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Abstract

Motivated by applications to proof assistants based on depen-
dent types, we develop and prove correct a strong reducer andβ-
equivalence checker for theλ-calculus with products, sums, and
guarded fixpoints. Our approach is based on compilation to the
bytecode of an abstract machine performing weak reductions on
non-closed terms, derived with minimal modifications from the
ZAM machine used in the Objective Caml bytecode interpreter, and
complemented by a recursive “read back” procedure. An imple-
mentation in the Coq proof assistant demonstrates important speed-
ups compared with the original interpreter-based implementation of
strong reduction in Coq.
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D.3.1 [Programming Languages]: Language Classifications—
applicative (functional) languages; D.3.4 [Programming Lan-
guages]: Processors—compilers, interpreters; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—operational semantics, partial evaluation; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical
Logic—lambda calculus and related systems, proof theory; I.1.3
[Symbolic and Algebraic Manipulation]: Languages and Sys-
tems—evaluation strategies; I.2.3 [Artificial Intelligence ]: Deduc-
tion and Theorem Proving
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1 Introduction

It is folklore thatβ-reduction in theλ-calculus is the computation
model underlying functional programming languages. Actually,
functional languages implement onlyweakβ-reduction, whereby
reductions are not performed on function bodies until functions are
applied to actual arguments. Efficient compiled implementations
of weak reduction are widely known and deployed, based either on
environments and closures or on graph reduction, and implemented
either as abstract machines or by direct machine code generation.

In contrast, this paper focuses onstrong reduction, whereβ-
reductions are also performed on function bodies. The practical
need for strong reduction appears in two areas. The first area is par-
tial evaluation, also known as program specialization: specializing
a function applied to some known arguments (the other arguments
remaining unknown) amounts to strongly normalizing a partial ap-
plication of the function. The other area where strong reduction is
required, which prompted the work presented here, is type checking
/ proof checking in type systems / logics based on dependent types,
such as LF or the Calculus of Constructions [14, 7, 21], which are at
the basis of proof assistants such as Alf, Coq, Elf, Lego and NuPRL.
In these systems, dependent types may contain arbitrary terms, and
types are compared up toβ-equivalence of the terms they contain,
as captured by the following conversion rule:

E ` a : τ τ
β≈ τ′

(conv)
E ` a : τ′

Thus, type checking in these systems, or equivalently proof check-
ing, involve performing strongβ-reductions inside the types to be
compared, until the reducts are syntactically equal.

Most, if not all, proof assistants of the Coq/HOL family implement
these strong reductions in a purely interpretative way, by walk-
ing over a tree-based representation of terms. Despite various im-
plementation tricks involving explicit substitutions, this interpreta-
tive approach can become a performance bottleneck when devel-
oping and checking proofs with large computational content, such
as proofs based onreflection. Proof by reflection is characterized
by the use of efficient decision procedures, proved correct once and
for all, to replace long proof derivations. A typical example is the
use of computations on binary decision diagrams to prove results
on boolean formulas [23]. Another example is Appel and Haken’s
famous proof of the 4-color theorem [2], which involves check-
ing colorability of a finite, but large, number of well-chosen planar
graphs: rather than developing a proof of 4-colorability for every
such graph, a proved decision procedure is invoked on all of them.



The present paper reports on the design and implementation of a
strong evaluator and equivalence tester for the Coq proof assistant
that eliminates most of the interpretive overhead via compilation
to the byte-code of a virtual machine. In sections 2 and 3, we first
show how strong reduction can be implemented by a recursive com-
bination ofweak symbolic reduction(weak reduction of terms con-
taining free variables) andreadback(reconstruction of a term in
normal form from the head normal form returned by the weak sym-
bolic evaluator). While developed independently, this combination
is similar to online type-directed partial evaluation [12, 22]; how-
ever, we give a new presentation of this approach that paves the
way to an implementation of weak symbolic reduction that avoids
explicit run-time tests “is this term symbolic or not?”.

In section 4, we develop one such efficient implementation of weak
symbolic reduction, as an abstract machine and its associated com-
pilation scheme. The abstract machine is a minor extension of the
ZAM abstract machine [16] that is at the heart of the Objective
Caml bytecode interpreter [17], and reuses all the work that has
been expended in making the latter efficient.

Both the abstract machine and its compilation scheme have been
proved correct with respect to the weak reduction semantics, and
the proof was mechanically checked by Coq; section 5 reports on
this proof development. Performance figures obtained on a mod-
ified version of the Coq proof assistant are reported in section 6.
We end this paper by a discussion of related work in section 7, and
some concluding remarks in section 8.

2 Strong Reduction for the Pureλ-calculus

We first present our strong reduction technique on the simplest
functional language of all: the pureλ-calculus.

2.1 The Pureλ-calculus

The syntax of the calculus is given by

Terms: a ::= x | λx.a | a1 a2

Terms are identified up to renaming ofλ-bound variables (α-
conversion). The strong reduction relation⇒ consists of the fa-
miliar β-reduction rule, plus a context rule allowing reduction in
arbitrary subterms, including below a lambda:

(λx.a) a′ ⇒ a{x← a′} (β)
Γ(a) ⇒ Γ(a′) if a⇒ a′ (context)

with Γ ::= λx.[ ] | [ ] a | a [ ].

We write
∗⇒ for the reflexive and transitive closure of⇒. In the

following, we assume that allλ-termsa considered are strongly
normalizing: there are no infinite reduction sequences starting from
a. In our setting, this property is guaranteed by the type system of
the Calculus of Constructions.

We are interested in two computational problems. The first is to
compute the normal formN (a) of a closed, strongly normalizing
terma. This is the unique term such thata

∗⇒N (a) andN (a) does
not reduce. The second problem is to decide whether two closed,
strongly normalizing termsa1 anda2 areβ-equivalent, writtena1≈
a2. This equivalence is defined bya1≈ a2 if and only if there exists
a terma such thata1

∗⇒ a anda2
∗⇒ a.

2.2 Strong Reduction by Iterated Symbolic Weak
Reduction and Readback

To compute the normal form of a closed terma, our approach is
first to compute the head normal form (also called value) ofa us-
ing an off-the-shelf weak evaluator. Such an evaluator performs
β-reductions anywhere in the term except under aλ-abstraction.
Thus, the value ofa is of the formλx.a′, wherea′ is, in general, not
in normal form. To obtain the normal form ofa, all that remains to
do is recursively compute the normal formN (a′) of a′; then, we
will have N (a) = N (λx.a′) = λx. N (a′).

A slight difficulty arises here:a′ is not necessarily closed, since
the formal parameterx may occur free ina′. Thus, we cannot just
run our off-the-shelf weak evaluator ona′, since such evaluators
work only on closed terms. To circumvent this problem, we enrich
the term algebra with the ability to represent and manipulate free
variables during weak reduction. More formally, we inject the pure
λ-termsa into the following algebra of extended termsb:

Extended terms: b ::= x | λx.b | b1 b2 | [x̃ v1 . . . vn]
Values: v ::= λx.b | [x̃ v1 . . . vn]

Here,x̃ is a constant, uniquely associated with the identifierx, but
not subject to alpha-conversion. The extended term[x̃] is a run-
time representation of the free variablex. Since free variables can
be applied during weak reduction, we also need run-time represen-
tations[x̃ v1 . . . vn] for applications of a free variablex to arguments
v1, . . . ,vn.

