

To infer the exact type of the input tree in Figure 19 again, we need to unfold ρ′o three times to obtain
ρo, which is defined above, and compute its weak compositions. The problem is that in general we do not
statically know how many times we need to unfold the given output repetition type to infer the exact input
type for a for-loop expression. One possible solution is to unfold repetition types up to some arbitrary fixed
number of times, giving up exact typing. Then the problem is to find such a unfolding number that allows620

practical and precise type inference.
In this paper, we adopt a simpler but more approximate approach. More precisely, we do not analyze

output types of the form ρ+ or ρ∗ across the boundary of ρ, that is, we do not unfold repetition types. In
other words, given a for-loop expression, we simply consider only those cases where each execution of the
return expression evaluates to a sequence of focused trees whose type is a subtype of the given output type.625

Consequently, the input tree in Figure 19 is not accepted by our type system if the output type is given
as (<A/><C/>)+. Our system accepts only those input trees whose descendants labeled D have no
child or children of type (<A/><C/>)+. Nevertheless, the input tree in Figure 19 is accepted if a more
general output type is given such as (<A/> | | <C/>)∗.

Our approximation is similar in spirit to the approximation used in forward type inference systems [8, 17].630

To illustrate, assume a regular tree type T defined recursively as <C/>[<A/>, T,] | (). When f is of
type T , the type of f/desc-or-self::∗ is deduced as (<A/> | | <C/>)∗ in forward type inference
systems. The exact type, however, is the union of (<C/><A/>)nn for n ∈ N, which is not regular. In
general, in forward type inference systems, a sequence type (u1, . . . , un)∗ is often approximated into a less
precise type (u1 | . . . | un)∗, losing the information on the order of elements. Similarly, in our backward type635

inference system, in order to accept more input trees, output types should be given such that the order of
elements does not matter.

To infer an input type for for-loop expressions, we use three rules. First, given an expression for $v in e1

return e2, if the output type is (), then no matter how many times we evaluate e2 with different bindings
for $v, it must reduce to ε. Therefore, in the rule I-ForEmpty, we infer a constraint S1 from e1 with640

output type C($v)∗ where C is a constraint-set inferred by analyzing e2 with () and JC($v)K 6= ∅. Note
that C($v)∗ is zero or more repetitions of formula type C($v) that makes e2 reduce to an empty sequence.
The other two rules I-ForNonEmpty and I-For cover the cases where output type ρ is not (). Rule I-
ForNonEmpty is similar to the rule I-ForEmpty except that it uses an auxiliary function Quant() and

26

e2 never reduces to an empty sequence. In this case, the output type for e1 should be exactly the same645

as for $v—for example, if the output type is (ϕ, u), then e1 must reduce to a single focused tree since e2

never reduces to an empty sequence, regardless of the value of $v. An exception is when the output type
is ρ+. Then, no matter how many times we evaluate e2, it should reduce to a sequence of focused trees of
type ρ+ and their concatenation should also be of type ρ+ (i.e., ρ+, . . . , ρ+ = ρ+)—in this case, the type
for e1 can be C($v)+ where C is a constraint-set inferred from e2 and JC($v)K 6= ∅. We use Quant() to650

capture this difference. Finally, rule I-For considers the case where e2 can reduce to both an empty and a
non-empty sequence depending on the value of $v. In this case, we infer an input constraint from e1 with
output sequence type (C ′($v)∗, C($v), C ′($v)∗) where C ′($v) and C($v) are the types that make e2 reduce
to an empty and a non-empty sequence, respectively. In particular, we consider only those constraint-sets
C ′ and C such that JC ′($v)K 6= ∅ and JC($v)K 6= ∅.655

5.2. Complexity

5.2.1. Complexity for XPath Axes

We first analyze the complexity of our backward type inference system for XPath axes. To this end, we
first define the length len(ρ) and the size |ρ| of a formula-enriched sequence type ρ:

len((ϕ, u)) = 1
len(()) = 1

len(ρ1, ρ2) = len(ρ1) + len(ρ2) + 1
len(ρ1 | ρ2) = len(ρ1) + len(ρ2) + 1

len(ρ+) = len(ρ) + 1

|(ϕ, u)| = |ϕ|+ |u|
| () | = 1
|ρ1, ρ2| = |ρ1|+ |ρ2|+ 1
|ρ1 | ρ2| = |ρ1|+ |ρ2|+ 1
|ρ+| = |ρ|+ 1

The size |ϕ| of a formula ϕ and the length len(τ) and the size |τ | of a regular tree type τ are also defined as
usual. In particular, in the analysis below, we mean by |τ | the size of the classical binary representation of
τ [2].660

Lemma 5.2. The time complexity of the auxiliary functions directly used in the inference rules, introduced
in Section 4, is as follows.

• nullable(ρ) is O(len(ρ)).
• child-type(ρ) is O(len(ρ)).
• parent-type(ρ) is O(len(ρ)).665

• desc-type(ρ) is O(|ρ|).

child-type(ρ) in Figure 4 is defined only when the argument ρ is of the form (ϕ1, u1) | . . . | (ϕn, un)
where ui = element ni {τi}, and its precise complexity is indeed O(len(ρ) × max len(τi)). We consider
max len(τi) as a constant and omit it in the above analysis.

