S. Du, N. Zheng, L. Xiong, S. Ying, and J. Xue, Scaling iterative closest point algorithm for registration of m???D point sets, Journal of Visual Communication and Image Representation, vol.21, issue.5-6, pp.5-6, 2010.
DOI : 10.1016/j.jvcir.2010.02.005

I. After, 21 -Error: 0.04 m Reference -LIDAR Input -Spherical Photogr.-GT Scale, pp.1-09

. Registered-scale, 11 -Error: 4 mm After ICP -Scale: 4.24-Error: 1.7 mm Fig. 10: Results of the method on real datasets. Left Column: LIDAR vs. Modelled, processing time for first registration 170 secs. Middle Column: LIDAR vs. Spherical photogrammetry, 615 secs, Right Column: 3D Scanning vs. Multi-View Stereo

M. Bhattacharya and A. Das, Multimodality Medical Image Registration and Fusion Techniques Using Mutual Information and Genetic Algorithm-Based Approaches, Software Tools and Algorithms for Biological Systems, pp.441-449, 2011.
DOI : 10.1007/978-1-4419-7046-6_44

I. Reducindo, E. Arce-santana, D. Campos-delgado, and A. Alba, Evaluation of multimodal medical image registration based on Particle Filter, 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control, pp.406-411, 2010.
DOI : 10.1109/ICEEE.2010.5608648

N. Mellado, G. Guennebaud, P. Barla, P. Reuter, and C. Schlick, Growing least squares for the analysis of manifolds in scalespace, Comp. Graph. Forum, vol.31, issue.5, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00713678

J. Salvi, C. Matabosch, D. Fofi, and J. Forest, A review of recent range image registration methods with accuracy evaluation, Image and Vision Computing, vol.25, issue.5, pp.578-596, 2007.
DOI : 10.1016/j.imavis.2006.05.012

URL : https://hal.archives-ouvertes.fr/hal-00578333

O. Van-kaick, H. Zhang, G. Hamarneh, and D. Cohen-or, A Survey on Shape Correspondence, Computer Graphics Forum, vol.29, issue.6, pp.1681-1707, 2011.
DOI : 10.1111/j.1467-8659.2011.01884.x

G. Tam, Z. Cheng, Y. Lai, F. Langbein, Y. Liu et al., Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid, IEEE Transactions on Visualization and Computer Graphics, vol.19, issue.7, 2013.
DOI : 10.1109/TVCG.2012.310

H. Pottmann, S. Leopoldseder, and M. Hofer, Registration without ICP, Computer Vision and Image Understanding, vol.95, issue.1, 2004.
DOI : 10.1016/j.cviu.2004.04.002

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, Proceedings Third International Conference on 3-D Digital Imaging and Modeling, 2001.
DOI : 10.1109/IM.2001.924423

N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, Registration of point cloud data from a geometric optimization perspective, Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing , SGP '04, 2004.
DOI : 10.1145/1057432.1057435

S. Bouaziz, A. Tagliasacchi, and M. Pauly, Sparse Iterative Closest Point, Proc. of the Symp. on Geometry Processing, pp.1-11, 2013.
DOI : 10.1111/cgf.12178

P. Heider, A. Pierre-pierre, R. Li, and C. Grimm, Local shape descriptors, a survey and evaluation, Proc. of EG 3DOR 2011, pp.49-56, 2011.
DOI : 10.1007/s00371-012-0725-9

]. A. Johnson, Spin-images: A representation for 3-d surface matching, 1997.

E. Kalogerakis, D. Nowrouzezahrai, P. Simari, and K. Singh, Extracting lines of curvature from noisy point clouds, Computer-Aided Design, vol.41, issue.4, pp.282-292, 2009.
DOI : 10.1016/j.cad.2008.12.004

R. B. Rusu, N. Blodow, and M. Beetz, Fast Point Feature Histograms (FPFH) for 3D registration, 2009 IEEE International Conference on Robotics and Automation, pp.3212-3217, 2009.
DOI : 10.1109/ROBOT.2009.5152473

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Li and I. Guskov, Multi-scale features for approximate alignment of point-based surfaces, Proc. of the Symp. on Geometry Processing. Eurographics Association, 2005.

L. Skelly and S. Sclaroff, Improved feature descriptors for 3D surface matching, Two- and Three-Dimensional Methods for Inspection and Metrology V, 2007.
DOI : 10.1117/12.753263

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann, Robust global registration, Proc. of the Symp. on Geometry Processing, 2005.

