
HAL Id: hal-01499955
https://inria.hal.science/hal-01499955

Submitted on 1 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Java bytecode verification: an overview
Xavier Leroy

To cite this version:
Xavier Leroy. Java bytecode verification: an overview. Computer Aided Verification, CAV 2001, Jul
2001, Paris, France. pp.265-285, �10.1007/3-540-44585-4_26�. �hal-01499955�

https://inria.hal.science/hal-01499955
https://hal.archives-ouvertes.fr

Java byteode veri�ation: an overview

Xavier Leroy

INRIA Roquenourt and Trusted Logi S.A.

Domaine de Volueau, B.P. 105, 78153 Le Chesnay, Frane

Xavier.Leroy�inria.fr

Abstrat. Byteode veri�ation is a ruial seurity omponent for Java

applets, on the Web and on embedded devies suh as smart ards. This

paper desribes the main byteode veri�ation algorithms and surveys

the variety of formal methods that have been applied to byteode veri�-

ation in order to establish its orretness.

1 Introdution

Web applets have popularized the idea of downloading and exeuting untrusted

ompiled ode on the personal omputer running the Web browser, without

user's approval or intervention. Obviously, this raises major seurity issues: with-

out appropriate seurity measures, a maliious applet ould mount a variety of

attaks against the loal omputer, suh as destroying data (e.g. reformatting the

disk), modifying sensitive data (e.g. registering a bank transfer via the Quiken

home-banking software [4℄), divulging personal information over the network, or

modifying other programs (Trojan attaks).

To make things worse, the applet model is now being transferred to high-

seurity embedded devies suh as smart ards: the Java Card arhiteture [5℄

allows for post-issuane downloading of applets on smart ards in sensitive ap-

pliation areas suh as payment and mobile telephony. This raises the stake

enormously: a seurity hole that allows a maliious applet to rash Windows

is perhaps tolerable, but is ertainly not aeptable if it allows the applet to

perform non-authorized redit ard transations.

The solution put forward by the Java programming environment is to exe-

ute the applets in a so-alled \sandbox", whih is an insulation layer preventing

diret aess to the hardware resoures and implementing a suitable aess on-

trol poliy [8, 32, 16℄. The seurity of the sandbox model relies on the following

three omponents:

1. Applets are not ompiled down to mahine exeutable ode, but rather to

byteode for a virtual mahine. The virtual mahine manipulates higher-

level, more seure abstrations of data than the hardware proessor, suh as

objet referenes instead of memory addresses.

2. Applets are not given diret aess to hardware resoures suh as the se-

rial port, but only to a arefully designed set of API lasses and methods

that perform suitable aess ontrol before performing interations with the

outside world on behalf of the applet.

3. Upon downloading, the byteode of the applet is subjet to a stati analysis

alled byteode veri�ation, whose purpose is to make sure that the ode

of the applet is well typed and does not attempt to bypass protetions 1

and 2 above by performing ill-typed operations at run-time, suh as forging

objet referenes from integers, illegal asting of an objet referene from

one lass to another, alling diretly private methods of the API, jumping

in the middle of an API method, or jumping to data as if it were ode [9,

36, 15℄.

Thus, byteode veri�ation is a ruial seurity omponent in the Java \sand-

box" model: any bug in the veri�er ausing an ill-typed applet to be aepted

an potentially enable a seurity attak. At the same time, byteode veri�ation

is a omplex proess involving elaborate program analyses. Consequently, on-

siderable researh e�orts have been expended to speify the goals of byteode

veri�ation, formalize byteode veri�ation algorithms, and prove their orret-

ness.

The purpose of the present paper is to survey briey this formal work on

byteode veri�ation. We explain what byteode veri�ation is, survey the var-

ious algorithms that have been proposed, outline the main problems they are

faed with, and give referenes to formal proofs of orretness. The thesis of this

paper is that byteode veri�ation an be (and has been) attaked from many

di�erent angles, inluding dataow analyses, abstrat interpretation, type sys-

tems, model heking, and mahine-heked proofs; thus, byteode veri�ation

provides an interesting playground for applying and relating various tehniques

in omputed-aided veri�ation and formal methods in omputing.