Among the functions listed in Lemma 5.2, only nullable() may be called many times during the inference.670

More precisely, when the output type is (ϕ1, u1), . . . , (ϕn, un), the naive cumulative cost of calling nullable()
is in total O(n2). With additional space, however, if we memoize the result of nullable() on each subterm of
the output type ρ when it is called for the first time, the cumulative cost is still O(len(ρ)).

Lemma 5.3. Given output type ρ, an input type for an XPath axis is inferred in O(|ρ|) time.

Proof. Easy from the fact that we analyze the structure of the output type, with an empty type () and a675

pair type (ϕ, u) as base cases, and the cumulative cost of using auxiliary functions during the inference is
O(|ρ|).

To analyze the size of the inferred input type, below we assume that we use an optimization technique
such as hash-consing to represent types and formulas, i.e., to share the same subterms. Otherwise, in the
input type, some formula may be duplicated an exponential number of times in terms of the length of the680

output type, e.g., when the output type is of the form (ρ1 | ρ2), . . . , (ρn−1 | ρn). Note that in the rule Axis-
Or, with a naive representation of formulas, the with parameter ψ may be duplicated in the inferred input
formula ϕ1 ∨ ϕ2: one in ϕ1, the other in ϕ2.

27

Lemma 5.4. Assume ϕ ← axis::n, ρ with ψ. Then the size of ϕ is O(|ρ|+ |ψ|).

Proof. By induction on a derivation of ϕ ← axis::n, ρ with ψ. In the proof, we use the fact that all the685

auxiliary definitions used in Figure 15, which take a formula χ as argument, return another formula of size
O(|χ|). The proof also relies on that form(u) has the same size as the classical binary representation of the
regular tree type u [19].

Lemma 5.5. Given output type ρ, the size of the inferred input type for an XPath axis is O(|ρ|).

Proof. The cases for the axes except self, parent, child, and anc are easily proved by Lemma 5.4. The690

case for self is proved by structural induction on output type ρ. The cases for parent, child, and anc

are proved by the fact that the size of child-type(ρ), parent-type(ρ), and desc-type(ρ) is O(|ρ|) with
optimized representations of types.

Corollary 5.6. Given output type ρ and an XPath axis, we can check in 2O(|ρ|) time if there exists some
tree that when applied to the axis, returns a sequence of nodes of type ρ, by testing the satisfiability of the695

inferred input type using the decision procedure in [26].

Precisely, if ρ′ ← axis::n, ρ, then ρ′ is of the form (ϕ1, u1) | . . . | (ϕn, un) where ϕi <: ui, and thus it
suffices to check the satisfiability of each ϕi in the inferred input type.

5.2.2. Complexity for the XQuery Core

Now we analyze the complexity of our backward type inference system for the XQuery core. We define700

the size |C| of C and the size |S | of S as the number of bindings in C and the number of constraint-sets in
S , respectively. Then, |C1 uC2| ≤ |C1|+ |C2|, |S1 uS2| ≤ |S1| × |S2|, and |S1 tS2| ≤ |S1|+ |S2|. The
size |e| of an XQuery expression e is inductively defined as usual, e.g., see Definition 8.1 in [8].

Lemma 5.7. Suppose S ← e : ρ. Then the maximum size, denoted by T (e, ρ), of a largest type appearing
in S is O(2|e||ρ|).705

Proof. By solving the following set of recursive equations, which are derived from the inference rules:

T (e, ρ1 | ρ2) = maxi T (e, ρi)
T (e, ρ1 ∧ ρ2) = T (e, ρ1) + T (e, ρ2) + 1
T ((e1, e2), ρ) = max(ρ1,ρ2)∈split(ρ)(T (e1, ρ1) + T (e2, ρ2) + 1)

T ((<σ>{e}</σ> : element n {τ}), ρ) = T (e, form-enriched(τ))
T (if nempty(e1) then e2 else e3, ρ) = T (e1, (>,AnyElt)∗) + T (e2, ρ) + T (e3, ρ) + 2

T (let $v := e1 return e2, ρ) = T (e2, ρ) + T (e1, T (e2, ρ)) + 1
T (for $v in e1 return e2, ρ) = T (e2, ρ) + T (e2, ()) + T (e1, (T (e2, ρ) + 2T (e2, ()) + 5)) + 2

T (e, ρ) = O(|ρ|) (otherwise)

where we use a type and its size interchangeably as the second argument to T (−,−).

Lemma 5.8. Suppose S ← e : ρ. Then the maximum size, denoted by N(e, ρ), of S is O(22
|e||ρ|).

Proof. By solving the following set of recursive equations, which are derived from the inference rules. We
use the result from Lemma 5.7.