A. Makadia, A. I. Patterson, and K. Daniilidis, Fully Automatic Registration of 3D Point Clouds, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 1 (CVPR'06), pp.1297-1304, 2006.
DOI : 10.1109/CVPR.2006.122

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Pottmann, Q. Huang, Y. Yang, and S. Hu, Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes, International Journal of Computer Vision, vol.24, issue.3, pp.277-296, 2006.
DOI : 10.1007/s11263-006-5167-2

S. Krishnan, P. Y. Lee, J. B. Moore, and S. Venkatasubramanian, Global registration of multiple 3d point sets via optimizationon-a-manifold, Symposium on Geometry Processing, pp.187-196, 2005.

F. Bonarrigo and A. Signoroni, An enhanced 'optimization-on-amanifold' framework for global registration of 3d range data, Proc. of 3DIM/PVT 2011, 2011.

D. Aiger, N. J. Mitra, and D. Cohen-or, 4-points congruent sets for robust pairwise surface registration, ACM Transactions on Graphics, vol.27, issue.3, pp.1-8510, 2008.
DOI : 10.1145/1360612.1360684

URL : https://hal.archives-ouvertes.fr/hal-00622443

N. Mellado, D. Aiger, and N. J. Mitra, Super 4PCS Fast Global Pointcloud Registration via Smart Indexing, Computer Graphics Forum, vol.3, issue.3, pp.205-215, 2014.
DOI : 10.1111/cgf.12446

E. Rodola-', A. Albarelli, F. Bergamasco, and A. Torsello, A scale independent selection process for 3d object recognition in cluttered scenes, Int. Journal of Computer Vision, vol.102, issue.1, 2013.

M. Corsini, M. Dellepiane, F. Ganovelli, R. Gherardi, A. Fusiello et al., Fully Automatic Registration of Image Sets on Approximate Geometry, International Journal of Computer Vision, vol.27, issue.8, pp.91-111, 2013.
DOI : 10.1007/s11263-012-0552-5

B. Lin, T. Tamaki, F. Zhao, B. Raytchev, K. Kaneda et al., Scale alignment of 3D point clouds with different scales, Machine Vision and Applications, 1989.
DOI : 10.1007/s00138-014-0633-2

R. Pintus, E. Gobbetti, and R. Combet, Fast and robust semiautomatic registration of photographs to 3d geometry, Proc. of VAST 2011, pp.9-16, 2011.

C. Wu, B. Clipp, X. Li, J. Frahm, and M. Pollefeys, 3d model matching with viewpoint-invariant patches (vip), Computer Vision and Pattern Recognition, 2008.

H. Kim and A. Hilton, Evaluation of 3D Feature Descriptors for Multi-modal Data Registration, 2013 International Conference on 3D Vision, 2013.
DOI : 10.1109/3DV.2013.24

S. Lee, M. Park, and K. Lee, Full 3D surface reconstruction of partial scan data with noise and different levels of scale, Journal of Mechanical Science and Technology, vol.74, issue.4, 2014.
DOI : 10.1007/s12206-014-0726-x

L. Quan and K. Tang, Polynomial local shape descriptor on interest points for 3D part-in-whole matching, Computer-Aided Design, vol.59, issue.0, 2015.
DOI : 10.1016/j.cad.2014.09.005

D. Cohen-steiner, P. Alliez, and M. Desbrun, Variational shape approximation, ACM Transactions on Graphics, vol.23, issue.3, pp.905-914, 2004.
DOI : 10.1145/1015706.1015817

URL : https://hal.archives-ouvertes.fr/inria-00070632

R. Raguram and J. Frahm, RECON: Scale-adaptive robust estimation via Residual Consensus, 2011 International Conference on Computer Vision, pp.1299-1306, 2011.
DOI : 10.1109/ICCV.2011.6126382

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Wang, M. M. Bronstein, A. M. Bronstein, and N. Paragios, Discrete minimum distortion correspondence problems for nonrigid shape matching, Proc. of SSVM
DOI : 10.1007/978-3-642-24785-9_49

URL : https://hal.archives-ouvertes.fr/inria-00498591

D. Raviv, A. M. Bronstein, M. M. Bronstein, R. Kimmel, and N. Sochen, Affine-invariant geodesic geometry of deformable 3D shapes, Computers & Graphics, vol.35, issue.3, 2011.
DOI : 10.1016/j.cag.2011.03.030

URL : http://arxiv.org/abs/1012.5936

R. M. Rustamov, Laplace-beltrami eigenfunctions for deformation invariant shape representation, Proc. of the Symp. on Geometry Processing, pp.225-233, 2007.