The remainder of this paper is organized as follows. Setion 2 gives a quik

overview of the Java virtual mahine and of byteode veri�ation. Setion 3

presents the basi byteode veri�ation algorithm based on dataow analysis.

Setions 4 and 5 onentrate on two deliate veri�ation issues: heking ob-

jet initialization and dealing with JVM subroutines. Setion 6 presents a more

abstrat view of byteode veri�ation as model heking of an abstrat interpre-

tation. Some issues spei� to low-resoures embedded systems are disussed in

setion 7, followed by onlusions and perspetives in setion 8.

2 Overview of the JVM and of byteode veri�ation

The Java Virtual Mahine (JVM) [15℄ is a onventional stak-based abstrat

mahine. Most instrutions pop their arguments o� the stak, and push bak

their results on the stak. In addition, a set of registers (also alled loal vari-

ables) is provided; they an be aessed via \load" and \store" instrutions that

push the value of a given register on the stak or store the top of the stak in

the given register, respetively. While the arhiteture does not mandate it, most

Java ompilers use registers to store the values of soure-level loal variables and

method parameters, and the stak to hold temporary results during evaluation

of expressions. Both the stak and the registers are part of the ativation reord

for a method. Thus, they are preserved aross method alls. The entry point for

a method spei�es the number of registers and stak slots used by the method,

thus allowing an ativation reord of the right size to be alloated on method

entry.

Control is handled by a variety of intra-method branh instrutions: unon-

ditional branh (\goto"), onditional branhes (\branh if top of stak is 0"),

multi-way branhes (orresponding to the swith Java onstrut). Exeption

handlers an be spei�ed as a table of (p

1

; p

2

; C; h) quadruples, meaning that

if an exeption of lass C or a sublass of C is raised by any instrution between

loations p

1

and p

2

, ontrol is transferred to the instrution at h (the exeption

handler).

About 200 instrutions are supported, inluding arithmeti operations, om-

parisons, objet reation, �eld aesses and method invoations. The example in

Fig. 1 should give the general avor of JVM byteode.

Soure Java ode:

stati int fatorial(int n)

{

int res;

for (res = 1; n > 0; n--) res = res * n;

return res;

}

Corresponding JVM byteode:

method stati int fatorial(int), 2 registers, 2 stak slots

0: ionst_1 // push the integer onstant 1

1: istore_1 // store it in register 1 (the res variable)

2: iload_0 // push register 0 (the n parameter)

3: ifle 14 // if negative or null, go to PC 14

6: iload_1 // push register 1 (res)

7: iload_0 // push register 0 (n)

8: imul // multiply the two integers at top of stak

9: istore_1 // pop result and store it in register 1

10: iin 0, -1 // derement register 0 (n) by 1

11: goto 2 // go to PC 2

14: iload_1 // load register 1 (res)

15: ireturn // return its value to aller

Fig. 1. An example of JVM byteode

An important feature of the JVM is that most instrutions are typed. For

instane, the iadd instrution (integer addition) requires that the stak initially

ontains at least two elements, and that these two elements are of type int; it

then pushes bak a result of type int. Similarly, a getfield C:f:� instrution

(aess the instane �eld f of type � delared in lass C) requires that the top of

the stak ontains a referene to an instane of lass C or one of its sub-lasses

(and not, for instane, an integer { this would orrespond to an attempt to forge

an objet referene by an unsafe ast); it then pops it and pushes bak a value

of type � (the value of the �eld f). More generally, proper operation of the JVM

is not guaranteed unless the ode meets the following onditions:

{ Type orretness: the arguments of an instrution are always of the types

expeted by the instrution.

{ No stak overow or underow: an instrution never pops an argument o�

an empty stak, nor pushes a result on a full stak (whose size is equal to

the maximal stak size delared for the method).

{ Code ontainment: the program ounter must always point within the ode

for the method, to the beginning of a valid instrution enoding (no falling

o� the end of the method ode; no branhes into the middle of an instrution

enoding).

{ Register initialization: a load from a register must always follow at least one

store in this register; in other terms, registers that do not orrespond to

method parameters are not initialized on method entrane, and it is an error

to load from an uninitialized register.