We now formalize the symbolic weak reduction of extended, closed
termsb. (“Symbolic” here means that this weak reduction knows
how to handle free variables as represented by[. . .] terms.) To be
more specific, and to match exactly the implementation of symbolic
weak reduction by an abstract machine presented in section 4, we
impose a call-by-value, right-to-left evaluation strategy. The sym-
bolic weak reduction relation→ is defined by the following three
rules:

(λx.b) v → b{x← v} (βv)
[x̃ v1 . . . vn] v → [x̃ v1 . . . vn v] (βs)

Γv(a) → Γv(a′) if a→ a′ (contextv)

with Γv ::= [] v | b [ ].

Rule(βv) is the familiar call-by-value function application rule. It
handles the case where the function part of an application evaluates
to a known function. Rule(βs) (“symbolic” beta reduction) handles
the case where the function part evaluates to the representation of a
free variable[x̃] or of an application of a free variable[x̃ v1 . . . vn].
Finally, our choice of contextsΓv precludes reductions under func-
tion abstractions, and forces the argument part of an application to
be evaluated to a value before starting evaluation of the function
part (right-to-left strategy).

As usual, we write
∗→ for the transitive and reflexive closure of

→. We define the valueV (b) of an extended closed termb as the
normal form ofb for the relation

∗→. Notice that such a normal form
is necessarily a value: reduction cannot get stuck.

Now that we know how to reduce weakly terms containing free
variables, we can express precisely the strong normalization proce-
dure outlined earlier: first, normalize weakly; second,read backthe
resulting value as a normalized term, recursing over the bodies of
functions if needed.



N (b) = R (V (b)) (1)

R (λx.b) = λy. N ((λx.b) [ỹ]) (y fresh) (2)

R ([x̃ v1 . . . vn]) = x R (v1) . . . R (vn) (3)

The readback functionR transforms valuesv into normalized
source termsa. For function valuesλx.b (equation 2), reading back
consists in applying the value to the run-time representation of a
fresh free variable[ỹ]. (“Fresh”, here, means thaty does not occur
at all in b; the freshness condition can be made fully precise by us-
ing negative de Bruijn indices.) We then compute the value of this
term, or equivalently of the termb{x← [ỹ]}, and read it back as a
normalized terma. The normal form ofλx.b is thenλy.a.

Reading back the value[x̃ v1 . . . vn] (equation 3) simply consists in
extracting the variablex from x̃, reading back the values to which it
is applied, and reconstructing the applicationx R (v1) . . . R (vn).

Example: Consider the following source term

a = (λx.x)(λy. (λz.z) y (λt.t))

Weak symbolic evaluation reduces it tov = λy. (λz.z) y (λt.t).
This is a functional value, hence the readback procedureR restarts
weak symbolic evaluation onb = (λy. (λz.z) y (λt.t)) [ũ]. The
value returned by the second round of weak symbolic evaluation is
v′ = [ũ (λt.t)]. Readback ofλt.t triggers the evaluation of(λt.t) [w̃],
which returns[w̃]. Thus,R (λt.t) = λw.w. Then,R (v′) = u (λw.w).
Finally,

N (a) = R (v) = λu. u (λw.w)

Remark: The readback of functional values (equation 2) could al-
ternatively be written as

R (λx.b) = λy. N (b{x← [ỹ]})
The two forms are equivalent, since the first step of weak reduc-
tion of (λx.b) [ỹ] transforms this term intob{x← [ỹ]}. However, by
writing (2) as a function application rather than a direct substitution,
we make it clear that the readback procedure does not need to “look
inside” function values: it remains applicable even if function val-
ues are represented as opaque closures of compiled code, like our
abstract machine-based weak evaluator of section 4 does. The only
requirement that the readback functionR puts on the representation
of values used by the weak evaluatorV is that the representations
of functionsλx.b and of “accumulators”[x̃ v1 . . . vn] can be dis-
tinguished at run-time, and that the componentsx,v1, . . . ,vn of the
latter can be recovered from the latter.

2.3 Correctness of the Normalization Procedure

We now proceed to show the correctness of the functionN defined
above. We start with partial correctness: assuming the computation
of N (a) terminates, we show that it is indeed the normal form of
the pure terma.

REMARK 1. For all extended termsb, N (b) andR (b), if defined,
are terms that belong to the following grammar:

n ::= λx.n | x n1 . . . nk

Hence, they are pureλ-terms in normal form.

Now, define the following translationb from an extended termb to
a pureλ-term, obtained by erasing the distinction between run-time

representations of free variables and the free variables themselves:

x = x

λx.b = λx.b

b1 b2 = b1 b2

[x̃ v1 . . . vn] = x v1 . . . vn

LEMMA 2. If b→ b′, thenb
∗⇒ b′.

PROOF. By cases on the reduction rule used. Ifb→ b′ by rule
(βv), thenb⇒ b′ by rule (β). If b→ b′ by rule (βs), thenb =
b′. Finally, for context reductions, notice that translations of call-
by-value contextsΓv are a subset ofΓ contexts, and conclude by
induction on the number of context rules used.

LEMMA 3. If N (b) is defined, thenb
∗⇒N (b). If R (v) is defined,

thenv
∗⇒ R (v).

PROOF. Both statements are proved simultaneously by “course of
value” induction (induction on the number of recursive calls toN
andR ).

Since N (b) = R (V (b)), we haveb
∗⇒ V (b) by lemma 2, and

V (b) ∗⇒ R (V (b)) by induction hypothesis. It follows thatb
∗⇒

N (b).

Consider now the caseR (λx.b). Write b′ = (λx.b) [ỹ]. By induc-
tion hypothesis,b′ ∗⇒ N (b′). SinceN (b′) is in normal form by
remark 1, andb′⇒ b{x← y}, confluence of theλ-calculus ensures
thatb{x← y} ∗⇒N (b′). Hence,λy. b{x← y} ∗⇒ λy.N (b′). Since
λy. b{x← y} = λx.b up to alpha-conversion, the expected result
λx.b

∗⇒N (b′) follows.

The last case to consider isR ([x̃ v1 . . . vn]). Applying the in-
duction hypothesis to thevi , we obtain thatvi

∗⇒ R (vi) for i =
1, . . . ,n. Thus,[x̃ v1 . . . vn] = x v1 . . . vn

∗⇒ x R (v1) . . . R (vn) =
R ([x̃ v1 . . . vn]).

LEMMA 4. For all pure λ-termsa, if N (a) is defined, then it is
the normal form ofa.

PROOF. Sincea is a pureλ-term (containing no[. . .]), we have
a = a. By lemma 3,a

∗⇒N (a). Moreover,N (a) is in normal form
by remark 1.

We now turn to proving thatN always terminates when given a
strongly-normalizing argument.

LEMMA 5. If b is strongly normalizing, thenV (b) is defined.