N(e, ρ1 | ρ2) = N(e, ρ1) +N(e, ρ2)
N(e, ρ1 ∧ ρ2) = N(e, ρ1)×N(e, ρ2)
N((e1, e2), ρ) = |split(ρ)| ×max(ρ1,ρ2)∈split(ρ)(N(e1, ρ1)×N(e2, ρ2))

N((<σ>{e}</σ> : element n {τ}), ρ) = N(e, form-enriched(τ))
N(if nempty(e1) then e2 else e3, ρ) = N(e1, (>,AnyElt)∗)×N(e2, ρ)×N(e3, ρ)

N(let $v := e1 return e2, ρ) = N(e2, ρ)×N(e1, T (e2, ρ))
N(for $v in e1 return e2, ρ) = N(e2, ρ)×N(e2, ())×N(e1, (T (e2, ρ) + 2T (e2, ()) + 5))

N(e, ρ) = O(1) (otherwise)

In the above equations, we use a type and its size interchangeably as the second argument to N(−,−).

28

Lemma 5.9. Suppose S ← e : ρ. Then S is computed in 2O(2|e||ρ|) time in the worst case.

Proof. Let I(e, ρ) denote the complexity of deducing a set of constraint-sets from e and ρ using our inference
system. We obtain the complexity by solving the following set of recursive equations, which are derived
from the inference rules. We use the result from Lemmas 5.7 and 5.8. We also use a type and its size
interchangeably as the second argument to I(−,−).

I(ε, ρ) = I($v, ρ) = 1
I(e, ρ1 | ρ2) = I(e, ρ1 ∧ ρ2) = 1 + I(e, ρ1) + I(e, ρ2)
I($v, ρ) = I($v/axis::n, ρ) = O(|ρ|)

I((e1, e2), ρ) = 1 + |split(ρ)| ×max(ρ1,ρ2)∈split(ρ)(I(e1, ρ1) + I(e2, ρ2))
I((<σ>{e}</σ> : element n {τ}), ρ) = 2 + I(e, form-enriched(τ)) + 2O(|u|+|ρ|)

I(if nempty(e1) then e2 else e3, ρ) = 1 + I(e1, (>,AnyElt)∗) + I(e2, ρ) + I(e3, ρ)
I(let $v := e1 return e2, ρ) = 1 + I(e2, ρ) +N(e2, ρ)× I(e1, T (e2, ρ)) +N(e2, ρ)× 2O(T (e2,ρ))

I(for $v in e1 return e2, ρ) = 1 + I(e2, ρ) + I(e2, ()) +
N(e2, ρ)×N(e2, ())× I(e1, (T (e2, ρ) + 2T (e2, ()) + 5)) +
N(e2, ρ)× 2O(T (e2,ρ)) +N(e2, ())× 2O(T (e2,()))

In the above equations, the case of the element construction includes the complexity for the subtype check710

u <: ρ. The cases of let-expressions and for-loop expressions include the complexity of satisfiability checks
for the inferred type for the bound variable, e.g., C($var).

Lastly, we state the worst-case time complexity of our backward type inference for the XQuery core.

Theorem 5.10 (Complexity). Assume we are given an XQuery expression e and its output type ρ. Then

the set of solvable constraint-sets is computed in 2O(2(|e|+1)|ρ|) time by our inference system. That is, the715

overall cost is double exponential in terms of the given expression e.

Proof. Suppose S ← e : ρ. We obtain S in 2O(2|e||ρ|) time by Lemma 5.9. The size of S is O(22
|e||ρ|) by

Lemma 5.8. The size of any constraint-set C in S is the number of free variables in e, which is a constant.
Since the size of the largest type in S is O(2|e||ρ|) by Lemma 5.7, for each constraint-set C in S , its

satisfiability can be tested in 2O(2|e||ρ|) time by the decision procedure in [26]. Overall, the complexity of our720

inference system is 2O(2|e||ρ|) +O(22
|e||ρ|)× 2O(2|e||ρ|) which is simply 2O(2(|e|+1)|ρ|).

5.3. Soundness

Now we state the soundness property for our inference system. Below we use ` η : C to mean that if
$var 7→ s ∈ η, then ($var : ρ) ∈ C and s ∈ JρK.

Theorem 5.11 (Soundness). Let e and ρ be an XQuery expression and its output type, respectively. Suppose725

S ← e : ρ. Then for any C ∈ S such that C 6= {⊥}, if ` η : C and JeKη = s, then s ∈ JρK.

Proof. By induction on a derivation of S ← e : ρ. Here, we only show the case for the rule I-For. Other
cases are similarly proved. We have the following assumptions:

(1)
⊔

S∈SS ← for $v in e1 return e2 : ρ

(2) C0 ∈
⊔

S∈SS and ` η : C0730

(3) Jfor $v in e1 return e2Kη = s

Then, we need to prove s ∈ JρK.

(4) Let
⊔

S∈SS be S1 t . . . tSm.

(5) Without loss of generality, let C0 ∈ Si.