{ Objet initialization: when an instane of a lass C is reated, one of the

initialization methods for lass C (orresponding to the onstrutors for this

lass) must be invoked before the lass instane an be used.

{ Aess ontrol: method invoations, �eld aesses and lass referenes must

respet the visibility modi�ers (private, proteted, publi, et) of the

method, �eld or lass.

One way to guarantee these onditions is to hek them dynamially, while

exeuting the byteode. This is alled the \defensive JVM approah" in the liter-

ature [6℄. However, heking these onditions at run-time is expensive and slows

down exeution signi�antly. The purpose of byteode veri�ation is to hek

these onditions one and for all, by stati analysis of the byteode at loading-

time. Byteode that passes veri�ation an then be exeuted at full speed, with-

out extra dynami heks.

3 Basi veri�ation by dataow analysis

The �rst JVM byteode veri�ation algorithm is due to Gosling and Yellin at

Sun [9, 36, 15℄. Almost all existing byteode veri�ers implement this algorithm.

It an be summarized as a dataow analysis applied to a type-level abstrat

interpretation of the virtual mahine. Some advaned aspets of the algorithm

that go beyond standard dataow analysis are desribed in setions 4 and 5. In

this setion, we desribe the basi ingredients of this algorithm: the type-level

abstrat interpreter and the dataow framework.

3.1 The type-level abstrat interpreter

At the heart of all byteode veri�ation algorithms desribed in this paper is an

abstrat interpreter for the JVM instrution set that exeutes JVM instrutions

like a defensive JVM (inluding type tests, stak underow and overow tests,

et), but operates over types instead of values. That is, the abstrat interpreter

manipulates a stak of types and a register type (an array assoiating types

to register numbers). It simulates the exeution of instrutions at the level of

types. For instane, for the iadd instrution (integer addition), it heks that

the stak of types ontains at least two elements, and that the top two elements

are the type int. It then pops the top two elements and pushes bak the type

int orresponding to the result of the addition.

ionst n : (S; R)! (int:S; R) if jSj < M

stak

iadd : (int:int:S; R)! (int:S; R)

iload n : (S; R)! (int:S; R)

if 0 � n < M

reg

and R(n) = int and jSj < M

stak

istore n : (int:S; R)! (S; Rfn intg) if 0 � n < M

reg

aonst null : (S; R)! (null:S; R) if jSj < M

stak

aload n : (S; R)! (R(n):S; R)

if 0 � n < M

reg

and R(n) <: Objet and jSj < M

stak

astore n : (�:S; R)! (S; Rfn �g) if 0 � n < M

reg

and � <: Objet

getfield C:f:� : (ref(D):S; R)! (�:S; R) if D <: C

invokestati C:m:� : (�

0

n

: : : �

0

1

:S; R)! (�:S; R)

if � = � (�

1

; : : : ; �

n

) and �

0

i

<: �

i

for i = 1 : : : n

Fig. 2. Seleted rules for the type-level abstrat interpreter. M

stak

is the maximal

stak size and M

reg

the maximal number of registers.

Figure 2 de�nes more formally the abstrat interpreter on a number of repre-

sentative JVM instrutions. The abstrat interpreter is presented as a transition

relation i : (S;R)! (S

0

; R

0

), where i is the instrution, S and R the stak type

and register type before exeuting the instrution, and S

0

and R

0

the stak type

and register type after exeuting the instrution. Errors suh as type mismathes

on the arguments, stak underow, or stak overow, are denoted by the absene

of a transition. For instane, there is no transition on iadd from an empty stak.

Notie that method invoations (suh as the invokestati instrution in

Fig. 2) are not treated by branhing to the ode of the invoked method, like the

onrete JVM does, but simply assume that the e�et of the method invoation

on the stak is as desribed by the method signature given in the \invoke" in-

strution. All byteode veri�ation algorithms desribed in this paper proeed

method per method, assuming that all other methods are well-typed when veri-

fying the ode of a method. A simple oindutive argument shows that if this is

the ase, the program as a whole (the olletion of all methods) is well typed.