PROOF. By way of contradiction, consider an infinite weak reduc-
tion sequence starting atb and performing infinitely manyβv and
βs reductions (possibly under context). There can only be a finite
number ofβs reductions in a row, without an interveningβv step,
since the number of application nodes in the term decreases by one
during aβs reduction. Thus, the infinite weak reduction sequence
contains infinitely manyβv reductions. As shown in lemma 2, each
suchβv reduction corresponds to aβ reduction on translated terms.
Thus, we can construct an infinite sequence ofβ reductions starting
at b. This contradicts the hypothesis thatb is strongly normaliz-
ing.



LEMMA 6. If v is strongly normalizing, thenR (v) is defined.

PROOF. Consider the orderingÂ on pure terms defined as the tran-
sitive closure of the following two cases:

• aÂ a′ if a⇒ a′;

• aÂ a′ if a′ is a strict subterm ofa up to a renaming of free
variables.

It is easy to see thatÂ is well-founded on strongly normalizing
terms, in the sense that there exists no infinitely decreasing chains
aÂa1Â . . . starting with a strongly normalizing terma. (From such
a chain, we could trivially construct an infinite reduction sequence
starting witha.)

The result then follows by well-founded induction using theÂ or-
dering. For the function case, we haveR (λx.b) = λy.R (V (b′))
with b′ = b{x← [ỹ]})). Sinceb′ = b{x← y}, b′ is a strict subterm
of λx.b up to renaming ofx by y. Hence,b′ is strongly normaliz-
ing, and lemma 5 establishes the termination ofV (b′). Moreover,
V (b′) is a reduct ofb′ by lemma 2. Hence,λx.bÂ b′ º V (b′).
We can therefore apply the induction hypothesis toR (V (b′)), and
obtain the expected result.

For the caseR ([x̃ v1 . . . vn]) = x R (v1) . . . R (vn), it is obvious
thatv1, . . . ,vn are strict subterms of[x̃ v1 . . . vn] = x v1 . . . vn, and
the result follows by induction hypothesis.

As a corollary of lemmas 4, 5 and 6, we obtain the (total) correct-
ness of the strong normalization procedure:

THEOREM 1. If a is a closed, strongly normalizing pureλ-term,
thenN (a) is defined and is the normal form ofa.

2.4 Decidingβ-equivalence

The previous results give a naive procedure to decide theβ-
equivalence of two strongly normalizing termsa1 and a2: com-
puteN (a1) andN (a2) and compare the normal forms for syntactic
equality. However, it is often not necessary to go all the way to nor-
mal forms to find a common reduct. The following more efficient
procedureE(a1,a2) reduces weakly the termsa1 anda2, compares
their values, and recurses only if syntactically different functions
are obtained.

• E(b1,b2) if and only if Ev(V (b1),V (b2)).

• Ev(v1,v2) if v1 ≡ v2.

• Ev(λx1.b1,λx2.b2) if Ev((λx1.b1) [ỹ],(λx2.b2) [ỹ]) wherey is
a fresh variable.

• Ev([x̃ v1 . . . vn], [x̃ w1 . . . wn]) if Ev(vi ,wi) for all i = 1, . . . ,n.

• Ev(v1,v2) is false otherwise.

In this definition, the≡ relation stands for any relation that is
finer thanβ-convertibility and can be computed cheaply, so that the
“early return” test (second case above) can be profitably applied at
each step. Syntactic equality up toα-conversion is an obvious can-
didate for≡ in an interpreted setting. In a compiled implementa-
tion such as that of section 4, syntactic equality might not be easily
decidable, in which case≡ can be equality of machine representa-
tions.

The correctness of theE predicate defined above can easily be
proved along the lines of section 2.3, and we omit the proofs.

3 Extension to the Calculus of Constructions

We now progressively extend the approach presented in section 2
with the additional features of the (type-erased) term language of
the Calculus of Constructions: inductive types (a generalization of
products and sums) and fixpoints.

3.1 Booleans and Conditional

Before considering inductive types in their full generality, it is
helpful to present a familiar special case: booleans and theif. . .
then. . . else. . . construct. The syntax of the source calculus be-
comes:

Terms: a ::= x | λx.a | a1 a2
| true | false | if a1 then a2 else a3

The associated reduction rules are:

(λx.a) a′ ⇒ a{x← a′}
if true then a else a′ ⇒ a
if false then a else a′ ⇒ a′

Γ(a) ⇒ Γ(a′) if a⇒ a′

with Γ ::= λx.[ ] | [ ] a | a [ ] | if [ ] then a2 else a3 |
if a1 then [ ] else a3 | if a1 then a2 else [ ].

We must also add booleans and the conditional construct to the al-
gebra of extended terms. However, a new case arises: the run-time
representation of a free variable[x̃] can now appear in theif part of
a conditional. Just like rule(βs) simply “remembers” the arguments
to an application of a free variable, we need to “remember” the
if. . .then. . .else. . . construct that could not be reduced because
the condition was a free variable. To capture this phenomenon, we
introduce a new syntactic categoryk of accumulators, or run-time
representations of non-closed, non-reducible terms.

Extended terms: b ::= x | λx.b | b1 b2
| true | false
| if b1 then b2 else b3
| [k]

Accumulators: k ::= x̃ | k v | if k then b else b′

Values: v ::= λx.b | true | false | [k]

Symbolic weak reduction is then defined by the following rules:

(λx.b) v → b{x← v}
[k] v → [k v]

if true then b else b′ → b
if false then b else b′ → b′

if [k] then b else b′ → [if k then b else b′]
Γv(a) → Γv(a′) if a→ a′

with Γv ::= [] v | b [ ] | if [ ] then b else b′. It only remains to
extend the readback procedure to booleans and the new syntac-
tic class of accumulators. The only point worth noticing is that
reading back a suspended conditionalif k then b else b′ involves
normalizing both armsb andb′ of the conditional, and reconstruct-
ing anif. . .then. . .else with the readback ofk and the normal
forms ofb andb′.



(λx.b) v → b{x← v}
[k] v → [k v]

case C(~v) of (Ci(~xi)→ bi)i∈I → b j{~x j ←~v} if C = Cj and|~v|= |~x j |
case [k] of (Ci(~xi)→ bi)i∈I → [case k of (Ci(~xi)→ bi)i∈I ]

Γv(a) → Γv(a′) if a→ a′

N (b) = R (V (b))
R (λx.b) = λy. N ((λx.b) [ỹ]) (y fresh)

R (C(v1, . . . ,vn) = C(R (v1), . . . ,R (vn))
R ([k]) = R ′(k)
R ′(x̃) = x

R ′(k v) = R ′(k) R (v)

R ′(case k of (Ci(~xi)→ bi)i∈I ) = case R ′(k) of (Ci(~yi)→N (b (Ci(
−→
[ỹi ]))))i∈I

whereb = λx. case x of (Ci(~xi)→ bi)i∈I

and the~yi are sequences of fresh variables with|~yi |= |~xi |
Figure 1. Symbolic weak reduction and readback for inductive types

N (b) = R (V (b))
R (λx.b) = λy. N ((λx.b) [ỹ]) (y fresh)

R (true) = true
R (false) = false

R ([k]) = R ′(k)
R ′(x̃) = x

R ′(k v) = R ′(k) R (v)
R ′(if k then b else b′)

= if R ′(k) then N (b) else N (b′)

3.2 Inductive Types

Inductive types in the Calculus of Constructions [21] are similar to
datatypes in ML and Haskell: they consist in one or several alterna-
tives, identified by unique constructorsC, each constructor carrying
zero, one or several terms as arguments. A built-incase construct
allows shallow pattern-matching on terms of inductive types. Once
enriched with inductive types, the source calculus becomes:

Terms: a ::= x | λx.a | a1 a2
|C(~a) | case a of (Ci(~xi)→ ai)i∈I

We write~z for a sequence of elements of the syntactic classz, and
|~z| for the number of elements in such a sequence.