From the premises of the rule I-For, we have735

(6) S ← e2 : ρ

29

(7) S ′ ← e2 : ()

(8) C ∈ S and C ′ ∈ S ′

(9) S ′′ ← e1 : (C ′($v)∗, C($v), C ′($v)∗).Quant(ρ)

(10) Si = S ′′ u {C\$v u C ′\$v}740

From (3), we have

(11) Je1Kη = f1, . . . , fn
(12) s = Πf1,...,fnJe2Kη,$v 7→ fi

From (2), (5) and (10),

(13) ∃C ′0 ∈ S ′′ such that C0 = C ′0 u C\$v u C ′\$v and ` η : C ′0.745

By induction hypothesis on (9) with (11) and (13), we have

(14) f1, . . . , fn ∈ J(C ′($v)∗, C($v), C ′($v)∗).Quant(ρ)K.

Assume Quant(ρ) = 1. The case where Quant(ρ) = + is similarly proved using the following property:
ρ+, . . . , ρ+ = ρ+. Then, there exists j such that

(15) f1, . . . , fj−1 ∈ JC ′($v)∗K and thus fk ∈ JC ′($v)K where k = 1, . . . , j − 1750

(16) fj ∈ JC($v)K
(17) fj+1, . . . , fn ∈ JC ′($v)∗K and thus fk ∈ JC ′($v)K where k = j + 1, . . . , n

From (2), (5) and (10), we have ` η : C\$v and ` η : C ′\$v. Together with (15)–(17), we have

(18) ` η, $v 7→ fj : C

(19) ` η, $v 7→ fk : C ′ where k = 1, . . . , j − 1, j + 1, . . . , n755

By induction hypothesis on (6) and (7) with (18) and (19), respectively, we have

(20) Je2Kη,$v 7→ fj ∈ JρK
(21) Je2Kη,$v 7→ fk ∈ J()K where k = 1, . . . , j − 1, j + 1, . . . , n

From (20) and (21), we have s = Πf1,...,fnJe2Kη,$v 7→ fi ∈ JρK as desired.

Unlike the type inference for XPath axes, the type inference for the XQuery core is only sound and not760

complete, mainly because of the approximation introduced for for-loop expressions. From the soundness and
the decidability of the inference system, we deduce a sound typechecking algorithm as a corollary.

Corollary 5.12 (Typechecking). Let e be an XQuery expression with the only free variable $doc, which
denotes an input document. Let ρi be an input type (the type for $doc) and ρo an output type. Then there
exists an algorithm that says yes if S ← e : ρo and ∃C ∈ S such that C 6= {⊥} and ρi <: C($doc).765

In the corollary above, the use of variable $doc has no particular implication; it suffices to have a
name of some element that is considered as the root in the input type, e.g., e should be of the form
let $doc := /self:: ∗ return e ′. To typecheck a given expression e with input type ρi and output type
ρo, we first infer a constraint-set C from e and ρo using our backward type inference, and then simply check
the inclusion relation between ρi and the inferred type C($doc).770

30

6. Related Work and Discussion

6.1. Typechecking for XML Transformations

The problem of typechecking XML transformations has been extensively studied since the introduction of
XML. There are two major approaches, namely forward type inference and backward type inference. Given
an expression e that transforms XML documents of type ρi into documents of type ρo, forward type inference775

first computes the image O of the input type ρi under the transformation e, i.e., O := {e(t) | t ∈ ρi}, and
then checks if O ⊆ ρi. In contrast, backward type inference computes the pre-image I of the output type
ρo under e, i.e., I := {t | e(t) ∈ ρo}, and then checks if ρi ⊆ I. When types are modeled as regular tree
languages, exact typechecking may be done in the form of backward type inference by using tree transducers
as a model of XML transformations [10, 11, 12]. In contrast, in forward type inference, even for simple XML780

transformations, their image may not be regular, as illustrated in Section 5.1, and therefore typechecking
cannot be exact. Still, forward type inference is more intuitive than backward type inference, and thus many
practical XML programming languages such as XQuery [1, 3], XDuce [22], and CDuce [29] build on forward
type inference and instead introduce some approximation, i.e., some type-safe programs are rejected in these
languages. For a more detailed, general survey of typechecking for XML transformations, we refer the reader785

to [30, 31] and references therein. Below we discuss only closely related work on backward type inference
and precise type systems for XPath and XQuery.

6.2. Inverse Type Inference

A problem of inverse type inference, which is another name of backward type inference, has been exten-
sively investigated to develop an exact typechecking algorithm for XML transformations [9, 10, 11, 12, 13, 14].790

For example, Milo et al. [10] propose an exact inverse type inference algorithm for k-pebble tree transducers,
which are finite state tranducers that can mark nodes of the input tree using up to k different pebbles. Al-
though we can model a broad range of XQuery expressions using k-pebble tree transducers, the complexity of
typechecking is hyper-exponential, i.e., when using k pebbles, its complexity is O(hk+2(n)) with h0(n) = n
and hm+1(n) = 2hm(n).795

Maneth et al. [12] also study the problem of exact inverse type inference for tree transformations using
macro tree transducers (MTTs) [15], which can accumulate part of the input and copy it in the output.
Their transformation language called TL uses monadic second-order logic (MSO) as a pattern language,
which subsumes XPath without arithmetics and data value comparisons. By using MTTs and MSO, TL
can be used to describe many real-world XML transformations. Their formalism, however, is based on finite800

automata and thus requires for implementation purposes a translation from MSO to a finite automaton
which may introduce a non-elementary blow-up.

