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Fleuves combinatoires et compression des preuves
Résumé : Cet article introduit la notion de fleuves combinatoires comme généralisation des preuves combinatoires
qui comprend également la coupure et la substitution comme méthodes de compression des preuves. Nous montrons
un procédure de normalisation des fleuves combinatoires, et la traduction entre les preuves syntactiques du calcul de
séquents, de l’inférence profonde, des systèmes de Frege, et les fleuves combinatoires.

Mots-clés : fleuves combinatoires, inference profonde, compression des preuves, élimination des coupures
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1. Introduction

Proof theory is a central area of theoretical computer
science, as it can provide the foundations not only for
logic programming and functional programming, but also
for the formal verification of software. Yet, despite the
crucial role played by formal proofs, we have no proper
notion of proof identity telling us when two proofs are
“the same”. This is very different from other areas of
mathematics, like group theory, where two groups are
“the same” if they are isomorphic, or topology, where two
spaces are “the same” if they are homeomorphic.

The problem is that proofs are usually presented by
syntactic means, and depending on the chosen syntactic
formalism, “the same” proof can look very different. In
fact, one can say that at the current state of art, proof
theory is not a theory of proofs but a theory of proof
systems. This means that the first step must be to find ways
to describe proofs independent from the proof systems.
In other words, we need a “syntax-free” presentation of
proofs.

Syntax-free presentations of proofs

The earliest attempts for such “syntax-free” proof
presentations were Andrews’ matings [And76] and Bibel’s
matrix proofs [Bib81] for propositional logic. However,
checking correctness of a mating or matrix proof is
exponential, and thus not more efficient than starting
a proof search from scratch. Furthermore, matings and
matrix proofs are not able to address proof normalization
procedures like cut elimination.

The first notion of syntax-free proof presentation that
was able to address these two issues are Girard’s proof-
nets for linear logic [Gir87], which are graphs that ab-
stract away from the syntax of the sequent calculus, such
that it is decidable in polynomial time whether a given
such graph is indeed a correct proof, and such that the
normalization of proofs via cut elimination is simpler in
proof-nets than in the sequent calculus.

Clearly, it became a research question whether such
a notion of proof-net is also possible for classical logic.
An immediate idea is to use exactly the same notion of
proof-net as for linear logic [Lau99], [Lau03], [Rob03].
However, these proof-nets depend on Gentzen’s sequent
calculus LK [Gen34]. They are neither able to capture
proofs written in other sequent calculi, like G3c [TS00],
nor other formalisms, like analytic tableaux or resolution.

This problem was addressed by B-nets [LS05], which
exhibit a confluent cut elimination procedure and can
capture proofs in most standard proof formalisms. How-
ever, their correctness criterion is exponential and the cut
elimination cannot be lifted to the sequent calculus.

This issue has been addressed by atomic flows [GG08],
[GGS10] that are more fine-grained than Boolean nets and
that have a number of different cut elimination procedures
that can all be lifted to a deep inference proof system.
However, atomic flows do not have a correctness criterion.
In fact, the work by Das [Das13] shows that there cannot
be a polynomial correctness criterion for atomic flows, if
integer factoring is hard for P/poly. The same problem
have the so-called C-nets [Str11] which are similar to
atomic flows, but additionally form a closed category.

Only the combinatorial proofs by Hughes [Hug06a]
have a polynomial correctness criterion and are indepen-
dent from any syntactic formalism. But they have no
notion of proof composition—they are inherently cut-
free. The only way to speak about cut in combinatorial
flows is to add additional formulas A ^ Ā to the conclu-
sion [Hug06b].

Methods of proof compression

The cut can be seen as a method of proof compression,
in the sense that a proof with cuts is in general much
smaller than the proof that is obtained by elimination the
cuts [Boo84]. In the area of structural proof theory this is a
well studied and well understood phenomenon. However,
there are other methods of proof compression, namely
extension and substitution [CR79], that are mainly studied
in the area of proof complexity. In fact, it is one of the
major open problems of proof complexity whether Frege
systems without extension can p-simulate Frege-systems
with extension. But from the viewpoint of structural proof
theory, the notions of extension and substitution have not
yet been much investigated.

It has long been known that in the presence of cut,
extension and substitution have the same strength with
respect to p-simulation (shown in [CR79] and [KP89]).
But only recently is has been shown that also in the
absence of cut, systems with extension and systems with
substitution can p-simulate each other [Str12], [NS15]. For
this, a deep inference proof systems has been used that
can speak about cut elimination and extension elimination
at the same time so that the two proof compression
mechanisms can be studied together. For Frege-systems,
which are the ordinary vehicle for studying extension and
substitution, there is no “cut-free” version.

However, so far, there is no “syntax-free” proof pre-
sentation that can deal with proofs using extension or
substitution.

Contributions and outline of this paper

The main contribution of this paper is a notion of
“syntax-free” proof presentation that comes with a poly-
nomial correctness criterion, that is independent of the
syntax of proof formalisms (like sequent calculi, tableaux
systems, resolution, Frege systems, or deep inference sys-
tems) and that can handle cut and substitution, and their
elimination. The main idea is to combine the advantages
of combinatorial proofs and of atomic flows, and add a
notion of substitution.

The paper is subdivided into three parts:
1) First, in Sections 2 and 3, we recall the preliminaries

on combinatorial proofs and then present an up-
down symmetric variant, that we will call simple
combinatorial flows. Then we define formal oper-
ations on combinatorial flows: (i) horizontal com-
position via the binary connectives ^ and _, (ii)
vertical composition via a cut, and (iii) substitution
of one proof into another. This last operation is more
general than just substituting formulas into formulas.
The first immediate observation is that combinatorial
flows form a proof system in the sense of Cook and
Reckhow [CR79].

RR n° 9048
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2) Then, in Sections 4–7, we will study the normaliza-
tion of combinatorial flows. A combinatorial flow is
normal iff it is a simple combinatorial flow, i.e., does
not contain any of the operations mentioned before.
We will see in Section 4 that the elimination of hor-
izontal composition does not yield an increase in the
size of the flow. But the elimination of substitution
(in Section 5) and of cut (in Section 6) will each
cause an exponential blow-up of the size of the flow.

3) Finally, in Sections 8 and 9, we will see how we can
translate between combinatorial flows and syntactic
proofs in ordinary deductive systems. We will cover
sequent calculus, deep inference, and Frege systems.
The expected results are:
‚ Simple combinatorial flows are p-equivalent to cut-

free sequent calculus.
‚ Simple combinatorial flows correspond to deep

inference proofs in a certain decomposition normal
form.

‚ Combinatorial flows with cut but without substi-
tution are p-equivalent to sequent calculus with
cut, to the symmetric deep inference system
SKS [BT01], and to ordinary Frege systems.

‚ Finally, combinatorial flows with cut and substi-
tution are p-equivalent to SKS with extension or
substitution and to Frege systems with extension
or substitution.

2. Preliminaries on combinatorial proofs

Combinatorial proofs have been introduced by Hughes
in [Hug06a] as a way to present proofs of classical logic
independent from a syntactic proof system. To make our
paper self-contained, we recall here the basic definitions.

We consider formulas (denoted by capital Latin letters
A,B,C, . . .) in negation normal form (NNF), generated
from a countable set V “ ta, b, c, . . .u of (propositional)
variables by the following grammar:

A,B ::“ a | ā | A ^B | A _B (1)

where ā is the negation of a. The negation can then be
defined for all formulas using the De Morgan laws:

¯̄A “ A A ^B “ Ā _ B̄ (2)

An atom is a variable or its negation. We use A to
denote the set of all atoms. Sometimes we use A ñ B
as abbreviation for Ā_B, and AôB as abbreviation for
pAñBq ^ pB ñAq.

A sequent Γ is a multiset of formulas, written as a list
separated by comma:

Γ “ A1, A2, . . . , An (3)

We write Γ̄ to denote the sequent Ā1, Ā2, . . . , Ān. We
define the size of a sequent Γ, denoted by |Γ|, to be the
number of atom occurrences in it. We write Ź

Γ (resp. ŽΓ)
for the conjunction (res. disjunction) of the formulas in Γ.

Remark 2.1. For simplicity we do not include the con-
stants J and K (for truth and falsum, respectively) into
the language. We can always recover them by letting
J “ a0 _ ā0 and K “ a0 ^ ā0 for some fresh variable
a0. Note that in this respect, classical logic is different

from linear logic, where the removal of the constants does
indeed change the logic.