The reduction rules for inductive types are:

(λx.a) a′ ⇒ a{x← a′}
case C(~a) of (Ci(~xi)→ ai)i∈I ⇒ a j{~x j ←~a}

if C = Cj and|~a|= |~x j |
Γ(a) ⇒ Γ(a′) if a⇒ a′

Extended terms and weak symbolic reduction are modified accord-
ingly, taking into account the fact that acase construct can be ap-
plied to an accumulator, and needs to be remembered unevaluated
as a whole in this case.

Extended terms:
b ::= x | λx.b | b1 b2 | [k]

|C(~b) | case b of (Ci(~xi)→ bi)i∈I

Accumulators:
k ::= x̃ | k v | case k of (Ci(~xi)→ bi)i∈I

Values:
v ::= λx.b |C(~v) | [k]

Reduction contexts:
Γv ::= [] v | b [ ] |C(~b, [ ],~v)

| case [ ] of (Ci(~xi)→ bi)i∈I

Figure 1 defines the weak reduction rules and the normalization and
readback procedures in the presence of inductive types. As in the
case of the conditional construct in section 3.1, there are two weak
reduction rules forcase, depending on whether the argument is a
constructed valueC(~v) or an accumulator[k]. In the former case, re-
duction proceeds with the appropriate arm of thecase construct. In
the latter case, an accumulator is built that “remembers” the whole
case statement.

The readback functions are as in section 3.1, with the treatment of
case generalizing that ofif. . .then. . .else: we recursively nor-
malize each arm of thecase, after replacing the pattern-bound vari-
ablesxi by run-time representations of fresh free variables; then, a
case statement is reconstructed from the normal forms of the arms
and the readback of the accumulator being matched upon. To em-
phasize the fact that thecase construct can be compiled, and thus
its arms are not necessarily recoverable from the code, we present
the recursive normalization of each armCi(~xi) → bi as an appli-
cation of the matching functionλx.case x of . . . to the argument
Ci(
−→
[ỹi ]), composed of the constructor of theith arm applied to the

correct number of fresh free variables. The compiled code for the
matching function then selects theith arm and perform the substitu-
tion~xi ←−→

[ỹi ] all by itself.

3.3 Fixpoints

The Calculus of Constructions supports the definition of recursive
functions via fixpoints. Fixpoints are introduced by a family of op-
eratorsfixn, where the positive integern indicates the position of
the argument that is used to guard the recursion and prevent infinite
unrolling:



Writing b = λ f .λx1 . . .λxn.b′,

fixn(b) v1 . . . vn−1 (C(~v)) → b′{ f ← b,x1 ← v1, . . . ,xn−1 ← vn−1,xn ←C(~v)}
fixn(b) v1 . . . vn−1 [k] → [fixn(b) v1 . . . vn−1 k]

R (fixn(b) v1 . . . vi) = N (fixn(b)) R (v1) . . . R (vi) if i < n

R ′(fixn(b) v1 . . . vn−1 k) = N (fixn(b)) R (v1) . . . R (vn−1) R ′(k)
N (fixn(b)) = fixn(λg.λy1 . . .λyn.N (b [g̃] [ỹ1] . . . [ỹn]) whereg, y1, . . . ,yn are fresh

Figure 2. Symbolic weak reduction and readback for fixpoints

Terms: a ::= . . . | fixn(λ f .λx1 . . .λxn.a)

The reduction rule for thefixn operators is not the standard un-
rolling rule

fixn(λ f .a) 6⇒ a{ f ← fixn(λ f .a)}

since such a rule would allow infinite unrolling, and thus ren-
der type-checking undecidable. Instead, the calculus provides a
guarded unrolling rule, allowing unrolling of the recursive def-
inition only if the nth argument is a constructed term: writing
a = fixn(λ f .λx1 . . .λxn.a′), we have

a a1 . . . an−1 (C(~an))
⇒ a′{ f ← a,x1 ← a1, . . . ,xn−1 ← an−1,xn ←C(~an)}

Further statically-checked restrictions on the bodya′ of the recur-
sive definition ensures that it recursively appliesf only to strict
subterms of thenth argumentC(~an). This ensures that all recursive
definitions proceed by structural induction, and are thus guaranteed
to normalize strongly. At first sight, this restriction might appear to
restrict severely the expressiveness of the logic, but this is not so:
the guard argument over which the function is structurally recursive
can also be an inductive proof term such as a proof of accessibil-
ity in a well-founded ordering, guaranteeing the termination of the
function. Thus, general recursive definitions can also be handled,
as long as they are provably total in the logic.

As a consequence of the guarded unrolling rule, applications of
fixn(b) to fewer thann values are values (weak normal forms),
while applications offixn(b) to n−1 values and an accumulator
are themselves accumulators:

Extended terms:
b ::= . . . | fixn(λ f .λx1 . . .λxn.b)

Values:
v ::= . . . | fixn(λ f .λx1 . . .λxn.b) v1 . . . vi if 0≤ i < n

Accumulators:
k ::= . . . | fixn(λ f .λx1 . . .λxn.b) v1 . . . vn−1 k

The additional reduction rules and readback rules for fixpoints
are shown in figure 2. The main point to notice is that in
the source calculus, the normal form of a non-applied fixpoint
fixn(λ f .λx1 . . .λxn.a) is simply fixn(λ f .λx1 . . .λxn.a′) wherea′
is the normal form ofa. In other terms, we normalizea without
assuming anything known on the function namef nor on the pa-
rametersxi , and in particular without assuming thatf unrolls to
fixn(. . .): the guarded unrolling rule does not apply here. For the
same reason, an application offixn(a) to fewer thann arguments
in normal form, or ton−1 normal forms and one normal form that
is not a constructor application, is itself in normal form.

4 An Abstract Machine for Weak Symbolic
Reduction

We now turn to implementing weak symbolic reduction by com-
pilation to a suitable abstract machine. This abstract machine is a
slight extension of the ZAM, which underlies the bytecode inter-
preter of Objective Caml [16, 17], In the terminology of [20], the
ZAM is an environment- and closure-based abstract machine fol-
lowing the “push-enter” model, and implementing a call-by-value
evaluation strategy.