Perst and Seidl [11] extend MTTs with concatenation and propose macro forest transducers (MFTs) as a
model of XML transformations. They develop an exact inverse type inference algorithm for MFTs and show
that the complexity of typechecking is DEXPTIME-complete. Morever, by combining with a translation805

from a downward navigational fragment of XQuery into MFTs [32], MTFs can be used as an intermediate
language for a subset of XQuery. The translation, however, considers only XPath axes such as child, desc,
and following-sibling, and a restricted form of for-loop expressions, i.e., in for $v in e1 return e2, e1

must be a path expression.
In order to support backward axes, one may have to use tree-walking automata [33] as a pattern lan-810

guage. Indeed, a k-pebble tree transducer can be decomposed into a (k+ 1)-fold composition of tree-walking
transducers [16]. Similarly, a TL program using MSO patterns can be compiled into a composition of a
MTT and a macro tree-walking transducer, which can then be decomposed into a three-fold composition of
(stay) MTTs [12]. Therefore, the complexity of typechecking a TL program is quadruple exponential even if
we do not consider a possible blow-up in the translation of MSO patterns to finite automata. In this paper,815

we also study the problem of backward type inference, but develop a type inference system directly on the
XQuery core. We present an exact backward type inference algorithm for XPath axes whose complexity
is simple exponential. This result corresponds to the fact that the complexity of inverse type inference for
tree-walking transducers is also exponential [16]. As for the XQuery core, instead of trying to develop yet

31

another hyper-exponential algorithm, we introduce a sound approximation similar to the one used in forward820

type systems.

6.3. Precise Type Systems for XPath and XQuery

Typing XPath expressions has been a challenging topic. Most previous proposals for the XQuery static
type system, including the one standardized by the W3C [3], support only downward navigation in XML
trees. As thoroughly discussed in [19], it is mainly due to the discrepancy between the XML data model and825

the type model, namely regular tree types [2]. Since XPath backward axes are the main source of difficulty,
one may want to translate XPath selection queries with backward axes into equivalent queries with only
forward axes. Olteanu et al. [34, 35] propose such translations which generate a query containing the same
number of joins, i.e., identity-based equality, as reverse steps or a query without joins but of exponential
size. The translations, however, are defined only for XPath and it is unclear how to extend them to deal with830

XQuery-like languages. Møller et al. [36] propose static typechecking for XSLT [37] programs which builds
on a context-sensitive flow analysis. Although they introduce some approximation for abstract evaluation of
XPath axes with respect to DTDs, they experimentally validate using a number of benchmarks that their
algorithm is highly precise. Benzaken et al. develop a precise type inference system for XPath in their work
on type-based XML projection [38]. Their system handles backward axes and is also sound and complete835

for a particular class of regular tree types that are ∗-guarded, non-recursive, and parent-unambiguous. In
contrast, our inference system for XPath axes is exact with no such restrictions on types.

Benedikt and Cheney [39] propose a type system for the XQuery Update Facility language [40] assuming
the existence of a sound typechecker for XPath axes. In the work on independence analysis of XML queries
and updates [41], they use satisfiability solvers [20, 42, 43] to decide disjointness of selection queries, which840

may contain backward axes. In [42, 43], weak monadic second-order logic of two successors (WS2S) [44] is
used, which is one of the most expressive decidable logic when both regular tree types and XML queries are
considered. However, the satisfiability problem for WS2S is known to be non-elementary. Our work is based
on the same tree logic and its associated satisfiability solver used in [20]. The main difference is that while
[20] considers only XPath, we consider a core fragment of XQuery including element construction. Moreover,845

while in [20] values are defined as sets of nodes, in this work they are defined as sequences of nodes which
may come from different trees and also retain their original tree context independently for navigation.

Recently, Castagna et al. [17] and Genevès and Gesbert [19] independently propose an extended type
language to describe not only a given XML tree node but also its context. In [17], the authors extend the core
calculus of CDuce [29] with zipper data structures [18], which denote the position in the surrounding tree of850

the value they annotate as well as its current path from the root. By annotating not only values but also
types with zippers, they allow tree navigation in any direction and typecheck such navigational expressions
precisely (in their work, zipped values and zipped types play a similar role as focused trees and formula-
enriched sequence types, respectively). Then, they propose a translation from XQuery 3.0 Core [7, 45],
which newly added value and type case analysis and higher-order functions, into the extended CDuce and855

provide a type system for XQuery 3.0 via the translation. In contrast to [17], currently we do not support
function declarations and applications, and thus higher-order functions as well. However, because regular
tree types extended with arrow types can be translated into tree logic formulas and their subtype relation
can be decided through the logic’s decision procedure [46], we expect that our type system can be easily
extended with (higher-order) functions at least in theory.860