Definition 2.2. A (simple) graph G “ xVG, EGy consists
of a set of vertices VG and a set of edges EG which
are two-element subsets of VG. If EG is not a set but
a multiset, we call G a multigraph. We omit the index
G when it is clear from context. For v, w P V we write
vw for tv, wu. The size of a graph G, denoted by |G|
is |VG| ` |EG|. A graph homomorphism f : G Ñ G1

is a function from VG to VG1 such that vw P EG

implies fpvqfpwq P EG1 . A simple graph G is called
a cograph if it does not contain four distinct vertices
u, v, w, z with uv, vw,wz P E and vz, zu, uw R E. For
a set L, a graph G is L-labeled if every vertex of G is
associated with an element L, called its label. For two
graphs G “ xV,Ey and G1 “ xV 1, E1y, we define the
operations union G _G1 “ xV Y V 1, E Y E1y and join
G ^G1 “ xV Y V 1, E Y E1 Y tvv1 | v P V, v1 P V 1uy.
If G and G1 are L-label-led graphs, then so are G _G1

and G ^G1 where every vertex keeps its original label.
For a simple graph G “ xV,Ey, also define its negation
Ḡ “ xV, tvw | v ‰ w, vw R Euy. If G is an A-labeled
graph (where A is the set of atoms) then all labels are
negated in Ḡ. For two homomorphisms f1 : G1 Ñ G11
and f2 : G2 Ñ G12 such that VG1 X VG2 “ H, we define
f1 _ f2 : G1 _G2 Ñ G11 _G12 to be the union of the
two homomorphisms f1 and f2, and f1 ^ f2 : G1 ^G2 Ñ

G11 ^G12 to be their join.

Construction 2.3. If we associate to each atom a a single
vertex labeled with a then every formula A uniquely deter-
mines a graph GpAq that is constructed via the operations
^ and _. For a sequent Γ “ A1, A2, . . . , An, we define

GpΓq “ Gp
Ž

Γq “ GpA1q _GpA2q _ ¨ ¨ ¨ _GpAnq .

Note that this construction entails that GpAq “ GpĀq.

Lemma 2.4. For two formulas A and B, we have GpAq “
GpBq iff A and B are equivalent modulo associativity and
commutativity of ^ and _:

A ^ pB ^ Cq “ pA ^Bq ^ C A ^B “ B ^A

A _ pB _ Cq “ pA _Bq _ C A _B “ B _A
(4)

Proof. Immediately from Construction 2.3.

Example 2.5. Let A “ pa ^ pb _ c̄qq _ pc ^ d̄q then Ā “
pā _ pb̄ ^ cqq ^ pc̄ _ dq. Below are the two graphs GpAq
and GpĀq “ GpAq:

b c
a

c̄ d̄

b̄ c̄
ā

c d
(5)

The following is well-known. It can already be found
in [Duf65], see also [Möh89], [Ret93].

Proposition 2.6. A graph G is a cograph iff it is con-
structed from a formula via Construction 2.3.

An important consequence of this and Lemma 2.4
is that for each cograph G there is a unique (up to
associativity and commutativity) formula tree determining
G. We denote this formula tree by F pGq.

Definition 2.7. Let G “ xV,Ey be a cograph, let V 1 Ď V ,
and let E1 be the restriction of E to V 1. We say that

RR n° 9048
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G1 “ xV 1, E1y is a subcograph of G iff for all v P V 1 and
w1, w2 P V zV

1 we have vw1 P E iff vw2 P E. In this
case we also say that V 1 induces a subcograph.

It follows immediately from the definition that any
subcograph is indeed a cograph. Furthermore, G1 is a
subcograph of G iff F pG1q is a subformula of F pGq.

Definition 2.8. Let G “ xV,Ey be a multigraph. A set
B Ď E of edges is called a matching if no two edges in
B are adjacent. A matching B is perfect if every vertex
v P VG is incident to an edge in B. An R&B-graph G “
xV,R,By is a triple such that xV,RZBy is a multigraph
such that B is a perfect matching and xV,Ry is a simple
graph (i.e., R is not allowed to have multiple edges). We
will use the notation GÓ for the simple graph xV,Ry. An
R&B-cograph is an R&B-graph G “ xV,R,By where
GÓ “ xV,Ry is a cograph.

Following [Ret03] we will draw B-edges in blue/bold,
and R-edges in red/regular. Below are four examples:

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

(6)

Also the following two definitions are taken
from [Ret03].

Definition 2.9. A path (resp. cycle) in a graph is said to
be elementary if it does not contain two equal vertices
(resp. but the first and last one). A path P in a graph
with a matching B is alternating if the edges of P are
alternately in B and not in B. Let G “ xV,R,By be an
R&B-graph. An æ-path in G is an elementary alternating
path in xV,R Z By. An æ-cycle in G is an elementary
alternating cycle of even length in xV,RZBy, so that when
turning around the cycle, the edges are still alternately in
B and not in B. A chord of a path (resp. cycle) is an
edge that is not part of the path (resp. cycle) but connects
two vertices of the path (resp. cycle). An æ-path (resp. æ-
cycle) is called chordless iff it does not have any chords.

Note that chords for æ-paths, resp. æ-cycles, are al-
ways R-edges because B is a perfect matching. We are
now ready to present a central concept for R&B-cographs:

Definition 2.10. An R&B-cograph G “ xV,R,By is criti-
cally chorded if xV,RZBy does not contain any chordless
æ-cycle, and any two vertices in V are connected by a
chordless æ-path.

In the examples in (6), the first one is not an R&B-
cograph, the other three are. The second one has a chord-
less æ-cycle, and the third one has no chordless æ-path
between the lowermost vertices. Only the last one is a
critically chorded R&B-cograph.

Definition 2.11. Let C “ xV,R,By be an R&B-graph
and f : CÓ Ñ G be a graph-homomorphism and let G
be A-labeled (where A is the set of atoms). We say f
is axiom-preserving iff xy P B implies that the labels of
fpwq and fpvq are dual to each other.

Definition 2.12. A graph homomorphism f is a skew
fibration, denoted as f : G � G1, if for every v P VG
and w1 P VG1 with fpvqw1 P E1G there is a w P VG with
vw P EG and fpwqw1 R E1G.

We are now ready to give the definition of a combi-
natorial proof together with the main result of [Hug06a]

Definition 2.13. A combinatorial proof of a sequent Γ
consists of a non-empty critically chorded R&B-cograph
C and an axiom-preserving skew-fibration f : CÓ � GpΓq.

In [Hug06a] and [Hug06b], combinatorial proofs are
depicted by writing the sequent Γ and drawing the graph
C above Γ such that for each atom occurrence in Γ, the
vertices of C that map to it are drawn directly above it.
Then the R-edges are shown, but the B-edges are indi-
cated by using different shapes for drawing the vertices.
Here is an example

˝ ˝ ˛
˛ ‚ ‚ Ÿ Ĳ Ĳ Ÿ

ā ^ c, pc̄ ^ āq _ b̄ _ c, pb _ bq ^ a
(7)

Remark 2.14. Our presentation of the condition on
the cograph in a combinatorial proof deters from
Hughes’ [Hug06a] and follows Retoré’s [Ret03] instead.
The reason is that Retoré makes the relation to proof
nets of linear logic [DR89] explicit. Also note, that the
condition on the cograph CÓ given by Hughes [Hug06a],
[Hug06b] is weaker than ours. It is equivalent to our
condition of C not containing any chordless æ-cycle. In
terms of linear logic, this is equivalent to the correctness
condition for MLL proof nets with the mix-rule [Ret03].
In our presentation here we also add the connectedness
via chordless æ-paths in order to reject mix. A priori, for
classical logic it is irrelevant whether mix (which says that
A ^B implies A _B) is allowed or not since it is deriv-
able using weakening. However, we can obtain stronger
results (in particular the Decomposition Theorem 8.2 in
Section 8) if we reject mix.

The first result of [Hug06a] is that combinatorial
proofs are sound and complete with respect to classical
logic.

Theorem 2.15 ([Hug06a]). A formula is a theorem of
classical propositional logic iff it has a combinatorial
proof.

The proof given in [Hug06a] is based on semantics,
and it works equally well with our stronger criterion. But
it is also possible to give a syntactic proof: in [Hug06b],
Hughes shows how a sequent calculus proof can be
translated into a combinatorial proof, which immediately
entails completeness. Then, as mentioned above, a crit-
ically chorded R&B-cograph corresponds to a proof in
multiplicative linear logic [Ret03], and a skew-fibration
corresponds to precisely the maps that can be constructed
from contraction and weakening [Hug06b], [Str07]. This
entails soundness.

The second important result of [Hug06a] is that com-
binatorial proofs form a proof system in the sense of Cook
and Reckhow [CR79].

Theorem 2.16 ([Hug06a]). Combinatorial proofs form a
proof system.

Proof (Sketch). We have to show that, given some formula
A, some R&B-graph C, and some mapping f : CÓ Ñ
GpAq, we can decide in polynomial time that
‚ CÓ is a cograph,

RR n° 9048
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‚ C is critically chorded,
‚ f is axiom-preserving, and
‚ f is a skew-fibration.

The first can be done in Op|VC| ` |RC|q as shown
in [CPS85]. The second is equivalent to correctness of
MLL-proof nets (shown in [Ret03]), which can be checked
in linear time (shown in [Gue99]). The last two conditions
on f are trivially polynomial.

3. Combinatorial flows

Definition 3.1. Given two sequents Γ and ∆, a simple
(combinatorial) flow φ from Γ to ∆, denoted by φ : Γ $
∆, is a combinatorial proof for the sequent Γ̄,∆. We write
φ : ˝ $ ∆ (resp. φ : Γ $ ˝) if Γ (resp. ∆) is empty.1 Let
φ be given by the R&B-cograph C and skew fibration
f : CÓ � GpΓ̄,∆q. Then the size of φ, denoted by |φ|, is
defined to be |CÓ| ` |Γ| ` |∆|.