The purpose of this section is to demonstrate that minor modifica-
tions of an existing abstract machine for weak reduction suffice to
turn it into an abstract machine for weak symbolic reduction, with-
out impacting significantly the evaluation speed for closed terms.
Consequently, we present a minimal subset of the ZAM, omitting
several aspects of the real ZAM that are irrelevant for our purposes,
such as the optimization of tail-calls, the use of a register to cache
the top of the stack, and the actual representation of environments
(as a stack-allocated part and a heap-allocated part) and closures
(single block, minimal environments). These omitted aspects are
discussed in [16] and in the first author’s forthcoming dissertation.

4.1 Machine States and Machine Values

The machine state has four components:

• A code pointerc representing the code being executed as a
sequence of instructions.

• An environmente: a sequence of machine valuesv̂1 . . . v̂n as-
sociating the valuêvi to the variable having de Bruijn index
i.

• A stacks (a sequence of machine values and return contexts)
holding function arguments, intermediate results, and func-
tion return contexts.

• An integern counting the number of function arguments avail-
able on the stack.

The machine-level valueŝv manipulated by the abstract machine
are pointers to heap blocks, written[T : v̂1 . . . v̂n], whereT is a tag
attached to the block (a small integer), andv̂1 . . . v̂n are the values
contained in the block. We use tag0 for representations of accumu-
lator terms[k], tags1. . .n to encode the constructorC of constructed
termsC(~v), and a distinct tagTλ for function closures. The values
of the calculus are represented by heap blocks as follows:

• A function value is represented by a closure[Tλ : c,e] of the
compiled codec for the function body, and an environmente
associating values to the variables free inλx.b.

• For inductive types, we assume that the constructors of an in-
ductive type are numbered consecutively starting at 1 when



the type is declared. We write#C for the tag number associ-
ated with constructorC. The valueC(~v) is then represented
by the heap block[#C :~̂v], where~̂v are the representations of
~v.

• Finally, an accumulator[k] is represented by the heap block
[0 :ACCU, k̂]. This is a pseudo-closure with the single machine
instructionACCU as code part, and an encodingk̂ of k as envi-
ronment part. This encoding is as follows:

– [0 : x̃] represents the free variablex̃.

– [1 : k̂, v̂1, . . . , v̂n] represents the suspended application
k v1 . . . vn.

– [2 : k̂,c,e] represents the suspendedcase state-
ment case k of (Ci(~xi) → bi), where c and e are
the code and the environment for the function
λx.case x of (Ci(~xi)→ bi).

– [3 : c,e, k̂] represents the suspended fixpoint application
fixn(λ f .λx1 . . .λxn.b) v1 . . . vn−1 k, wherec andeare
the code and the environment for the partially applied
fixpoint fixn(λ f .λx1 . . .λxn.b) v1 . . . vn−1.

The transitions of the abstract machine are shown in figure 3, and
the halting configurations in figure 4.

4.2 Compilation and Execution of Functions

The compilation scheme for the ZAM is presented as a function
[[b]] c, whereb is an expression andc an instruction sequence repre-
senting the continuation ofb. It returns an instruction sequence that
evaluatesb, leaves its value at the top of the stack, and continues
in sequence by executing the codec. For the pureλ-calculus, the
compilation scheme is defined as follows:

[[x]] c = ACCESS(i);c
wherei is the de Bruijn index ofx

[[λx1 . . .xm.b]] c = CLOSURE(GRAB; . . . ;GRAB︸ ︷︷ ︸
m times

; [[b]] RETURN);c

[[b b1 . . . bm]] c = PUSHRETADDR(c);
[[bn]] . . . [[b1]] [[b]] APPLY(m)

A reference to a variablex is compiled to anACCESS instruction
carrying the de Bruijn index of the variable. The execution of
ACCESS(i) looks up theith entry in the machine environment and
pushes it on the stack.

A curried functionλx1 . . .xm.b compiles to aCLOSURE instruction,
which at run-time builds a closure of its argument (a piece of code)
with the current environment, and pushes the closure on the stack.
The argument ofCLOSURE is the code for the bodyb of the func-
tion, preceded bym GRAB instructions and followed by aRETURN
instruction.

As its name suggests,GRAB attempts to pop one function argument
from the stack and add it in front of the current environment. (This
corresponds exactly to aβv reduction step.) This is possible only
if the countn of available arguments is non-zero, and causesn to
be decremented. Ifn = 0, all arguments have been consumed al-
ready by previousGRAB instructions, hence the curried function is
partially applied. The virtual machine then returns a closure of the
current code (including the abortedGRAB) and the current environ-
ment to the caller of the function.

TheRETURN instruction is the dual ofGRAB: if all arguments have
been consumed (n = 0), the value of the function body is returned
to its caller; if some arguments remain (n > 0), the curried function
was “over-applied”, and its result, which must be a function, is to
be applied to the remaining argument. The latter is achieved by tail-
calling the closure found on the top of the stack with the remaining
arguments.

The code for a multiple applicationb b1 . . . bm first pushes a re-
turn frame〈c,e,n〉 containing the codec to be executed when the
applied function returns, as well as the current environment and
argument count (instructionPUSHRETADDR). Then, the arguments
bm. . .b1 and the functionb are evaluated right-to-left, and their val-
ues pushed on the stack. Finally, theAPPLY(m) instruction branches
to the code of the closure obtained by evaluatingb, setting the ar-
gument count tom.

The “push-enter” nature of the ZAM is apparent in the fact that we
compile curried functions and multiple applications as a whole, and
evaluate arguments right-to-left. For an applicationb b1 . . . bm,
this avoids the construction of intermediate closures representing
the applicationsb b1, (b b1) b2, . . . , like an “eval-apply” machine
such as the SECD would do. The compilation scheme given above
remains correct if applied to non-maximal curried functions and
applications (e.g. if we treatb b1 b2 as two applications,(b b1) b2),
but becomes less efficient at run-time.

At this point, the reader is probably wondering how we treat theβs
reduction rule, corresponding to the application of an accumulator
[k]. Recall that such an accumulator is represented by a pseudo-
closure[0 : ACCU, k̂]. Thus, theAPPLY instruction will cause the
ACCU instruction to be executed witĥk being moved to the environ-
ment register of the machine. TheACCU instruction simply pops all
provided argumentŝv1, . . . , v̂n off the stack, constructs an accumu-
lator [0 : ACCU, [1 : k̂, v̂1, . . . , v̂n]] representing the application ofk to
these arguments, and returns this accumulator to the caller. Thus,
the effect of theβs reduction rule is achieved without testing at run-
time whether the function part of an application is a real closure or
an accumulator. In other terms, we implement symbolic weak re-
duction of function applications without any run-time overhead on
applications of regular functions.

4.3 Inductive Types

Inductive types lead to the addition of the following two compila-
tion rules:

[[C(b1, . . . ,bn)]] c = [[bn]] . . . [[b1]] MAKEBLOCK(n,#C);c
[[case b of (C1(~x1)→ b1 . . . Cn(~xn)→ bn)]] c =
PUSHRETADDR(c);SWITCH([[b1]] RETURN, . . . , [[bn]] RETURN)

In the latter rule, we assume that the arms of thecase are ordered
so that#Ci = i for i = 1, . . . ,n. No generality is lost since the type
system of the Constructions guarantees the exhaustiveness ofcase
statements.