This work builds on our previous work [19] which proposes the idea of using focused trees to denote XML
values and of combining regular tree types with tree logic formulas to describe both tree nodes and their
contexts simultaneously, and thus supports all the major navigational features of the XQuery core. The
main difference is that while we use forward inference in [19], we use backward inference in this work. Our
backward type inference is arguably more complex because we need to analyze the structure of the output865

type as well as the given expression (in particular, inference rules for for-loop expressions are simpler in [19]),
but as a trade-off it provides an exact typechecking algorithm for XPath axes. Another difference is that
while we use a small-step operational semantics for the XQuery core in [19], we use a denotational semantics
in this work because it is more suitable for proving properties of our backward type inference. Considering
all these aspects, it would be quite interesting to combine the two approaches.870

32

7. Conclusion

In this paper, we propose a novel backward type inference system for XQuery as a complementary method
to forward type inference. Specifically, the contributions of the paper are summarized as follows. First, we
define a focused-tree-based denotational semantics for a navigational fragment of XQuery, including all
major XPath axes. Second, we propose a novel tree-logic-based backward type inference system for XPath875

axes and prove its soundness and completeness. In contrast to ours, forward type inference is only sound.
Finally, based on this result, we propose a sound backward type inference system for the XQuery core, with
a characterized complexity.

An interesting direction for future work would be to develop a bidirectional typechecking algorithm by
combining both backward and forward type inference methods. The basic idea is to typecheck for-loop880

expressions using forward type inference, thus obtaining a lower complexity than our backward approach,
while typechecking XPath axes using backward type inference, thus obtaining better precision than the
forward approaches such as in [17, 19]. In doing so, one possible difficulty would be to find minimal type
annotations to enable effective bidirectional typechecking.

Acknowledgement885

H. Im was supported in part by 2015 Research Grant from Kangwon National University and by
the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No.
2016R1C1B1015095).

References

[1] S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, J. Siméon, XQuery 1.0: An XML Query890

Language (Second Edition), W3C Recommendation (December 2010).
URL https://www.w3.org/TR/2010/REC-xquery-20101214/

[2] H. Hosoya, J. Vouillon, B. C. Pierce, Regular expression types for XML, ACM Trans. Program. Lang.
Syst. 27 (1) (2005) 46–90. doi:10.1145/1053468.1053470.

[3] D. Draper, M. Dyck, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys, J. Siméon, P. Wadler,895

XQuery 1.0 and XPath 2.0 Formal Semantics (second edition), W3C Recommendation (December 2010).
URL http://www.w3.org/TR/xquery-semantics/

[4] J. Clark, S. DeRose, XML Path Language (XPath) Version 1.0, W3C Recommendation (November
1999).
URL https://www.w3.org/TR/1999/REC-xpath-19991116/900

[5] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, J. Siméon, XML Path
Language (XPath) 2.0 (Second Edition), W3C Recommendation (December 2010).
URL http://www.w3.org/TR/xpath20

[6] J. Robie, D. Chamberlin, M. Dyck, J. Snelson, XML Path Language (XPath) 3.0, W3C Recommendation
(April 2014).905

URL http://www.w3.org/TR/xpath-30/

[7] J. Robie, D. Chamberlin, M. Dyck, J. Snelson, XQuery 3.0: An XML Query Language, W3C Recom-
mendation (April 2014).
URL http://www.w3.org/TR/xquery-30/

[8] D. Colazzo, C. Sartiani, Precision and complexity of XQuery type inference, in: Proceedings of the 13th910

International ACM SIGPLAN Symposium on Principles and Practices of Declarative Programming,
PPDP ’11, 2011, pp. 89–100. doi:10.1145/2003476.2003490.

33

https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2010/REC-xquery-20101214/
http://dx.doi.org/10.1145/1053468.1053470
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/
http://dx.doi.org/10.1145/2003476.2003490

[9] A. Tozawa, Towards static type checking for XSLT, in: ACM Symposium on Document Engineering,
2001, pp. 18–27.

[10] T. Milo, D. Suciu, V. Vianu, Typechecking for XML transformers, Journal of Computer and System915

Sciences 66 (1) (2003) 66–97. doi:10.1016/S0022-0000(02)00030-2.

[11] T. Perst, H. Seidl, Macro forest transducers, Inf. Process. Lett. 89 (3) (2004) 141–149. doi:10.1016/

j.ipl.2003.05.001.

[12] S. Maneth, A. Berlea, T. Perst, H. Seidl, XML type checking with macro tree transducers, in: Pro-
ceedings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database920

Systems, PODS ’05, 2005, pp. 283–294. doi:10.1145/1065167.1065203.

[13] A. Tozawa, XML type checking using high-level tree transducer, in: Proceedings of the 8th Inter-
national Symposium on Functional and Logic Programming, FLOPS ’06, 2006, pp. 81–96. doi:

10.1007/11737414_7.

[14] A. Frisch, H. Hosoya, Towards practical typechecking for macro tree transducers, in: Proceedings of the925

11th International Conference on Database Programming Languages, DBPL’07, Springer-Verlag, 2007,
pp. 246–260.

[15] J. Engelfriet, H. Vogler, Macro tree transducers, Journal of Computer and System Sciences 31 (1) (1985)
71–146. doi:10.1016/0022-0000(85)90066-2.

