Self-similarity in urban wireless networks: Hyperfractals

Philippe Jacquet 1, 2 Dalia Popescu 2, 3
3 DYOGENE - Dynamics of Geometric Networks
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, CNRS - Centre National de la Recherche Scientifique : UMR 8548, Inria de Paris
Abstract : We introduce a model of Poisson patterns of fixed and mobile nodes on lines designed for urban wireless networks. The pattern obeys to " Hyperfractal " rules of dimension larger than 2. The hyperfractal pattern is best suitable for capturing the traffic over the streets and highways in a city. We show that the network capacity under ad hoc routing algorithms scales much better than with the classic uniform Poisson shot model. The scaling effect depends on the hyperfractal dimensions. We show this results in two different routing models: nearest neighbor routing with no collision, minimum delay routing model assuming slotted Aloha and signal to interference ratio (SIR) capture condition, power-path loss and Rayleigh fading. The novelty of the model is that, in addition to capturing the irregularity and variability of the node configuration, it exploits self-similarity, a characteristic of urban wireless networks.
Type de document :
Communication dans un congrès
Workshop on Spatial Stochastic Models 
for Wireless Networks (SpaSWiN), May 2017, Paris, France. 2017
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger
Contributeur : Dalia-Georgiana Popescu <>
Soumis le : jeudi 30 mars 2017 - 18:14:30
Dernière modification le : jeudi 11 janvier 2018 - 06:28:03


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01498987, version 1




Philippe Jacquet, Dalia Popescu. Self-similarity in urban wireless networks: Hyperfractals. Workshop on Spatial Stochastic Models 
for Wireless Networks (SpaSWiN), May 2017, Paris, France. 2017. 〈hal-01498987〉



Consultations de la notice


Téléchargements de fichiers