The compilation and execution of constructor applications is
straightforward: the arguments of the constructor are evaluated,
and theMAKEBLOCK instruction then creates the representation of
the constructed term, tagged with the constructor number.

For thecase statement, a return frame to the continuationc is
pushed first. TheSWITCH instruction then discriminates on the tag
of the matched value, and branches to the code of the corresponding
case arm, after adding the fields of the matched value to the envi-



Code Environment Stack Num. arg.
ACCESS(i);c e s n
c e e(i).s n
CLOSURE(c′);c e s n
c e [Tλ : c′,e].s n
PUSHRETADDR(c′);c e s n
c e 〈c′,e,n〉.s n
APPLY(i) e [T : c′,e′] : s n
c′ e′ s i
GRAB;c e v : s n+1
c v.e s n
c0 = GRAB;c e 〈c′,e′,n′〉.s 0
c′ e′ [Tλ : c0,e] : s n′

RETURN e v.〈c′,e′,n′〉.s 0
c′ e′ v.s n′

RETURN e [T : c′,e′].s n if n > 0
c′ e′ s n
ACCU k v1 . . .vn.〈c′,e′,n′〉 : s n
c′ e′ [0 : ACCU, [1 : k,v1, . . . ,vn]].s n′

MAKEBLOCK(T,m);c e v1 . . .vm.s n
c e [T : v1, . . . ,vm].s n
SWITCH(c1, . . . ,cm) e [T : v1, . . . ,vp].s n if 1≤ T ≤m
cT vp . . .v1.e s 0
c0 = SWITCH(c1, . . . ,cm) e [0 : ACCU,k].s n
RETURN e [0 : ACCU, [2 : k,c0,e]].s 0
CLOSUREREC(c′);c e s n
c e v.s n wherev = [Tλ : c′,v.e]
GRABREC;c e [T :~v].s n+1 if T > 0
c [T :~v].e s n
GRABREC;c e [0 : ACCU,k].s n+1
RETURN e [0 : ACCU, [3 : c,e,k]].s n
c0 = GRABREC;c e 〈c′,e′,n′〉.s 0
c′ e′ [Tλ : c0,e].s n′

Figure 3. Transitions of the abstract machine. Each two-line entry represents a transition; the first line is the machine state before
the transition, and the second line is the state after.

Code Environment Stack Num. arg. Result value
RETURN e v.ε 0 v

c0 = GRAB;c e ε 0 [Tλ : c0,e]
c0 = GRABREC;c e ε 0 [Tλ : c0,e]
GRABREC;c e [0 : ACCU,k].ε 1 [0 : ACCU, [3 : c,e,k]]

Figure 4. Final configurations for the abstract machine. The rightmost column is the result value (weak head normal form) for the
execution



ronment, thus binding the pattern variables~xi . TheRETURN at the
end of the code for each arm then restores the original environment
and branches back to the continuationc. (TheSWITCH instruction
is careful to set the count of extra arguments to 0, ensuring that the
RETURN will never perform over-application.)

If the matched value has tag 0, denoting acase on an accumula-
tor k, theSWITCH instruction builds the accumulator[0 : ACCU, [2 :
k,c0,e]] wherec0 is the code consisting of theSWITCH instruction
and the code for the arms of thecase. Later, the readback proce-
dure can restart the abstract machine with codec0, environmente,
stackv.ε and number of arguments0, wherev is the machine repre-
sentation ofCi(~̃yi). The code for theith arm will evaluate, then stop
on its finalRETURN instruction, since a final configuration is reached
(first case in figure 4). Thus, this achieves the effect of computing
the value ofbi{~xi ← ~̃yi}.

This “replay” facility is the reason why aPUSHRETADDR-RETURN
pair is used to implement the control-flow merging of the arms of
thecase, rather than a more standardGOTO instruction. Apart from
the slightly higher cost of thePUSHRETADDR-RETURN combination
compared with aGOTO, this compilation scheme support symbolic
execution and readback forcase statements without impacting the
evaluation speed on non-symbolic, closed terms. (The actual im-
plementation uses a jump table for theSWITCH instruction, cover-
ing both the case tag= 0 and tag≥ 1, so that an additional test for
tag= 0 is not required.)

4.4 Fixpoints

The compilation of fixpoint definitions is as follows:

[[fixn(λ f .λx1 . . .λxn.b)]] c =
CLOSUREREC(GRAB; . . . ;GRAB︸ ︷︷ ︸

n−1 times

;GRABREC; [[b]] RETURN);c

The CLOSUREREC instruction constructs a closure for a recursive
function. In the simplified presentation given in this paper, this is a
cyclic closurev= [Tλ : c,v.e] where the first slot of the environment,
corresponding to the recursive variablef in the source term, points
back to the closure itself [8]. (The actual implementation uses the
scheme described in [1] instead of cyclic closures.)

The code part of the recursive closure consists of the compilation
of the bodyb of the definition, preceded byn−1 GRAB instructions
and oneGRABREC instruction. Then−1 GRAB instructions absorb
the firstn−1 parameters, which are not subject to a guard condi-
tion. The last parameter, however, is guarded: evaluation should not
proceed if it is bound to an accumulator. Hence,GRABREC checks
whether the argument is an accumulator, and if so, constructs and
returns an accumulator representing the suspended application of
the fixpoint.

5 A Mechanically-checked Proof of Correct-
ness

The first author has developed a fully formal specification and proof
of correctness of the approach described in this paper, using the Coq
proof assistant. Such a mechanically-checked correctness proof is
required to ensure that we do not compromise the logical consis-
tency of the Coq system by plugging a buggy evaluator in it. (The
correctness of the kernel of the Coq proof- and type-checker has
previously been mechanically proved in Coq by Barras [5, 3].) We
now give a high-level overview of this 5000-line development; a

detailed presentation is beyond the scope of this paper and will be
published separately.

The bulk of the development consists of proving that the modified
ZAM machine and its compilation scheme (including the optimiza-
tions that we left out in section 4) faithfully implement the weak
symbolic reduction semantics. The remainder of the proof shows
the correctness of the readback, strong normalization and equiva-
lence testing procedures; this part of the proof is much shorter and
easier, and follows the lines of section 2.3, using de Bruijn indices
instead of variable names.

Following [13], the correctness of the modified ZAM and its compi-
lation scheme is established by proving a simulation result between
the reductions of the source term and the transitions of the abstract
machine executing the compiled code for the term. First, we set up a
decompilation relationS⇑ b between machine statesS= (c,e,s,n)
and source termsb, and also between machine values and source
valuesv̂ ⇑ v. This decompilation relation can be viewed as a left
inverse of the compilation function: if we compile a term and build
an initial machine state with this code, the decompilation of this
initial state gives us back the original term. However, decompila-
tion is also defined for intermediate machine states, reached after
one or several transitions, and where the code part of the state is
not the image of a source term by the compilation function. Several
examples of decompilation relations for different, simpler abstract
machines are shown in [13]. Ours is broadly similar, with the ex-
ception that [13] uses explicit substitutions in the source language,
while we perform classical substitution as part of the decompilation
predicate in order to keep the source language unchanged.