[16] J. Engelfriet, The time complexity of typechecking tree-walking tree transducers, Acta Informatica930

46 (2) (2009) 139–154. doi:10.1007/s00236-008-0087-y.

[17] G. Castagna, H. Im, K. Nguyen, V. Benzaken, A core calculus for XQuery 3.0: Combining navigational
and pattern matching approaches, in: Proceedings of the 24th European Symposium on Programming,
2015, pp. 232–256. doi:10.1007/978-3-662-46669-8_10.

[18] G. Huet, The zipper, J. Funct. Program. 7 (5) (1997) 549–554. doi:10.1017/S0956796897002864.935

[19] P. Genevès, N. Gesbert, XQuery and static typing: Tackling the problem of backward axes, in: Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Functional Programming, 2015, pp.
88–100. doi:10.1145/2784731.2784746.

[20] P. Genevès, N. Layäıda, A. Schmitt, Efficient static analysis of XML paths and types, in: Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI940

’07, 2007, pp. 342–351. doi:10.1145/1250734.1250773.

[21] N. Alon, T. Milo, F. Neven, D. Suciu, V. Vianu, XML with data values: typechecking revisited, Journal
of Computer and System Sciences 66 (4) (2003) 688–727. doi:10.1016/S0022-0000(03)00032-1.

[22] H. Hosoya, B. C. Pierce, XDuce: A statically typed XML processing language, ACM Trans. Internet
Technol. 3 (2) (2003) 117–148. doi:10.1145/767193.767195.945

[23] M. Murata, D. Lee, M. Mani, K. Kawaguchi, Taxonomy of XML schema languages using formal language
theory, ACM Trans. Internet Technol. 5 (4) (2005) 660–704. doi:10.1145/1111627.1111631.

[24] R. M. Amadio, L. Cardelli, Subtyping recursive types, ACM Trans. Program. Lang. Syst. 15 (4) (1993)
575–631. doi:10.1145/155183.155231.

[25] A. Brüggemann-Klein, D. Wood, One-unambiguous regular languages, Information and Computation950

140 (2) (1998) 229–253. doi:10.1006/inco.1997.2688.

[26] P. Genevès, N. Layäıda, A. Schmitt, N. Gesbert, Efficiently deciding µ-calculus with converse over finite
trees, ACM Trans. Comput. Logic 16 (2) (2015) 16:1–16:41. doi:10.1145/2724712.

34

http://dx.doi.org/10.1016/S0022-0000(02)00030-2
http://dx.doi.org/10.1016/j.ipl.2003.05.001
http://dx.doi.org/10.1016/j.ipl.2003.05.001
http://dx.doi.org/10.1016/j.ipl.2003.05.001
http://dx.doi.org/10.1145/1065167.1065203
http://dx.doi.org/10.1007/11737414_7
http://dx.doi.org/10.1007/11737414_7
http://dx.doi.org/10.1007/11737414_7
http://dx.doi.org/10.1016/0022-0000(85)90066-2
http://dx.doi.org/10.1007/s00236-008-0087-y
http://dx.doi.org/10.1007/978-3-662-46669-8_10
http://dx.doi.org/10.1017/S0956796897002864
http://dx.doi.org/10.1145/2784731.2784746
http://dx.doi.org/10.1145/1250734.1250773
http://dx.doi.org/10.1016/S0022-0000(03)00032-1
http://dx.doi.org/10.1145/767193.767195
http://dx.doi.org/10.1145/1111627.1111631
http://dx.doi.org/10.1145/155183.155231
http://dx.doi.org/10.1006/inco.1997.2688
http://dx.doi.org/10.1145/2724712

[27] A. Frisch, G. Castagna, V. Benzaken, Semantic subtyping: Dealing set-theoretically with function,
union, intersection, and negation types, J. ACM 55 (4) (2008) 19:1–19:64. doi:10.1145/1391289.955

1391293.

[28] S. Heubach, T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall/CRC, 2009.

[29] V. Benzaken, G. Castagna, A. Frisch, CDuce: An XML-centric general-purpose language, in: Proceed-
ings of the Eighth ACM SIGPLAN International Conference on Functional Programming, ICFP ’03,
2003, pp. 51–63. doi:10.1145/944705.944711.960

[30] A. Møller, M. I. Schwartzbach, The design space of type checkers for XML transformation languages,
in: Proceedings of the 10th International Conference on Database Theory, ICDT ’05, Springer-Verlag,
2005, pp. 17–36. doi:10.1007/978-3-540-30570-5_2.

[31] V. Benzaken, G. Castagna, H. Hosoya, B. C. Pierce, S. Vansummeren, XML typechecking, in: Encyclo-
pedia of Database Systems, Springer US, 2009, pp. 3646–3650. doi:10.1007/978-0-387-39940-9_788.965

[32] S. Hakuta, S. Maneth, K. Nakano, H. Iwasaki, XQuery streaming by forest transducers, in: IEEE 30th
International Conference on Data Engineering, ICDE ’14, 2014, pp. 952–963. doi:10.1109/ICDE.2014.
6816714.