Theorem 3.2. Simple combinatorial flows form a proof
system.

Proof. This follows immediately from Theorem 2.16 and
Definition 3.1.

Lemma 3.3. Let C, G1, and G2 be cographs and let
f : C � G1 _G2 be a skew fibration. Then there
are cographs C1 and C2 and graph homomorphisms
f1 : C1 � G1 and f2 : C2 � G2 such that C “ C1 _ C2

and f “ f1 _ f2.

Proof. This follows immediately from f being a homo-
morphism. We can let VC1

and VC2
be the inverse images

of VG1
and VG2

, respectively, under f , and let C1 and C2

be the induced subgraphs.

Notation 3.4. This lemma allows us to depict basic com-
binatorial flows in the following way. Let φ : Γ $ ∆ be
given, let f : CÓ � GpΓq _Gp∆q be the defining skew
fibration, and let CΓ and C∆ be the cographs determined
by Lemma 3.3 (i.e., CÓ “ CΓ _ C∆). If we write F pCΓq

and F pC∆q for the formula trees corresponding to the
cographs CΓ and C∆, respectively, then we can write φ
by writing Γ, F pCΓq, F pC∆q, and ∆ above each other,
draw the B-edges and indicate the mapping f by thin
(thistle) arrows. Figure 1 shows some examples. For better
readability, we allow in F pCΓq outermost ^ to be replaced
by comma, and in F pC∆q outermost _ to be replaced by
comma. Note that the first three flows in Figure 1 are
just “flipped variants” of each other, i.e., are defined by
the same R&B-cograph and skew fibration; the first one
being the same as the combinatorial proof in (7).

Schematically we can depict simple combinatorial
flows as follows:

Γ

∆

or

∆

or

Γ

where the middle and the right picture are used to indicate
that Γ or ∆, respectively, are empty.

1. Note that it cannot happen that both Γ and ∆ are empty.

Lemma 3.5. Let Γ,∆,Σ be sequents. There is a one-
to-one correspondence between the simple combinatorial
flows Γ $ Σ,∆ and Σ̄,Γ $ ∆. In particular, for any three
formulas A,B,C, there is a one-to-one correspondence
between the simple combinatorial flows A $ B _ C and
B̄ ^A $ C.

Proof. This follows immediately from Definition 3.1.

Observation 3.6. For every formula A, we have a simple
combinatorial flow idA : A $ A, that we call the identity
flow and that is defined by the identity skew fibration
GpAq _GpAq� GpĀ, Aq where the matching is defined
such that it pairs each vertex in VGpAq to itself in the
copy V

GpAq
. When applying Lemma 3.5 to idA we get

two simple combinatorial flows id^A : A ^ Ā $ ˝ and
id_A : ˝ $ Ā _A, as depicted below:

idA :

A

‚̈‚

‚̈‚

A

id^A :

A ^ Ā

‚̈‚ ^ ‚̈‚
id_A :

‚̈‚ _ ‚̈‚

Ā _A

(8)

Definition 3.7. A substitution is a mapping σ from propo-
sitional variables to formulas such that σpaq ‰ a for only
finitely many a.

We write Aσ for the formula obtained from applying
the substitution σ to the formula A. If σ “ ta1 ÞÑ

B1, . . . , an ÞÑ Bnu we also write Ara1{B1, . . . , an{Bns

for Aσ. This normally means that not only is each oc-
currence of ai in A is replaced by Bi in A, but also
each occurrence of āi is replaced by B̄i. We also need
a notation for substitutions in which an variable a and
its dual ā are not replaced by dual formulas. In this
case we write Ara1{B1, ā1{C1, . . . , an{Bn, ān{Cns for
the formula that is obtained from A by simultaneously
replacing every ai by Bi and every āi by Ci for each
i P t1, . . . , nu.

Definition 3.8. The set of combinatorial flows is defined
inductively as follows:
‚ A simple combinatorial flow φ : A $ B is a combi-

natorial flow.
‚ If φ : A $ B and ψ : C $ D are combinato-

rial flows then so are φ ^ ψ : A ^B $ C ^D and
φ _ ψ : A _ C $ B _D. This operation is called
horizontal composition.

‚ If φ : Γ $ A and ψ : A $ ∆ are combinatorial flows
then φ ˛ ψ : Γ $ ∆ is a combinatorial flow. This op-
eration is called vertical composition, concatenation,
or cut.

‚ If φ : Γ $ ∆ and ψ : C $ D are combinatorial
flows then φra{ψs : Γra{C, ā{D̄s $ ∆ra{D, ā{C̄s is
a combinatorial flow. This operation is called substi-
tution.

The size of a combinatorial flow φ, denoted by |φ|, is de-
fined to be the sum of the sizes of all simple combinatorial
flows occurring in φ.

Theorem 3.9. Combinatorial flows form a proof system.

Proof. This immediately follows from Definition 3.8 and
Theorem 3.2.
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‚ ^ ‚, ‚ ^ ‚, ‚, ‚, ‚ ^ ‚, ‚ ^ ‚

ā ^ c, pc̄ ^ āq _ b̄ _ c, pb _ bq ^ a

c̄ ^ b ^ pa _ cq, c̄ _ a

‚, ‚, ‚ _ ‚, ‚ _ ‚

‚ ^ ‚, ‚ ^ ‚

pb _ bq ^ a

a _ c, c̄ _ a

‚ _ ‚, ‚ _ ‚

‚, ‚, ‚ ^ ‚, ‚ ^ ‚

b̄ _ c, pb _ bq ^ a

b, pe ^ cq _ ā, a

‚, ‚, p‚ ^ ‚q _ ‚, ‚

‚ ^ ‚ ^ ‚, ‚ ^ ‚ ^ ‚

pb _ pa ^ bqq ^ ppe ^ āq _ cq

Figure 1. Examples of simple combinatorial flows

Remark 3.10. Theorems 3.2 and 3.9 provide the main
advantage of combinatorial flows over B-nets and N-
nets [LS05] and atomic flows [GG08], [GGS10]. For a
simple combinatorial flow φ : ˝ $ Γ, we can immediately
obtain the corresponding N-net by forgetting the cograph
xV,Ry and connecting the atoms of Γ according to the
(undirected) paths given by f and B. The example below
is obtained from the first flow in Figure 1:

ā ^ c, pc̄ ^ āq _ b̄ _ c, pb _ bq ^ a

(9)

The corresponding B-net is obtained by forgetting the
multiplicity of the edges. In the example in (9), the B-
net is identical to the N-net. For translating a simple
combinatorial flow φ : ∆ $ Γ into an atomic flow, we
not only forget the cograph xV,Ry but also the structure
of Γ and the order of the atoms in Γ. We only look at the
paths given by f and B and keep track of which atoms are
in Γ and which ones are in ∆. Here is the third example
in Figure 1 translated into an atomic flow:

b̄ c b b a

c c̄a a

A substitution-free combinatorial flow can straightfor-
wardly translated into atomic flows since they can be
composed horizontally and vertically. However, in each
translation, critical information is lost, such that it be-
comes impossible to recover the proof from an N-net or
an atomic flow in polynomial time.

Remark 3.11. Another related concept is the notion of
logical flow graph [Bus91], [Car97], in which all subfor-
mulas in all sequents in the proof are vertices, connected
by edges determined by the premise/conclusion relation
of the inference rules. Comparing to this, in combinatorial
flows only the atoms, and only in the endsequent and one
particular intermediate sequent are vertices. This “inter-
mediate sequent” is not explicitly visible in the sequent
calculus, but it is in the calculus of structures [GS01],
[BT01], [Gug07]. This will become evident in Section 8,
in particular, Theorem 8.2.

Definition 3.12. A combinatorial flow is normal if it is a
simple combinatorial flow. It is cut-free if the composition
operation ˛ is not used in it, and it is substitution-free if
the substitution operation is not used in it.

Normalization of a combinatorial flow means therefore
to remove the operations defined in Definition 3.8. The
following four Sections are dedicated to this.

4. Normalization I: Binary Connectives

Lemma 4.1. Let φ : A1 $ A2 and ψ : B1 $ B2 be
simple combinatorial flows. Then there are simple combi-
natorial flows χ : A1 ^B1 $ A2 ^B2 and ξ : A1 _B1 $

A2 _B2, such that |χ| ď |φ| ` |ψ| and |ξ| ď |φ| ` |ψ|.

Proof. Let C and D be the R&B-cographs for φ and
ψ, respectively, and let f : CÓ � GpĀ1q _GpA2q and
g : DÓ � GpB̄1q _GpB2q be their defining skew fi-
brations. Then, let C1 and C2 be the subgraphs of CÓ,
and f1 : C1 Ñ GpĀ1q and f2 : C2 Ñ GpA2q be the
corresponding restrictions of f , obtained via Lemma 3.3.
Similarly, let D1 and D2 be the corresponding subgraphs
of DÓ, and g1 and g2 the corresponding restrictions of g.

