Y. Achdou and F. Nataf, Low frequency tangential filtering decomposition, Numerical Linear Algebra with Applications, pp.129-147, 2007.
DOI : 10.1002/nla.512

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Agullo, L. Giraud, and Y. Jing, Block GMRES Method with Inexact Breakdowns and Deflated Restarting, SIAM Journal on Matrix Analysis and Applications, vol.35, issue.4, pp.1625-1651, 2014.
DOI : 10.1137/140961912

URL : https://hal.archives-ouvertes.fr/hal-00963704

H. Calandra, S. Gratton, R. Lago, X. Vasseur, and L. M. Carvalho, A Modified Block Flexible GMRES Method with Deflation at Each Iteration for the Solution of Non-Hermitian Linear Systems with Multiple Right-Hand Sides, SIAM Journal on Scientific Computing, vol.35, issue.5, pp.35-345, 2013.
DOI : 10.1137/120883037

URL : https://hal.archives-ouvertes.fr/hal-01332933

T. F. Chan, Rank revealing qr factorizations, Linear Algebra and its Applications, pp.67-82, 1987.
DOI : 10.1016/0024-3795(87)90103-0

URL : http://doi.org/10.1016/0024-3795(87)90103-0

A. Chronopoulos and C. , s-step iterative methods for symmetric linear systems, Journal of Computational and Applied Mathematics, vol.25, issue.2, pp.153-168, 1989.
DOI : 10.1016/0377-0427(89)90045-9

URL : http://doi.org/10.1016/0377-0427(89)90045-9

A. Guennouni, K. Jbilou, and H. Sadok, A block version of bicgstab for linear systems with multiple right-hand sides., ETNA. Electronic Transactions on Numerical Analysis, pp.16-129, 2003.

J. Erhel, K. Burrage, and B. Pohl, Restarted GMRES preconditioned by deflation, Journal of Computational and Applied Mathematics, vol.69, issue.2, pp.303-318, 1996.
DOI : 10.1016/0377-0427(95)00047-X

URL : http://doi.org/10.1016/0377-0427(95)00047-x

R. W. Freund and M. Malhotra, A block qmr algorithm for non-hermitian linear systems with multiple right-hand sides, Linear Algebra and its Applications, pp.119-157, 1997.

L. Grigori, S. Moufawad, and F. Nataf, Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication, SIAM Journal on Matrix Analysis and Applications, vol.37, issue.2, 2014.
DOI : 10.1137/140989492

URL : https://hal.archives-ouvertes.fr/hal-01065985

L. Grigori, F. Nataf, and S. Yousef, Robust algebraic Schur complement preconditioners based on low rank corrections, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01017448

M. Gutknecht and T. Schmelzer, Updating the qr decomposition of block tridiagonal and block hessenberg matrices generated by block krylov space methods, Appl. Num. Math, vol.85, pp.871-883, 2008.

M. H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand sides: an introduction., in: Modern Mathematical Models, Methods and Algorithms for Real World Systems, pp.420-447, 2007.

M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, vol.49, issue.6, pp.409-436, 1952.
DOI : 10.6028/jres.049.044

M. Hoemmen, Communication-Avoiding Krylov Subspace Mehtods, 2010.

J. Langou, Iterative methods for solving linear systems with multiple right-hand sides, CERFACS, 2003.

R. B. Morgan, A Restarted GMRES Method Augmented with Eigenvectors, SIAM Journal on Matrix Analysis and Applications, vol.16, issue.4, pp.1154-1171, 1995.
DOI : 10.1137/S0895479893253975

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. B. Morgan, Restarted block-GMRES with deflation of eigenvalues, Applied Numerical Mathematics, vol.54, issue.2, pp.222-236, 2005.
DOI : 10.1016/j.apnum.2004.09.028

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Nataf, F. Hecht, P. Jolivet, and C. Prud-'homme, Scalable domain decomposition preconditioners for heterogeneous elliptic problems, SC13, 2013.

A. A. Nikishin and A. Y. Yeremin, Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme, SIAM Journal on Matrix Analysis and Applications, vol.16, issue.4, pp.1135-1153, 1995.
DOI : 10.1137/S0895479893247679

Q. Niu, L. Grigori, P. Kumar, and F. Nataf, Modified tangential frequency filtering decomposition and its fourier analysis, Numerische Mathematik, vol.76, issue.1, pp.123-148, 2010.
DOI : 10.1007/s00211-010-0298-3

URL : https://hal.archives-ouvertes.fr/inria-00324378

D. P. Leary, The block conjugate gradient algorithm and related methods, Linear Algebra and its Applications, vol.29, pp.293-322, 1980.
DOI : 10.1016/0024-3795(80)90247-5

M. Robbé and M. Sadkane, Exact and inexact breakdowns in the block GMRES method, Linear Algebra and its Applications, vol.419, issue.1, pp.265-285, 2006.
DOI : 10.1016/j.laa.2006.04.018

Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, 2003.
DOI : 10.1137/1.9780898718003

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Simoncini and E. Gallopoulos, Convergence properties of block GMRES and matrix polynomials, Linear Algebra and its Applications, vol.247, pp.97-119, 1996.
DOI : 10.1016/0024-3795(95)00093-3

URL : http://doi.org/10.1016/0024-3795(95)00093-3

P. Sonneveld, CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems, SIAM Journal on Scientific and Statistical Computing, vol.10, issue.1, pp.36-52, 1989.
DOI : 10.1137/0910004

J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga, Comparison of Two-Level Preconditioners Derived from??Deflation, Domain Decomposition and Multigrid Methods, Journal of Scientific Computing, vol.34, issue.3, pp.39-340, 2009.
DOI : 10.1007/s10915-009-9272-6

H. A. Van and . Vorst, Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, vol.13, pp.631-644, 1992.

B. Vital, Étude de quelques méthodes de résolution de problèmes lineaires de grande taille sur multiprocesseur, 1990.

J. Wallis, R. Kendall, and T. Little, Constrained Residual Acceleration of Conjugate Residual Methods, SPE Reservoir Simulation Symposium, 1985.
DOI : 10.2118/13536-MS