Sparse Bayesian Non-linear Regression for Multiple Onsets Estimation in Non-invasive Cardiac Electrophysiology

Abstract : In the scope of modelling cardiac electrophysiology (EP) for understanding pathologies and predicting the response to therapies, patient-specific model parameters need to be estimated. Although per-sonalisation from non-invasive data (body surface potential mapping, BSPM) has been investigated on simple cases mostly with a single pacing site, there is a need for a method able to handle more complex situations such as sinus rhythm with several onsets. In the scope of estimating cardiac activation maps, we propose a sparse Bayesian kernel-based regression (relevance vector machine, RVM) from a large patient-specific simulated database. RVM additionally provides a confidence on the result and an automatic selection of relevant features. With the use of specific BSPM descriptors and a reduced space for the myocardial geometry, we detail this framework on a real case of simultaneous biventricular pacing where both onsets were precisely localised. The obtained results (mean distance to the two ground truth pacing leads is 18.4mm) demonstrate the usefulness of this non-linear approach.
Type de document :
Communication dans un congrès
Mihaela Pop. Functional imaging and modelling of the heart 2017, Jun 2017, Toronto, Canada. Springer International Publishing, pp.230-238, 2017, Functional imaging and modelling of the heart 2017. 〈10.1007/978-3-319-59448-4_22〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01498602
Contributeur : Sophie Giffard-Roisin <>
Soumis le : jeudi 30 mars 2017 - 11:53:00
Dernière modification le : mercredi 30 mai 2018 - 13:56:03

Fichier

FIMH_2017_cameraready.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Sophie Giffard-Roisin, Hervé Delingette, Thomas Jackson, Lauren Fovargue, Jack Lee, et al.. Sparse Bayesian Non-linear Regression for Multiple Onsets Estimation in Non-invasive Cardiac Electrophysiology. Mihaela Pop. Functional imaging and modelling of the heart 2017, Jun 2017, Toronto, Canada. Springer International Publishing, pp.230-238, 2017, Functional imaging and modelling of the heart 2017. 〈10.1007/978-3-319-59448-4_22〉. 〈hal-01498602〉

Partager

Métriques

Consultations de la notice

462

Téléchargements de fichiers

238