The simple flow χ : A1 ^B1 $ A2 ^B2 can now be
given by the R&B-cograph H and skew fibration h : HÓ �
GpA1 ^B1, A2 ^B2q which are defined as follows:

‚ If C2 and D2 are both not empty, then we define
HÓ “ D1 _ C1 _ pC2 ^D2q, and BH “ BC Z BD,
and h “ g1 _ f1 _ pf2 ^ g2q. To see that this is well-
defined, note that GpA1 ^B1, A2 ^B2q is the same
as GpB̄1q _GpĀ1q _ pGpA2q ^GpB2qq.

‚ If C2 is empty then C1 “ CÓ and we define H “ C
and let h behave as f does.

‚ If D2 is empty and C2 is not, then then D1 “ DÓ

and we define H “ D and let h behave as g does.
Then, H is an R&B-cograph (by construction) and it is
critically chorded. In the first case the situation is the same
is in the �-rule for MLL-proof nets (see [Ret03]) and in
the other two cases it is trivial. It also trivially follows
that h is axiom preserving. Therefore it only remains to
show that h is indeed a skew fibration. For this, observe
that g1 _ f1 _ pf2 ^ g2q fails to be a skew fibration only if
one of C2 or D2 is empty. On the other hand, f is a skew-
fibration from CÓ to GpB̄1q _GpĀ1q _ pGpA2q ^GpB2qq

if no vertex of C is mapped to GpA2q, i.e., C2 is empty.
Dually, we can define the simple flow ξ : A1 _B1 $

A2 _B2.

Remark 4.2. Note that it is crucial to check whether
C2 or D2 are empty, whereas for C1 and D1, this is
irrelevant. The difference is shown in Figure 2 (and dually
in Figure 3). Note also that there is an arbitrary choice to
make when both C2 and D2 are empty.
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A1

A2

^

B1

B2

Ñ

A1 ^B1

A2 ^B2

A1

A2

^

B1

B2

Ñ

A1 ^B1

A2 ^B2

A1

A2

^

B1

B2

Ñ

A1 ^B1

A2 ^B2

Figure 2. Conjunction of simple combinatorial flows

A1

A2

_

B1

B2

Ñ

A1 _B1

A2 _B2

A1

A2

_

B1

B2

Ñ

A1 _B1

A2 _B2

A1

A2

_

B1

B2

Ñ

A1 _B1

A2 _B2

Figure 3. Disjunction of simple combinatorial flows

a

‚

‚

a

‚ ‚

a ā

ā

‚

‚

ā

a ā

‚ ‚

ó ó ó ó

C

D D C̄

D̄

C̄

C D̄

Figure 4. Substitution of simple combinatorial flows

5. Normalization II: Substitution

In this section we eliminate the substitution in the flow
φra{ψs : Γ

“

a{C, ā{D̄
‰

$ ∆
“

a{D, ā{C̄
‰

shown below

Γ

∆

»

—

—

—

—

—

—

—

–

a

O

C

D

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(10)

Lemma 5.1. Let φ : Γ $ ∆ and ψ : C $ D be simple
combinatorial flows. Then there is a simple combinatorial
flow φ1 : Γra{C, ā{D̄s $ ∆ra{D, ā{C̄s.

The basic idea if the construction is as follows: The
simple combinatorial flow φ : Γ $ ∆ consists of simple
paths , and each simple path in φ whose endpoints
are occurrences of a or ā are replaced according to
Figure 4. To define this more formally, we first need the
notion of substitution in a graph.

Construction 5.2. Let C and D be disjoint graphs, and
let x be a vertex in C. With Crx{Ds we denote the graph
whose vertex set is V “ VCztxu Y VD and whose edge
set is E “ ECztxz | z P VCu Y tyz | y P VD, xz P ECu.

In other words, we remove x from C and replace it by D,
such that we have an edge from a remaining vertex y in
C to all vertices in D, whenever there was an edge from
y to x in C before.

Lemma 5.3. If C and D are cographs and x P VC, then
Crx{Ds is also a cograph.

Proof. If we take the formula tree for C, remove the leaf x,
and replace it by the formula tree of D, we obtain a
formula tree for Crx{Ds, which is therefore a cograph
by Proposition 2.6.

Construction 5.4. In Construction 5.2 we substituted
graphs for vertexes in other graphs. Now we use this
to substitute R&B-graphs for B-edges in other R&B-
graphs. Let C and D be disjoint R&B-graphs, and
let x, y P VC with xy P BC. Furthermore, let
DÓ “ D1 _ D2. We now define the R&B-graph H “

Crxy{xD1 _D2, BDys “ xVH, RH, BHy as follows. We
let xVH, RHy “ CÓrx{D1sry{D2s, applying Construc-
tion 5.2 twice, and let BH “ BCztxyu Y BD. In other
words, x is replaced by D1 and y by D2, and the B-edge
xy is removed an replaced by the matching BD.

Lemma 5.5. If C and D are R&B-cographs with xy P BC

and DÓ “ D1 _D2 then H “ Crxy{xD1 _D2, BDys also
is an R&B-cograph. Furthermore, if C and D are both
critically chorded, then so is H.

Proof. The graph H is a cograph for the same reason as in
Lemma 5.3. Now assume by way of contradiction that H is
not critically chorded. First, assume there is a chordless æ-
cycle C. If all vertices of C are inside VC or all inside VD,
we have immediately a contradiction to C and D having
no chordless æ-cycle. So, the cycle C must contain vertices
from VC and VD. Since by construction all B-edges are
fully contained in C or in D, we must have an R-edge
participating in C and connecting a vertex u P VC to a
vertex z P VD. Let v P VC be the unique vertex with uv P
BC. However, since uz P RH, we must by construction
also have vz P RH which is a chord for C. Contradiction.
For showing that that any two vertices in H are connected
by a chordless path, we can proceed similarly.

Proof of Lemma 5.1. Let φ and ψ as above and let Γ1 “
Γ
“

a{C, ā{D̄
‰

and ∆1 “ ∆
“

a{D, ā{C̄
‰

. For construct-
ing the simple flow φ1 : Γ1 $ ∆1, let C and D be
the R&B-cographs for φ and ψ, respectively, and let
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f : CÓ � GpΓ̄,∆q and g : DÓ � GpC̄,Dq be their
corresponding skew fibrations. For brevity, we write G
for GpΓ̄,∆q, and G1 for GpΓ̄1,∆1q. Next, let DC̄ and DD

be the two cographs obtained from DÓ via Lemma 3.3,
and let x1, . . . , xn P VC be the vertexes that f maps to a
vertex labeled ā in G, and and let y1, . . . , yn P VC be all
the vertexes that f maps to a vertex labeled a in G —
their number has to be identical, otherwise f could not
be axiom preserving. Without loss of generality, we can
assume that tx1y1, . . . , xnynu Ď BC. We can now give
the R&B-cograph C1 for φ1 as follows:

C1 “ Crx1y1{xDC̄ _DD, BDys ¨ ¨ ¨ rxnyn{xDC̄ _DD, BDys

applying Construction 5.4 for each B-edge in C con-
necting an a and an ā in G. Finally, we define
the map f 1 : C1 � G1 as follows: For every z P

VCztx1, . . . , xn, y1, . . . , ynu, we have f 1pzq “ fpzq. For
each xi that is mapped by f to a ā, we use g to map
the substituted copy of DC̄ in C1 to the corresponding
substituted copy of GpC̄q in G1. We proceed similarly for
each yi. It is easy to see that the so defined f 1 is indeed
a skew fibration and axiom preserving.

6. Normalization III: Cut

In this section, we show how cuts are eliminated.

Lemma 6.1. Let φ : Γ $ A and ψ : A $ ∆ be simple
combinatorial flows. Then there is a simple combinatorial
flow χ : Γ $ ∆.

Before we give the construction of χ, as indicated
below:

Γ

A

∆

;

Γ

∆

(11)

we need first to establish some preliminary properties on
skew fibrations and the composition of R&B-cographs.

Lemma 6.2. Let C, D, G, H be cographs.
1) If f : C � G is an isomorphism, then it is also a

skew fibration.
2) The map w : C � C _ D, which behaves like the

identity on C, is a skew fibration.
3) The map c : C _ C � C, which maps both copies

of C in the domain like the identity to the C in the
codomain, is a skew fibration.

4) The map m : pC ^Dq _ pG ^ Hq� pC _Gq ^ pD _ Hq,
which maps each C, D, G, H identically to itself, is
a skew fibration.

5) If f : C � G and g : D � H are skew fibra-
tions, then so are f _ g : C _D � G _ H and
f ^ g : C ^D � G ^ H.

6) If f : C � G and g : G � H are skew fibrations,
then so is g ˝ f : C � H.

Proof. Straightforward.

Construction 6.3. Let C and D be R&B-cographs such
that CÓ “ G _ H and DÓ “ H̄ _ K for some cographs
G, H, and K. We define the graph B “ xVB, EBy with
VB “ VG Z VH Z VK and EB “ BC Z BD. This allows
us to define the R&B-cograph E “ C ˛D as follows: We
let EÓ “ G_K, i.e., VE “ VGYVK and RE “ EGYEK,
and we let xy P BE iff there is a path from x to y in B.
Note that this indeed defines a perfect matching. For each
x in VE there is a unique y connected to x by a path in
B because BC and BD are both perfect matchings.

Lemma 6.4. If in Construction 6.3 the R&B-cographs C
and D are critically chorded, then so is E “ C ˛D.