[33] A. Aho, J. Ullman, Translations on a context free grammar, Information and Control 19 (5) (1971)
439–475. doi:10.1016/S0019-9958(71)90706-6.970

[34] D. Olteanu, H. Meuss, T. Furche, F. Bry, XPath: Looking forward, in: XML-Based Data Manage-
ment and Multimedia Engineering — EDBT 2002 Workshops, 2002, pp. 109–127. doi:10.1007/

3-540-36128-6_7.

[35] D. Olteanu, Forward node-selecting queries over trees, ACM Trans. Database Syst. 32 (1). doi:10.

1145/1206049.1206052.975

[36] A. Møller, M. O. Olesen, M. I. Schwartzbach, Static validation of XSL transformations, ACM Trans.
Program. Lang. Syst. 29 (4). doi:10.1145/1255450.1255454.

[37] J. Clark, XSL Transformations (XSLT) Version 1.0, W3C Recommendation (November 1999).
URL https://www.w3.org/TR/1999/REC-xslt-19991116

[38] V. Benzaken, G. Castagna, D. Colazzo, K. Nguyen, Optimizing XML querying using type-based docu-980

ment projection, ACM Trans. Database Syst. 38 (1) (2013) 4.

[39] M. Benedikt, J. Cheney, Semantics, types and effects for XML updates, in: Proceedings of the 12th
International Symposium on Database Programming Languages, DBPL ’09, Springer-Verlag, 2009, pp.
1–17. doi:10.1007/978-3-642-03793-1_1.

[40] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, J. Siméon, XQuery Update Facility 1.0,985

W3C recommendation (March 2011).
URL http://www.w3.org/TR/xquery-update-10/

[41] M. Benedikt, J. Cheney, Destabilizers and independence of XML updates, Proc. VLDB Endow. 3 (1–2)
(2010) 906–917. doi:10.14778/1920841.1920956.

[42] N. Klarlund, A. Møller, MONA Version 1.4 User Manual, BRICS (January 2001).990

[43] P. Genevès, N. Layäıda, Deciding XPath containment with MSO, Data Knowl. Eng. 63 (1) (2007)
108–136. doi:10.1016/j.datak.2006.11.003.

[44] J. Doner, Tree acceptors and some of their applications, Journal of Computer and System Sciences 4 (5)
(1970) 406 – 451. doi:10.1016/S0022-0000(70)80041-1.

35

http://dx.doi.org/10.1145/1391289.1391293
http://dx.doi.org/10.1145/1391289.1391293
http://dx.doi.org/10.1145/1391289.1391293
http://dx.doi.org/10.1145/944705.944711
http://dx.doi.org/10.1007/978-3-540-30570-5_2
http://dx.doi.org/10.1007/978-0-387-39940-9_788
http://dx.doi.org/10.1109/ICDE.2014.6816714
http://dx.doi.org/10.1109/ICDE.2014.6816714
http://dx.doi.org/10.1109/ICDE.2014.6816714
http://dx.doi.org/10.1016/S0019-9958(71)90706-6
http://dx.doi.org/10.1007/3-540-36128-6_7
http://dx.doi.org/10.1007/3-540-36128-6_7
http://dx.doi.org/10.1007/3-540-36128-6_7
http://dx.doi.org/10.1145/1206049.1206052
http://dx.doi.org/10.1145/1206049.1206052
http://dx.doi.org/10.1145/1206049.1206052
http://dx.doi.org/10.1145/1255450.1255454
https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xslt-19991116
http://dx.doi.org/10.1007/978-3-642-03793-1_1
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://dx.doi.org/10.14778/1920841.1920956
http://dx.doi.org/10.1016/j.datak.2006.11.003
http://dx.doi.org/10.1016/S0022-0000(70)80041-1

[45] M. Benedikt, H. Vu, Higher-order functions and structured datatypes, in: Proceedings of the 15th995

International Workshop on the Web and Databases, WebDB 2012, 2012, pp. 43–48.

[46] N. Gesbert, P. Genevès, N. Layäıda, Parametric polymorphism and semantic subtyping: The logi-
cal connection, in: Proceedings of the 16th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’11, 2011, pp. 107–116. doi:10.1145/2034773.2034789.

36

http://dx.doi.org/10.1145/2034773.2034789

	Introduction
	Syntax and Semantics of an XQuery Core
	Focused Trees
	XQuery Core
	Semantics

	Type Language
	Regular Tree Types
	Limitations

	A Tree Logic
	Formula-Enriched Sequence Types

	Inference for XPath Axes
	Inference Rules for self and parent
	Self
	Parent

	Other Axes
	Preceding Sibling
	Ancestor
	Next Sibling
	Child
	Self or Next Sibling
	Descendant

	Properties of Backward Type Inference for XPath axes

	Inference for the XQuery Core
	Inference Rules
	Complexity
	Complexity for XPath Axes
	Complexity for the XQuery Core

	Soundness

	Related Work and Discussion
	Typechecking for XML Transformations
	Inverse Type Inference
	Precise Type Systems for XPath and XQuery

	Conclusion