Once the decompilation relation is set up, we can show the main
simulation result: one transition of the abstract machine corre-
sponds to zero, one or several reductions on the source term.

LEMMA 7 (SIMULATION ). If S⇑ b and the machine performs a
transition from stateSto stateS′, then there exists a source termb′

such thatS′ ⇑ b′ andb
∗→ b′.

We also show that initial states of the machine decompile to the
original term. There are two kinds of initial states of interest:
([[b]] RETURN,ε,ε,0), corresponding to executing the code of a
closed termb, and(APPLY(n),ε, f̂ .v̂1 . . . v̂n.ε,0), corresponding to
applying the closurêf to the argumentŝv1, . . . , v̂n during the read-
back procedure.

LEMMA 8 (INITIAL STATES).

1. ([[b]] RETURN,ε,ε,0) ⇑ b if b is closed.

2. (APPLY(n),ε, f̂ .v̂1 . . . v̂n.ε,0) ⇑ f v1 . . . vn if f̂ ⇑ f andv̂i ⇑ vi
for i = 1, . . . ,n.

Symmetrically, final machine configurations decompile to values.

LEMMA 9 (FINAL STATES). If Sis a final machine configuration
andv̂ the associated return value, as defined in figure 4, then there
exists a source valuev such thatS⇑ v andv̂⇑ v.

To show the correctness of the abstract machine and its compilation
scheme, it remains to show two properties. First, the machine does
not get stuck when executing the compiled code of a term that is
not stuck.

LEMMA 10 (PROGRESS). If S⇑ b, andSis not a final state, and



Test Our system Coq CBV Coq Lazy OCaml bytecode

1. Normalization offactorial(9) (Peano integers) 14.2s 61.6s 466s 0.347s

2. Normalization ofis even(factorial(9)) (Peano integers) 0.447s 46.9s 4.82s 0.357s

3. Normalization of256×64 (Church integers) 0.106s 0.116s 1.99s n/a

4. Normalization ofλx.λy. (128+x)× (128+y) (Church integers) 0.082s 0.107s 1.81s n/a

5. Equivalence offactorial(8) andfactorial′(8) (Peano integers) 0.096s n/a 9.02s 0.085s

6. Equivalence of256×64and64×256(Church integers) 0.094s n/a 2.00s n/a

Figure 5. Benchmark results for the synthetic tests (on a Pentium III 1Ghz, 256 Mb)

Proof Our system Coq OCaml bytecode OCaml native

Coq’s standard theories 135s 131s n/a n/a

4-color theorem, perimeter 11 1.68s 56.7s 1.18s 0.30s

4-color theorem, perimeter 12 6.50s 259s 6.18s 1.92s

4-color theorem, perimeter 13 14.8s 680s 15.5s 4.11s

4-color theorem, perimeter 14 69.6s out of memory 73.1s 19.8s

Figure 6. Benchmark results for the checking of actual proofs (on a Pentium III 1Ghz, 256 Mb)

b is not stuck (i.e.b reduces orb is a value), then the machine can
perform a transition fromS.

Second, the abstract machine always terminates when given the
code for a term that evaluates to a value. Given the simulation
lemma 7, the only way the machine could fail to terminate is by
performing an infinite number of consecutive “silent” transitions,
that is, transitions between two states that decompile to the same
term. To show that this cannot happen, we define a non-negative
integer measure|S| on machine statesS, and show that it strictly
decreases at each silent transition. Again, [13] gives examples of
such measures for other machines.

LEMMA 11 (NO STUTTERING). If the machine performs a tran-
sition fromSto S′, andS⇑ b andS′ ⇑ b, then|S′|< |S|.

As a corollary of the previous lemmas, we obtain the total correct-
ness of the abstract machine and its compilation scheme:

THEOREM 2. Let S be a machine state that decompiles tob. If
b
∗→ V (b), then the abstract machine started in stateS terminates

with a return valuev̂ that decompiles toV (b). If b diverges (re-
duces infinitely), the abstract machine started in stateS performs
an infinite number of transitions.

6 Experimental Results

The first author has implemented the approach presented here in
the context of the Coq proof assistant, version 7. The implementa-
tion consists of a bytecode compiler and a readback procedure and
equivalence tester written in OCaml, and an abstract machine inter-
preter written in C. The Coq proof checker was modified to use our
equivalence tester.

Synthetic tests.Figure 5 gives the time it takes to strongly normal-
ize or to decide the equality of various artificial test terms. For com-
parison purposes, we also give timings for the current interpreter-
based normalization and equivalence testing procedures of the Coq
system. For normalization, Coq supports both call-by-value and
lazy call-by-name strategies, while only the latter is supported for
equivalence testing. When the example does not require normal-
ization underλ, we also give the times for the OCaml bytecode

interpreter. The timings for our system include compilation times
in addition to evaluation times, in order to make the comparison
with Coq’s interpreter fairer.

Overall, our compiled implementation is 10 to 100 times faster than
Coq’s lazy call-by-name interpreter, and 1.1 to 100 times faster than
Coq’s call-by-value interpreter.

Example 1 computes factorial 9 using Peano integers. This involves
no normalization underλ. The result of the weak evaluation is
362880 applications of the constructorSucc to the constantZero,
which is then transformed into an isomorphic source term during
readback. Example 2 computes the parity of factorial 9. Compared
with example 1, example 2 involves more work during weak re-
duction, but much less work during readback, since its result is an
atomic constant. It therefore normalizes much faster than exam-
ple 1 in our system, approaching the speed of the OCaml bytecode
interpreter.

Example 3 computes256×64 using Church integers. Normaliza-
tion underλ is required, and the normal form is quite large, requir-
ing significant readback effort. Example 4 computesλx.λy. (128+
x)× (128+y) using Peano arithmetic; it requires not only normal-
ization underλ, but also large amounts of normalization ofcase
andfix constructs applied to the free variablesx, y. In both cases,
we observe significant speed-ups compared with Coq’s lazy call-
by-name interpreter, but only a 10% to 30% improvement compared
with Coq’s call-by-value interpreter.

Examples 5 and 6 perform equivalence testing instead of strong nor-
malization. In both cases, we compare two terms that evaluate to
the same (large) normal form, but are syntactically different enough
to force full reduction to determine their equivalence. Again, we
observe speedups of 20 to 100 compared with Coq’s original equiv-
alence test.

Proof checking.Figure 6 gives total proof checking times obtained
with the original Coq implementation and with our modified imple-
mentation. The efficiency of our implementation depends greatly
on whether the proofs being checked involve significant amount of
computation. For proofs that involve few computations, such as the
standard library of theories distributed with the Coq system, our im-



plementation actually leads to a 3% slowdown compared with the
original Coq implementation. This was to be expected, since the
beta-equality tests performed are trivial: the terms to be compared
are often in normal form already, thus requiring very little computa-
tion to show that they are equal. This is the least favorable case for
our implementation, since we pay the price of compiling the terms
down to bytecode, yet gain essentially nothing in return. However,
this compilation overhead is low enough to be acceptable.