Proof. This follows directly from the correspondence to
MLL´ proof nets given in [Ret03] and the standard cut
elimination result for linear logic proof nets. The idea used
here goes back to [KM71], and a more recent presentation
can be found in [Hug05].

Next, we define for a simple flow φ : Γ $ B ^ C the
two projections φl : Γ $ B and φr : Γ $ C that are simple
flows that “forget” the information about the deleted sub-
formula. Their existence should not be surprising since
from a proof of B ^ C one should be able to recover
proofs of B and of C from the same premises.2

Construction 6.5. Let φ : Γ $ B ^ C be given by
the R&B-cograph C and the skew fibration f : CÓ �
Gp

Ź

Γ̄q _ pGpBq ^GpCqq. Let UC Ď VC be the set of all
vertices in C that are mapped by f to atom occurrences
in C, and let UKC Ď VC be the smallest set such that

‚ If x P UC and xy P BC and y R UC then y P UKC .
‚ If x P UKC and xy P BC and y R UC then y P UKC .
‚ If V 1, V 2 Ď VC induce subcographs and V 1 Ď UKC

and V 1 X V 2 “ H and V 1YV 2 induces a subcograph
such that for all v1 P V 1 and v2 P V 2 we have
v1v2 P RC, then also V 2 Ď UKC .3

Now let VCl
“ V zpUCYU

K
C q, and let RCl

and BCl
be the

restrictions of RC and BC (respectively) to VCl
. Finally,

we can define φl : Γ $ B by Cl “ xVCl
, RCl

, BCl
y and

fl : C
Ó

l � Gp
Ź

Γ̄q _GpBq which is f restricted to VCl
.

It is easy to see that Cl is critically chorded: any
chordless æ-cycle would already be present in C, and any
two vertices are connected by the same chordless æ-path
as in C. We also have that VCl

‰ H (otherwise there
would be a chordless æ-cycle in C.). Finally, it is easy to
see that fl is axiom preserving and a skew fibration. Thus,
φl : Γ $ B is indeed a simple combinatorial flow. In the
same way we can define the right projection φr : Γ $ C.
The two examples below show the two projections for the

2. Note, however, that our construction here is different from the one
in [Hug06b], due to the absence of mix. Furthermore, we do not need
the notion of “laxness”.

3. This step can be seen as a combination of the Ó-, ó-, and Ò-steps
in the empire construction in [BvdW95].
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right-most flow in Figure 1:

b, pe ^ cq _ ā, a

‚

‚

b _ pa ^ bq

b, pe ^ cq _ ā, a

‚ _ ‚, ‚

‚

pe ^ āq _ c

(12)

In a dual way, we can define for a simple combina-
torial flow ψ : B _ C $ ∆ its left and right projections
ψl : B $ ∆ and ψr : C $ ∆.

Proof of Lemma 6.1. We proceed by induction on the
formula A. First, assume A “ B ^ C. Then, from φ : Γ $
B ^ C we can obtain the two projections φl : Γ $ B
and φr : Γ $ C, and from ψ : B ^ C $ ∆, we get
ψ1 : B,C $ ∆:

Γ

B ^ C

∆

;

Γ

B

Γ

C

B,C

∆

From ψ1 we can obtain (via Lemma 3.5) ψ2 : B $ ∆, C̄,
which can be composed with φl to get, by induction
hypothesis, a simple flow ξ : Γ $ ∆, C̄, from which (again
by Lemma 3.5) we can get a simple flow χ1 : C $ Γ̄,∆:

Γ

B

∆, C̄

IH
;

Γ

∆, C̄

L.3.5
;

C

Γ̄,∆

This can be composed with φr, which gives us by in-
duction hypothesis a simple flow χ2 : Γ $ Γ̄,∆, from
which we get a simple flow χ1 : Γ,Γ $ ∆ by applying
Lemma 3.5. Finally, we can apply Lemma 6.2 to get the
desired χ : Γ $ ∆:

Γ

C

Γ̄,∆

IH
;

Γ

Γ̄,∆

L.3.5
L.6.2
;

Γ

Γ,Γ

∆

If A “ B _ C we proceed analogous. It remains to show
the case when A is an atom, i.e., we have the situation:

Γ

‚ _ ¨ ¨ ¨ _ ‚

a

‚ ^ ¨ ¨ ¨ ^ ‚

∆

(13)

Let f : CÓ � Gp
Ź

Γ̄, aq and g : DÓ � Gpā,
Ž

∆q be the
skew fibrations of the simple flows φ : Γ $ a and ψ : a $
∆, respectively. Let x1, . . . , xn be the vertices in C that
are mapped by f to the a in the conclusion of φ, and let
y1, . . . , ym be the vertices in D that are mapped by g to
the occurrence of ā that represents the a in the premise
of ψ.

Now we define the map f˚ : CÓ � Gp
Ź

Γ̄, a _ ¨ ¨ ¨ _ aq
where we replace a by a disjunction of n copies of a,
and let f˚ behave as f on VCztx1, . . . , xnu and map
each xi to one copy of a. This clearly also is a skew
fibration, and in a similar way we define the skew fibration
g˚ : DÓ � Gpā _ ¨ ¨ ¨ _ ā,

Ž

∆q where we use m copies of
ā. We let φ˚ : Γ $ a _ ¨ ¨ ¨ _ a and ψ˚ : a ^ ¨ ¨ ¨ ^ a $ ∆
be the simple flows defined by f˚ and g˚, respectively.

We now apply the construction of Section 4 to form
the conjunction of m copies of φ˚, which yields a simple
flow φ̂ : Γ, . . . ,Γ $ pa _ ¨ ¨ ¨ _ aq ^ ¨ ¨ ¨ ^ pa _ ¨ ¨ ¨ _ aq, as
indicated below:

Γ

‚ _ ¨ ¨ ¨ _ ‚

a

;

Γ, . . . ,Γ

p‚ _ ¨ ¨ ¨ _ ‚q ^ ¨ ¨ ¨ ^ p‚ _ ¨ ¨ ¨ _ ‚q

pa _ ¨ ¨ ¨ _ aq ^ ¨ ¨ ¨ ^ pa _ ¨ ¨ ¨ _ aq

Next, we substitute in ψ˚ all simple flow paths that
start in the premise a ^ ¨ ¨ ¨ ^ a by the identity flow
id : a _ ¨ ¨ ¨ _ a $ a _ ¨ ¨ ¨ _ a (with m copies of a on each
side) as done in Section 5. Then we have a simple flow
ψ̂ : pa _ ¨ ¨ ¨ _ aq ^ ¨ ¨ ¨ ^ pa _ ¨ ¨ ¨ _ aq $ ∆ra{a _ ¨ ¨ ¨ _ as
as shown below:4

a

‚ ^ ¨ ¨ ¨ ^ ‚

∆

;

pa _ ¨ ¨ ¨ _ aq ^ ¨ ¨ ¨ ^ pa _ ¨ ¨ ¨ _ aq

p‚ _ ¨ ¨ ¨ _ ‚q ^ ¨ ¨ ¨ ^ p‚ _ ¨ ¨ ¨ _ ‚q

∆
“

a{a _ ¨ ¨ ¨ _ a
‰

We now plug φ̂ and ψ̂ together and apply Lemma 6.4
to get a simple flow χ1 : Γ, . . . ,Γ $ ∆ra{a _ ¨ ¨ ¨ _ as, to

4. There is a slight abuse of notation: ∆ra{a _ ¨ ¨ ¨ _ as stands for the
sequent obtained by replacing every occurrence of a in ∆ from which
there is a simple flow path to an a in the premise of ψ˚ by a _ ¨ ¨ ¨ _ a
(i.e., there might be occurrences of a in ∆ that are not replaced).
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which we apply Lemma 6.2

Γ

Γ, . . . ,Γ

p‚ _ ¨ ¨ ¨ _ ‚q ^ ¨ ¨ ¨ ^ p‚ _ ¨ ¨ ¨ _ ‚q

pa _ ¨ ¨ ¨ _ aq ^ ¨ ¨ ¨ ^ pa _ ¨ ¨ ¨ _ aq

p‚ _ ¨ ¨ ¨ _ ‚q ^ ¨ ¨ ¨ ^ p‚ _ ¨ ¨ ¨ _ ‚q

∆
“

a{a _ ¨ ¨ ¨ _ a
‰

∆ “ ∆
“

a{a
‰

;

Γ

∆

to get the desired simple flow χ : Γ $ ∆.

Remark 6.6. The non-confluence of cut elimination in
classical logic does not disappear by this method. There
is a non-deterministic choice in the atomic case. Either
we duplicate φ and perform a substitution in ψ, as we
did here, or we do the substitution a{a ^ ¨ ¨ ¨ ^ a (with m
copies of a) in φ and make n copies of ψ.

7. Normalization IV: Putting things together

If we define the relation Ñ on combinatorial flows
such that φ1 Ñ φ2 whenever φ1 can be reduced to φ2 by
one of the reductions given by Lemmas 4.1, 5.1, and 6.1,
then we have immediately the following:

Theorem 7.1. The relation Ñ is strongly normalizing,
and the normal forms are the simple combinatorial flows.

Proof. At each step the number of simple combinatorial
flows in the flow is reduced, and we always can make at
least one reduction when the flow is not simple.