A. Dubrovina and R. Kimmel, Matching shapes by eigendecomposition of the laplace-beltrami operator, Proc. 3DPVT, 2010.

J. Sun, M. Ovsjanikov, and L. Guibas, A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion, Proc. of the Symp. on Geometry Processing, 2009.
DOI : 10.1111/j.1467-8659.2009.01515.x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. M. Bronstein and I. Kokkinos, Scale-invariant heat kernel signatures for non-rigid shape recognition, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1704-1711, 2010.
DOI : 10.1109/CVPR.2010.5539838

URL : https://hal.archives-ouvertes.fr/hal-00859448

K. Crane, C. Weischedel, and M. Wardetzky, Geodesics in heat, ACM Transactions on Graphics, vol.32, issue.5, pp.1-152, 2013.
DOI : 10.1145/2516971.2516977

G. Patané and M. Spagnuolo, Heat diffusion kernel and distance on surface meshes and point sets, Computers & Graphics, vol.37, issue.6, 2013.
DOI : 10.1016/j.cag.2013.05.019

H. Fadaifard, G. Wolberg, and R. Haralick, Multiscale 3D feature extraction and matching with an application to 3D face recognition, Graphical Models, vol.75, issue.4, pp.157-176, 2013.
DOI : 10.1016/j.gmod.2013.01.002

B. Romeny, Front-End Vision and Multi-Scale Image Analysis: Multiscale Computer Vision Theory and Applications, written in Mathematica, 2009.

D. G. Lowe, Object recognition from local scale-invariant features, Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999.
DOI : 10.1109/ICCV.1999.790410

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Scovanner, S. Ali, and M. Shah, A 3-dimensional sift descriptor and its application to action recognition, Proceedings of the 15th international conference on Multimedia , MULTIMEDIA '07, pp.357-360, 2007.
DOI : 10.1145/1291233.1291311

G. Flitton, T. Breckon, and N. M. Bouallagu, Object Recognition using 3D SIFT in Complex CT Volumes, Procedings of the British Machine Vision Conference 2010, pp.11-12, 2010.
DOI : 10.5244/C.24.11

A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud, Surface feature detection and description with applications to mesh matching, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206748

URL : https://hal.archives-ouvertes.fr/inria-00440407

C. Maes, T. Fabry, J. Keustermans, D. Smeets, P. Suetens et al., Feature detection on 3D face surfaces for pose normalisation and recognition, 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2010.
DOI : 10.1109/BTAS.2010.5634543

URL : https://lirias.kuleuven.be/bitstream/123456789/273216/3/3088.pdf

T. Darom and Y. Keller, Scale-Invariant Features for 3-D Mesh Models, IEEE Transactions on Image Processing, vol.21, issue.5, 2012.
DOI : 10.1109/TIP.2012.2183142

G. Guennebaud and M. Gross, Algebraic point set surfaces, ACM Trans. Graph, vol.26, issue.3, 2007.
DOI : 10.1145/1239451.1239474

URL : https://hal.archives-ouvertes.fr/inria-00354998

M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva, A benchmark for surface reconstruction, ACM Transactions on Graphics, vol.32, issue.2, pp.1-2017, 2013.
DOI : 10.1145/2451236.2451246

M. Corsini, P. Cignoni, and R. Scopigno, Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes, IEEE Transactions on Visualization and Computer Graphics, vol.18, issue.6, 2012.
DOI : 10.1109/TVCG.2012.34

N. Mellado, G. Ciaudo, G. Guennebaud, and P. Barla, Patate lib, 2013.

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli et al., Meshlab: an open-source mesh processing tool, Sixth Eurographics Italian Chapter Conference, p.129, 2008.

M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, pp.381-395, 1981.
DOI : 10.1145/358669.358692

A. Albarelli, E. Rodola, and A. Torsello, Loosely Distinctive Features for Robust Surface Alignment, Computer Vision?ECCV 2010, pp.519-532, 2010.
DOI : 10.1007/978-3-642-15555-0_38

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Johnson and M. Hebert, Using spin images for efficient object recognition in cluttered 3d scenes Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.21, issue.5, 1999.
DOI : 10.1109/34.765655

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Tamaki, S. Tanigawa, Y. Ueno, B. Raytchev, and K. Kaneda, Scale Matching of 3D Point Clouds by Finding Keyscales with Spin Images, 2010 20th International Conference on Pattern Recognition, 2010.
DOI : 10.1109/ICPR.2010.850

P. Besl and N. D. Mckay, A method for registration of 3-d shapes Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.14, issue.2, pp.239-256, 1992.