At the other end of the spectrum, proofs that involve significant
amounts of computation exhibit speedups by one order of magni-
tude. As a representative example, we used Gonthier and Werner’s
Coq proof of the 4-color theorem, and more precisely the part of
the proof that checks 4-colorability of a large number of elementary
planar graphs. This part of the proof consists mostly in evaluating
a function deciding 4-colorability on the elementary graphs. Here,
our implementation is 33 to 45 times faster than the original Coq
system. Owing to its more efficient use of memory, our implemen-
tation is able to complete the checking of the whole proof, while
the original Coq runs out of memory on the largest configurations
(of perimeter 14).

To compare the performances of our reducer with those of the
OCaml system, we used Coq’s extraction facility to extract from the
Coq development the Caml code that defines the decision procedure
and applies it to the elementary graphs. As figure 6 shows, our re-
ducer runs about as fast as OCaml’s bytecode interpreter; the speed
ratio varies between 1.4 and 0.95. Compiling the extracted Caml
code with the OCaml native-code compiler results in speed ratios
between 3.5 and 5.6, which is typical of the speed-ups obtained by
going from bytecode interpretation to native-code generation.

7 Related Work

Implementations of strong reduction. The work most closely re-
lated to us is Cŕegut’s abstract machine for strong reduction [9, 10].
This machine is derived from Krivine’s machine and implements
a lazy evaluation strategy. The code is executed by expansion to
Motorola 68000 assembly code. Like ours, Crégut’s machine can
handle terms containing free variables. However, reductions un-
der lambdas are not performed by a separate readback phase as in
our approach, but directly by the abstract machine: when encoun-
tering a termλx.b in head position, Cŕegut’s machine immediately
proceeds to reducingb (with a freex variable). This is potentially
faster than our readback scheme when the goal is to compute the
normal form of a term, but prevents early stopping when the goal
is to compare two terms forβ-equality. Also, strong reduction of
case statements and recursive definitions is mentioned in [10] but
not formalized.

Some of the mechanisms we use can be found in optimized inter-
preters performing strong reduction. Barras’ reducer [4] uses envi-
ronments and closures, and a reduction strategy based on Crégut’s
machine. Nadathur and Wilson [19] represent terms in such as way
that reduction can be easily stopped at weak head normal form,
while keeping enough information to restart strong evaluation later.
Still, these approaches remain essentially based on interpretation of
a tree-based data structure, without compilation to bytecode.

Online partial evaluation. The connections between strong nor-
malization and partial evaluation (program specialization) [15] are
well known: specializing a functionλx.λy.a for x = b amounts to
strongly normalizing the partial application(λx.λy.a) b. Classical
partial evaluation comes in two flavors: offline partial evaluation,
where a preliminary binding-time analysis classifies sub-terms into

dynamic and static terms; and online partial evaluation, where the
tests “static or dynamic?” are performed on the fly during special-
ization. Our approach does not rely on binding-time analysis, and
therefore is a form of online partial evaluation.

Our decomposition of strong normalization into (compiled) weak
symbolic reduction and (interpreted) readback is non-standard in
traditional online partial evaluation. However, a similar decompo-
sition is used in the online type-directed partial evaluation of Danvy
[12] and Sumii and Kobayashi [22]. (The “type-directed” qualifier
is a bit of a misnomer, since this approach does not exploit static
typing information, unlike the original type-directed partial evalua-
tion discussed below.) The main difference between online TDPE
and our work is that online TDPE, like traditional online partial
evaluation, operates on a standard two-level language, and instru-
ments elementary operations of the language (function applications,
case statements, etc) with run-time tests “static or dynamic?”. In
contrast, our presentation in terms of accumulators instead of a 2-
level language allows implementing function application andcase
statements without explicit run-time tests “proper value or accumu-
lator?”, thus entailing essentially no additional cost compared with
a standard, non-symbolic weak evaluator. However, our approach
requires a specially adapted virtual machine, while online TDPE
can be implemented on top of any functional language using only
source-level transformations.

TDPE and normalization by evaluation. Type-directed partial
evaluation (TDPE), also known as normalization by evaluation,
computes normal forms by combining a standard weak evaluator
with a type-directed reification procedure that reconstructs normal-
ized terms from values [11, 6]. A function value is reified by ap-
plying it to a generic argument derived from the type of the func-
tion domain (anη-long form of a free variable, where all dynamic
application nodes are replaced by static application nodes), and re-
cursively normalizing this application.

This alternation between evaluation and reification looks superfi-
cially similar to our approach, but differs in several key aspects.
First, TDPE usesη-expansions and produces anη-long βη normal
form, while our approach does not performη-expansions and pro-
duces pureβ normal forms. Sinceη conversion is not valid in the
Calculus of Constructions, TDPE is not applicable in our context.

The second difference between TDPE and our approach is that the
reification procedure of TDPE is based on the types of the terms to
be normalized, while our readback procedure proceeds by examina-
tion of the shape of their values, without needing type information.
While the recursion on the type structure that underlies TDPE is
extremely elegant, it has been worked out only for simply-typed
lambda calculus and for systemF [24]. Extending TDPE to a type
system as rich as that of the Constructions is an open issue.

By abandoning the guidance of the type system, our approach loses
one of the advantages of TDPE: the ability to reuse an existing
weak evaluator unchanged. Indeed, we had to modify the abstract
machine so that it deals correctly with free variables (accumula-
tors). However, our modifications are minimal, and this advantage
of TDPE holds only when the language contains only functions and
products: to handle sums, TDPE requires a weak evaluator that fea-
tures control operators (prompts orcall/cc), which few do; in
contrast, our approach requires a few more modifications for sums,
but the total of these modifications still requires less implementa-
tion work than adding control operators to a weak evaluator that
does not have them initially.



8 Conclusions and Future Work

We have shown how minimal modifications to an existing abstract
machine-based weak evaluator, combined with a simple, type-
oblivious readback procedure, lead to an efficient implementation
of strong reduction and equivalence testing for a purely functional
language featuring products, sums, and guarded recursion.

We have presented this approach in the context of call-by-value
weak evaluation and an environment-based abstract machine. It
would be interesting to investigate their applicability to other weak
evaluators, such as lazy evaluation and graph reduction.

The application of this work to the Coq proof assistant raises in-
teresting type-theoretic issues. First, we test equivalence between
type-erased terms, while the Calculus of Construction performs
conversion between type-annotated terms. The logical consistency
of the former approach follows from Miquel’s model-theoretic re-
sults [18] in the case of the core Calculus of Constructions, but
remains to be extended to inductive types.

A related issue is the treatment of proof terms during equivalence
checking. The types being compared for equivalence can contain
arbitrary proof terms. Proof terms are often large and costly to
normalize. However, the general principle of proof irrelevance sug-
gests that it might not be necessary to normalize them, since a proof
of a given proposition is (morally) just as good as any other proof
of this proposition. This suggests replacing all proof terms con-
tained in types by a single constantP (a nullary constructor) before
testing the equivalence of two types. Again, more work is needed
to prove that the corresponding relaxed conversion rule is logically
consistent.
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