Corollary 7.2. For each combinatorial flow φ : Γ $ ∆
there is a simple combinatorial flow φ1 : Γ $ ∆ with the
same premise and conclusion.

Note that the reduction Ñ reduces horizontal compo-
sition, cuts, ans substitutions at the same time, proceeding
according to the term structure of the given combinatorial
flow. As mentioned before the reduction step eliminating
horizontal composition (Section 4) does not increase the
size of the flow. However, cut elimination (Section 6) as
well as substitution elimination (Section 5) can lead to an
exponential blow-up. Thus, both cut and substitution can
be seen as mechanisms to compress the flow.

8. Relation to to deep inference proofs

In the remainder of this paper we show how com-
binatorial flows are related to syntactic proofs given in
some deductive formalism. We start with proofs in the
deep inference system SKS [BT01], which is shown in
Figure 5.5 The rules shown there should be read as rewrite

5. Note that there is a slight abuse of notation since our system
different from the original version of SKS in [BT01]: We do not have
explicit units in the language, and therefore our weakening rule is not
atomic (see also [Str12]).

A
aiÓ ´́´́ ´́ ´́ ´́ ´́´

A ^ pa _ āq

pA _Bq ^ C
s ´́´́ ´́ ´́ ´́ ´́ ´́
A _ pB ^ Cq

pā ^ aq _A
aiÒ ´́´́ ´́ ´́ ´́ ´́´

A

a _ a
acÓ ´́ ´́´

a

a
acÒ ´́ ´́´

a ^ apA ^ Cq _ pB ^Dq
m ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pA _Bq ^ pC _DqA
wÓ ´́´́ ´́´

A _B

B ^A
wÒ ´́´́ ´́´

A

Figure 5. Deep inference system SKS

rule schemes that can be applied inside an arbitrary (pos-
itive) formula context. In the rules aiÓ, aiÒ, acÓ, and acÒ,
the a can stand for any atom. In all rules, A, B, C, and
D, can stand for any formula, and in aiÓ we additionally
allow A to be empty, so to have proper proofs without
premise.6 We write

P

S
∥∥∥∥∥Φ

Q

and
´

S
∥∥∥∥∥Ψ

Q
(14)

to denote that there is a derivation Φ from P to Q, (re-
spectively the proof Ψ without premise for the formula Q)
in the system S, modulo the equivalence relation defined
by associativity and commutativity of ^ and _, as given
in (4). Below is an example of a derivation in SKS

c̄ ^ b ^ pa _ cq ^ pc̄ _ aq
awÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ pa _ cq ^ pc̄ _ aq
acÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ cq ^ pc̄ _ aq
2 ¨ s ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ pc ^ c̄q _ aq
aiÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ aq
2 ¨ s ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb ^ aq _ pb ^ aq
m ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb _ bq ^ pa _ aq
acÓ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb _ bq ^ a

(15)

where 2 ¨ s stands for two consecutive applications of the
s-rule. The size of a derivation Φ, denoted by |Φ| is the
sum of the sizes of the formula occurrences in Φ.

Each rule in system SKS can straightforwardly be
translated into a simple combinatorial flow, as indicated
in Figure 6, where the double lines indicate the identity
(see Observation 3.6). Note that for the m-rule there
are two possible translations. Since whenever A “ B
modulo associativity and commutativity (4) we have that
GpAq “ GpBq, an equivalence step in an SKS-proof can
translated into the identity flow. This is enough to give a
direct translation which proves the following:

Theorem 8.1. Substitution-free combinatorial flows p-
simulate system SKS.

Proof. We show that for every SKS derivation Ψ with
premise P and conclusion Q, there is a substitution-free
combinatorial flow ψ : P $ Q whose size is quadratic in

|Ψ|. For every rule
A

r ´́
B

in Figure 5 we have a simple

combinatorial flow φr : A $ B, as shown in Figure 6. By

6. We could also allow A to be empty in aiÒ, so to have a proper
refutation without conclusion.
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wÒ :

B ^A

‚̈‚

‚̈‚

A

acÒ :

a

‚ ^ ‚

‚ ^ ‚

a ^ a

m :

pA ^ Cq _ pB ^Dq

p‚̈‚ _ ‚̈‚q ^ p‚̈‚ _ ‚̈‚q

p‚̈‚ _ ‚̈‚q ^ p‚̈‚ _ ‚̈‚q

pA _Bq ^ pC _Dq

aiÓ:

A

‚̈‚

‚̈‚ ^ p‚ _ ‚q

A ^ pa _ āq

aiÒ:

pā ^ aq _A

p‚ ^ ‚q _ ‚̈‚

‚̈‚

A

s :

pA _Bq ^ C

p‚̈‚ _ ‚̈‚q ^ ‚̈‚

‚̈‚ _ p‚̈‚ ^ ‚̈‚q

A _ pB ^ Cq

wÓ :

A

‚̈‚

‚̈‚

A _B

acÓ :

a _ a

‚ _ ‚

‚ _ ‚

a

m :

pA ^ Cq _ pB ^Dq

p‚̈‚ ^ ‚̈‚q _ p‚̈‚ ^ ‚̈‚q

p‚̈‚ ^ ‚̈‚q _ p‚̈‚ ^ ‚̈‚q

pA _Bq ^ pC _Dq

Figure 6. Simple combinatorial flows for the rules in Figure 5

horizontally composing it sufficiently often with the iden-
tity flow (8), we can for every (positive) formula context
F t u produce a simple flow φF tru : F tAu $ F tBu. We
now proceed by induction on the length of Ψ to produce
ψ:

P

SKS
∥∥∥∥∥Ψ1

F tAu
r ´́ ´́ ´́
F tBu

; ψ “ ψ1 ˛ φF tru : P $ F tBu

where Q “ F tBu and ψ1 : P $ F tAu exists by induction
hypothesis.

Before we look at the other direction, we first look at
the expressive power of simple combinatorial flows. We
have the following result:

Theorem 8.2. Let A and B be formulas. There is a simple
combinatorial flow φ : A Ñ B iff there are formulas A1
and B1 such that there are derivations

A

twÒ,acÒ,mu
∥∥∥∥∥Φ1

A1
and

A1

taiÓ,aiÒ,su
∥∥∥∥∥Φ2

B1
and

B1

twÓ,acÓ,mu
∥∥∥∥∥Φ3

B

and such that |φ| “ Op|Φ1|`|Φ2|`|Φ3|q. Similarly, there
is a simple flow ψ : ˝ $ B iff there are derivations

´
taiÓ,su

∥∥∥∥∥Ψ2

B1
and

B1

twÓ,acÓ,mu
∥∥∥∥∥Ψ3

B

such that |ψ| “ Op|Ψ2| ` |Ψ3|q

Proof. First, assume we have an SKS derivation as shown
on the left in Figure 7. We let CÓ “ GpĀ1q _GpB1q.
By Lemma 8.4 we have a matching BC such that the
R&B-graph C is critically chorded. Then we can form

the SKS derivation using only rules wÓ, acÓ and m from
Ā1 _B1 to Ā _B by horizontally composing the dual of
Φ1 with Φ3. By Lemma 8.3 we get our skew fibration
f : CÓ � GpĀq _GpBq. Conversely, let φ be given, let
f : CÓ � GpĀ, Bq be its skew fibration, and let CĀ and
CB be the two cographs obtained via Lemma 3.3. If we
add labels to CĀ and CB such that f is label-preserving,
we can let A1 and B1 be the formulas determined by CĀ

and CB , respectively. We can now apply Lemma 8.4 to get
Φ2, and Lemma 8.3 to get Φ3 and (the dual of) Φ1.

Figure 7 depicts on the left the two statements of this
theorem, and shows on the right two examples. The first
is the derivation in (15) enriched with the “flow-graph”
tracing the atoms in the derivation. The corresponding
combinatorial flow is the second example in Figure 1. The
right-most example in Figure 7 corresponds to the third
simple flow in Figure 1.

The proof of Theorem 8.2 essentially consists of the
following two lemmas:

Lemma 8.3. Let A and B be formulas. There is a skew
fibration f : GpAq � GpBq iff there is a derivation Φ
from A to B in twÓ, acÓ,mu.

Proof. First assume Φ is given. Then we can obtain f
by composing the maps that are induced by the rule
applications in Φ. That this is a skew fibration follows
from Lemma 6.2. Conversely, assume f is given. Let us
call a vertex in B good if it is in the image of f , and
otherwise bad. Observe that whenever a vertex a in GpBq
is bad it cannot be connected by an edge to a good vertex.
Since there is at least one good vertex, we have for every
bad a a subformula C _D in B such that (i) a is inside
D, (ii) C contains a good vertex, and furthermore (iii)
all vertices in D are bad. We can therefore apply wÓ
deleting the D. Let B0 be the formula obtained from B by
repeating this process until no bad vertices remain. Then,
for each atom in a define na be the number of vertices
in GpAq that f maps to a, and let B1 be the formula
obtained from B0 by replacing each a by a _ ¨ ¨ ¨ _ a
where there are na copies. Then there is a derivation from
B1 to B0 using only the acÓ-rule. We can define the map
f 1 : GpAq� GpB1q which takes each vertex that f maps
to a to one for the new copies of a such that f is now a
bijection. It is easy to see that f 1 is still a skew fibration.
Now it follows from [Str07, Theorem 5.1] that there is a
derivation from A to B1 using only m. Alternatively, this
can also be shown using [Hug06b, Theorem 3.2] and the
fact that a general contraction can be decomposed into
acÓ and m [BT01].

Lemma 8.4. Let A and B be formulas. There is a
critically chorded R&B-graph C with CÓ “ GpĀq_GpBq
iff there is a derivation Φ from A to B in taiÓ, aiÒ, su.

Proof. This follows from the equivalence of critically
chorded R&B-graphs to MLL´ proofs nets [Ret03] and
the fact that taiÓ, aiÒ, su is sound and complete for
MLL´ (shown in, e.g., [Ret93], [Str03b], [Str03a]). A
direct translation from Φ into a critically chorded R&B-
graph can also be obtained via Lemma 6.4.

The cut-free variant of SKS is called KS, and consists
of the rules taiÓ, s, acÓ, awÓ,mu.

RR n° 9048



Combinatorial Flows and Proof Compression 13

A

B

ô

A
twÒ,acÒ,mu

∥∥∥∥∥Φ1

A1

taiÓ,aiÒ,su
∥∥∥∥∥Φ2

B1

twÓ,acÓ,mu
∥∥∥∥∥Φ3

B

B

ô

´
taiÓ,su

∥∥∥∥∥Ψ2

B1

twÓ,acÓ,mu
∥∥∥∥∥Ψ3

B

c̄ ^ b ^ pa _ cq ^ pc̄ _ aq
awÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ pa _ cq ^ pc̄ _ aq
acÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ cq ^ pc̄ _ aq
2 ¨ s ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ pc ^ c̄q _ aq
aiÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b ^ b ^ pa _ aq
2 ¨ s ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb ^ aq _ pb ^ aq
m ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb _ bq ^ pa _ aq
acÓ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

pb _ bq ^ a

pa _ cq ^ pc̄ _ aq
2 ¨ s ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

a _ pc ^ c̄q _ a
aiÒ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́

a _ a
2 ¨ aiÓ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

ppb̄ _ bq ^ aq _ ppb̄ _ bq ^ aq
2 ¨ s ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b̄ _ b̄ _ pb ^ aq _ pb ^ aq
m ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b̄ _ b̄ _ ppb _ bq ^ pa _ aqq
awÓ, 2 ¨ acÓ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

b̄ _ c _ ppb _ bq ^ aq

Figure 7. Left: Statements of Theorem 8.2 Right: Examples corresponding to the second and third example in Figure 1

Corollary 8.5. System KS p-simulates simple combinato-
rial flows.

Proof. This follows immediately from the second part of
Theorem 8.2.

Remark 8.6. Note that the other direction does not follow.
In a KS proof, the rules s and m can be interleaved, and
this behavior cannot be captured by simple combinatorial
flows.

Corollary 8.7. System SKS p-simulates substitution-free
combinatorial flows.

Proof. Let φ be a substitution-free combinatorial flow.
Then every simple flow occurring in φ can be translated
into a SKS derivation (as shown on the left in Figure 7).
These derivations can be composed horizontally and ver-
tically, according to the structure of φ.

After having established the substitution-free combina-
torial flows are p-equivalent to SKS, let us now investigate
what happens when substitution is present. The substitu-
tion rule in a deductive system is given as follows:

A
sub ´́´

Aσ
(16)

It replaces a formula A by the formula that is obtained by
applying the substitution σ to A.

We define sSKS to be the system SKS ` sub. It is
important to note that unlike the other rules (shown in
Figure 5) the rule sub in (16) cannot be applied inside a
context. It is always applied to the whole formula. The
reason is that the rule is not “strongly sound”, in the
sense that the premise does not imply the conclusion, as
it is the case with the other inference rules. This means,
in particular, that it does not make sense to speak of
derivations in sSKS, but only of proofs with no premise.

Theorem 8.8. Combinatorial flows p-simulate sSKS.

The basic idea of the proof is to simulate the appli-
cation of a substitution σ “ ta1 ÞÑ B1, . . . , an ÞÑ Bnu

in the sub-rule in sSKS by the substitution of the identity
flow idBi for the variable ai for each i “ 1..n. But since
in combinatorial flows the replacement is not performed
simultaneously, we have to do a renaming first, in order
to avoid unwanted variable capturing.

Proof of Theorem 8.8. We show that for every sSKS
proof Ψ of a formula Q, there is a combinatorial flow
ψ : ˝ $ Q whose size is quadratic in |Ψ|. We proceed as
in the proof of Theorem 8.1 by induction on the length
of Ψ. It only remains to show the case where the bottom-
most rule applied is sub:

´
sSKS

∥∥∥∥∥Ψ1

A
sub ´́´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́´

A
“

a1{B1, ā1{B̄1, . . . , an{Bn, ān{B̄n

‰

where the substitution is σ “ ta1 ÞÑ B1, . . . , an ÞÑ Bnu.
By induction hypothesis there is a combinatorial flow
ψ1 : ˝ $ A. In ψ1 we replace all occurrences of a1, . . . , an
by fresh variables a11, . . . , a

1
n, respectively (and ā1, . . . , ān

by ā11, . . . , ā
1
n). The important point is that a11, . . . , a

1
n

are chosen such that none of B1, . . . , Bn contains any
occurrence of one of a11, ā

1
1, . . . , a

1
n, ā

1
n. Then we can form

the combinatorial flow

ψ “ ψ1ra11{idB1
s . . . ra1n{idBn

s

where idBi
is the identity flow for Bi (see Obser-

vation 3.6). Then the conclusion of ψ is Aσ “

A
“

a1{B1, ā1{B̄1, . . . , an{Bn, ān{B̄n

‰

.

For the other direction, some more work is necessary.
The reason is that in sSKS, substitution is a global rule,
whereas in combinatorial flows it is a local activity, which
is more flexible. To solve this problem, we use the notion
of extension, due to [Tse68], which allows for abbrevia-
tions in a syntactic proof, by allowing additional proper
axioms (called extension axioms) of the shape

ai ôBi 1 ď i ď k (17)

where k is a fixed natural number, the ai are fresh proposi-
tional variables (called extension variables) which abbre-
viate formulas Bi (called extension formulas), such that

a variable ai does neither occur in the premise
of the proof, nor in the conclusion of the proof,
nor in any Bj with j ď i.

(18)

There are two ways to add extension to SKS. The first,
as done in [BG09], is to use the conjunction of the
axioms (17) as premise in an SKS-derivation (14). The
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second one, as done in [Str12], [NS15], is to transform
the axioms (17) into deep inference rules:

ai
extÓ ´́́

Bi

āi
extÓ ´́́

B̄i

B̄i
extÒ ´́́

āi

Bi
extÒ ´́́

ai
(19)

Unlike the substitution rule (16), the rules in (19) can
be applied deeply in any context (provided the global
condition (18) is satisfied), and thus are local, and can be
used to simulate the substitution in combinatorial flows.
We let eSKS “ SKS` extÓ ` extÒ.

Theorem 8.9. System eSKS p-simulates combinatorial
flows.

Proof. The basic idea is to use the extension rules in (19)
to simulate the substitution in combinatorial flows. We
show that for every combinatorial flow ψ : P $ Q there
is a eSKS derivation Ψ with premise P and conclusion
Q whose size is polynomial in |ψ|. We proceed as in the
proof of Corollary 8.7 by induction on the structure of ψ,
and we only have to consider the case where ψ “ φra{
πs : Ara{C, ā{D̄s $ Bra{D, ā{C̄s with φ : A $ B and
π : C $ D. We have the following three derivations

A

eSKS
∥∥∥∥∥Φ

B

C

eSKS
∥∥∥∥∥Π

D

D̄

eSKS
∥∥∥∥∥Π̄

C̄

.

where the first two exist by induction hypothesis, and
the third one is the contrapositive of the second. Let
a1, . . . , al be the extension variables of Φ, let al`1, . . . , ak
be the ones of Π, and let E1, . . . , Ek be the corresponding
extension formulas. By induction hypothesis, Φ and Π
both obey (18), and without loss of generality we can
assume that none of a1, . . . , ak occurs in any of A, B, C,
D. Thus, (18) is also globally satisfied, and this remains
so when we add aôC as additional extension axiom, i.e.,
we let ak`1 “ a and Ek`1 “ C. Now we can let Ψ be
the following derivation:

Ara{C, ā{D̄s

eSKS
∥∥∥∥∥Π̄˚

Ara{C, ā{C̄s

textÒu
∥∥∥∥∥Θ2

A

eSKS
∥∥∥∥∥Ψ

B

textÓu
∥∥∥∥∥Θ1

Bra{C, ā{C̄s

eSKS
∥∥∥∥∥Π˚

Bra{D, ā{C̄s

where Θ1 and Θ2 consist only of application of the exten-
sion rules (19) for the new axiom aôC. The derivation Π˚

consists of several copies of Π, one for each occurrence
of a in B, and similarly, Π̄˚ consists of several copies of
Π̄, one for each occurrence of ā in A.

Corollary 8.10. Combinatorial flows and sSKS and eSKS
are all p-equivalent to each other.

Proof. We only need to show that sSKS p-simulates eSKS.
So, let Φ be a proof of a formula B in eSKS. We can
replace all instances of extÒ in Φ by derivations in the

id ´́ ´́´
a, ā

Γ, A,B
_ ´́´́ ´́ ´́ ´́

Γ, A _B

Γ, A ∆, B
^ ´́´́ ´́ ´́ ´́ ´́ ´́ ´́

Γ,∆, A ^B

Γ
weak ´́´́´

Γ, A

Γ, A,A
cont ´́´́ ´́ ´́

Γ, A

Γ, A ∆, Ā
cut ´́´́ ´́ ´́ ´́ ´́ ´́ ´́

Γ,∆

Figure 8. A sequent calculus for classical logic

system taiÓ, aiÒ, s, extÓu whose size is polynomial in the
size of the used extension formula. (How this is done
can already be found in [GS01, Thm.2.6 and Rem.2.8].)
Then we can use the construction in [Str12] to obtain the
corresponding proof Φ1 of B in sSKS.

9. Sequent Calculus and Frege Systems

In [Hug06b], Hughes has already shown how to trans-
late (cut-free) sequent calculus proofs into combinatorial
proofs, using the notion of lax combinatorial proofs. We
show here a translation of sequent proofs into simple
combinatorial flows that does not need this detour. Then
we show how sequent proofs with cut are translated into
(substitution-free) combinatorial flows with cut.

Figure 8 shows the one-sided sequent calculus for
classical propositional logic that we will use here, and that
we call LK.7 But it should be clear that any other sound
and complete sequent system could be used as well. A
proof Π in LK is called cut-free if it does not use the cut-
rule. The size of a proof Π in LK, denoted by |Π| is the
sum of the sizes of the sequents occurring in Π.

Theorem 9.1. Simple combinatorial flows p-simulate cut-
free LK.

Proof. We proceed by induction on the structure of Π and
make a case analysis on the bottom-most rule application
in Π. In the case of id we use the identity flow for a
(see Observation 3.6). The case for the _-rule is trivial
since a simple combinatorial flow for Γ, A,B is the same
as a combinatorial flow for Γ, A _B. For cont and weak
we compose the skew fibration that we have by induction
hypothesis with the corresponding skew fibration that is
given by Lemma 6.2. The only non-trivial case is the one
for ^. By induction hypothesis we have two simple flows
π1 : ˝ $ Γ, A and π2 : ˝ $ B,∆. By Lemma 3.5 we have
two simple flows π11 : Γ̄ $ A and π2 : ∆̄ $ B. To these,
we apply the construction of Section 4 to get the simple
flow π1 : Γ̄, ∆̄ $ A ^ B. We apply again Lemma 3.5 to
get π : ˝ $ Γ,∆, A ^B, as desired.

Theorem 9.2. Cut-free LK p-simulates simple combina-
torial flows.

Proof (Sketch). Let φ : ˝ $ Γ be a simple flow given by
the critically chorded R&B-graph C and the skew fibration
f : CÓ � GpΓq. Then C represents an MLL´ proof of the
sequent Γ1 that is obtained from the formula tree of C
where the vertices are labeled with their image under f .
Therefore we have a sequent proof of Γ1 using the rules

7. There is a slight abuse of the name, since Gentzen’s original
LK [Gen34] was a two-sided system, and the rule for disjunction was
“additive”. However, the spirit is the same, in the sense that the branching
rules (cut and conjunction) are multiplicative, and there are explicit
weakening and contraction rules.
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id, _, and ^ in the first line in Figure 8. Then, it has been
shown in [Hug06b], [Str07] that every skew fibration can
be obtained from isomorphisms and the maps c and w
(see Lemma 6.2) by horizontal and vertical composition.
Thus, we can derive Γ from Γ1 by “deep applications” of
weak and cont. These can now be permuted up until they
are applied at the root of the formulas.

Note that the proof of Theorem 9.1 makes crucial use
of Lemma 3.5. Fortunately, we can have a similar result
for combinatorial flows:

Lemma 9.3. Let Γ,∆,Σ be sequents. For every combi-
natorial flow φ : Σ,Γ $ ∆ there is a combinatorial flow
φ˚ : Γ $ Σ̄,∆, and vice versa.

Proof. Let φ1 “ id_Σ ^ idΓ :
Ź

Γ $ p
Ž

Σ̄ _
Ź

Σq ^
Ź

Γ
(see Observation 3.6), let φ2 : p

Ž

Σ̄ _
Ź

Σq ^
Ź

Γ $
Ž

Σ̄ _ p
Ź

Σ ^
Ź

Γq be the simple flow corresponding to
s in SKS (see Figure 6), and let φ3 “ idΣ̄ _

φ :
Ž

Σ̄ _ p
Ź

Σ ^
Ź

Γq $
Ž

Σ̄ _
Ž

∆. Then we can let
φ˚ “ φ1;φ2;φ3. The other direction is similar.

Remark 9.4. Observe that here we do not have a bijection
(as it is the case for simple flows), and that the construc-
tion is not size preserving as in Lemma 3.5. However,
we do have that |φ˚| “ Op|φ|q, which is enough for the
following.

Theorem 9.5. Substitution-free combinatorial flows are
p-equivalent to LK.

Proof (Sketch). The material presented in this paper al-
lows us to give two simple ways to directly translate LK-
proofs into combinatorial flows. First, we can use the same
construction as for Theorem 9.1, using Lemma 9.3 instead
of Lemma 3.5, and use the vertical flow composition to
simulate the cut-rule in LK. Second, we can use the same
construction as in the proof of Theorem 8.1: for each
rule in Figure 8 we can give a corresponding simple flow,
which we then compose according to the structure of Π.

Alternatively, we can prove the theorem by using the
fact that LK and SKS are p-equivalent [BT01], [BG09]
and conclude by Theorem 8.1 and Corollary 8.7.

For Frege systems we have a similar result. Recall
that a Frege system consists of some finite (but complete)
set of axioms and the rule modus ponens that allows to
deduce B from A and Ā _ B. We speak of an extended
Frege system if we add extension axioms (17). Finally, we
speak of a Frege system with substitution if we add the
sub-rule (16) to a Frege system.

Theorem 9.6. Substitution-free combinatorial flows are
p-equivalent to Frege systems. Combinatorial flows (with
substitution) are p-equivalent to Frege systems with sub-
stitution and to extended Frege systems.

Proof. It has been shown in [BG09] (and [Str12]) that
Frege systems (resp. Frege system with substitution,
resp. extended Frege systems) are p-equivalent to SKS
(resp. sSKS, resp. eSKS). Hence, the theorem follows
from the results of the previous section.

Remark 9.7. As before, it is straightforward to translate
Frege proofs directly into combinatorial flows, without the
detour via SKS: we first observe that every axiom can be

translated into a simple combinatorial flow, and then the
modus ponens rule can be simulated in the same way as
the cut-rule in the sequent calculus. For the substitution
rule we use the same construction as for sSKS in the proof
of Theorem 8.8.

10. Conclusion and Future Work

In this paper we proposed a solution to the problem
of finding syntax-independent presentations of classical
proofs that can also cover proof compression mechanisms
that are usually studied in the area of proof complex-
ity. This way, they can serve as a notion of proof cer-
tificate [Mil11] that goes beyond mere cut-free sequent
proofs.

Furthermore, the cut elimination presented in Sec-
tion 6 can, together with the results of Section 8 also be
used as an alternative normalization procedure for SKS
derivations, since the normal forms are streamlined in the
sense of [GG08] and [GGS10].

The obvious next step is to include first-order quan-
tifiers in the presentation. There is already preliminary
work by Hughes [Hug14] in this direction, but it still has
to be investigated how the various notions of composition
and normalization discussed in this paper behave in the
presence of quantifiers.

Another direction of possible future research is ques-
tion whether combinatorial flows can form some free
category (in the same sense as MLL proof nets form the
free unit-free star-autonomous category [HS16]) and the
relation to categorical combinators [Cur86].
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[KP89] Jan Krajı́ček and Pavel Pudlák. Propositional proof systems,
the consistency of first order theories and the complexity of
computations. The Journal of Symbolic Logic, 54(3):1063–
1079, 1989.

[Lau99] Olivier Laurent. Polarized proof-nets: proof-nets for LC
(extended abstract). In Jean-Yves Girard, editor, Typed
Lambda Calculi and Applications (TLCA 1999), volume
1581 of LNCS, pages 213–227. Springer, 1999.

[Lau03] Olivier Laurent. Polarized proof-nets and λµ-calculus. The-
oretical Computer Science, 290(1):161–188, 2003.

[LS05] François Lamarche and Lutz Straßburger. Naming proofs
in classical propositional logic. In Paweł Urzyczyn, editor,
TLCA’05, volume 3461 of LNCS, pages 246–261. Springer,
2005.

[Mil11] Dale Miller. A proposal for broad spectrum proof certifi-
cates. In J.-P. Jouannaud and Z. Shao, editors, CPP: First
International Conference on Certified Programs and Proofs,
volume 7086 of Lecture Notes in Computer Science, pages
54–69, 2011.
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