The types manipulated by the abstrat interpreter are similar to the soure-

level types of the Java language. They inlude primitive types (int, long, float,

double), objet referene types represented by the fully quali�ed names of the

orresponding lasses, and array types. The boolean, byte, short and har

types of Java are identi�ed with int. Two extra types are introdued: null to

represent the type of the null referene, and > to represent the ontents of unini-

tialized registers, that is, any value. (\Load" instrutions expliitly hek that

the aessed register does not have type >, thus deteting aesses to uninitial-

ized registers.) A subtyping relation between these types, similar to that of the

Java language (the \assignment ompatibility" relation), is de�ned as shown in

Fig. 3.

>

Objetint long float double

C

D E

Objet[℄

C[℄

D[℄ E[℄

int[℄ long[℄

null

Fig. 3. Type expressions used by the veri�er, with their subtyping relation. C, D, E are

user-de�ned lasses, with D and E extending C. Not all types are shown.

3.2 The dataow analysis

Verifying a method whose body is a straight-line piee of ode (no branhes) is

easy: we simply iterate the transition funtion of the abstrat interpreter over

the instrutions, taking the stak type and register type \after" the preeding

instrution as the stak type and register type \before" the next instrution. The

initial stak and register types reet the state of the JVM on method entrane:

the stak type is empty; the types of the registers 0 : : : n � 1 orresponding to

the n method parameters are set to the types of the orresponding parameters

in the method signature; the other registers n : : :M

reg

� 1 orresponding to

uninitialized loal variables are given the type >.

If the abstrat interpreter gets \stuk", i.e. annot make a transition from

one of the intermediate states, then veri�ation fails and the ode is rejeted.

Otherwise, veri�ation sueeds, and sine the abstrat interpreter is a orret

approximation of a defensive JVM, we are ertain that a defensive JVM will

not get stuk either exeuting the ode. Thus, the ode is orret and an be

exeuted safely by a regular, non-defensive JVM.

Branhes and exeption handlers introdue forks and joins in the ontrol ow

of the method. Thus, an instrution an have several predeessors, with di�erent

stak and register types \after" these predeessor instrutions. Sun's byteode

veri�er deals with this situation in the manner ustomary for data ow analysis:

the state (stak type and register type) \before" an instrution is taken to be

the least upper bound of the states \after" all predeessors of this instrution.

For instane, assume lasses C

1

and C

2

extend C, and we analyze a onditional

onstrut that stores a value of type C

1

in register 0 in one arm, and a value of

type C

2

in the other arm. (See Fig. 4.) When the two arms meet, register 0 is

assumed to have type C, whih is the least upper bound (the smallest ommon

supertype) of C

1

and C

2

.

r

0

: C = lub(C

1

; C

2

)

r

0

: C

1

r

0

: C

2

Fig. 4. Handling joins in the ontrol ow

More preisely, writing in(i) for the state \before" instrution i and out(i)

for the state \after" i, the algorithm sets up the following dataow equations:

i : in(i)! out(i)

in(i) = lubfout(j) j j predeessor of ig

for every instrution i, plus

in(i

0

) = ("; (P

0

; : : : ; P

n�1

;>; : : : ;>))

for the start instrution i

0

(the P

k

are the types of the method parameters).

These equations are then solved by standard �xpoint iteration using Kildall's

worklist algorithm [17, setion 8.4℄: an instrution i is taken from the worklist

and its state \after" out(i) is determined from its state \before" in(i) using the

abstrat interpreter; then, we replae in(j) by lub(in(j); out(i)) for eah sues-

sor j of i, and enter those suessors j for whih in(j) hanged in the worklist.

The �xpoint is reahed when the worklist is empty, in whih ase veri�ation

sueeds. Veri�ation fails if a state with no transition is enountered, or one of

the least upper bounds is unde�ned.

As a trivial optimization of the algorithm above, the dataow equations an

be set up at the level of extended basi bloks rather than individual instrutions.

In other terms, it suÆes to keep in working memory the states in(i) where i is

the �rst instrution of an extended basi blok (i.e. a branh target); the other

states an be reomputed on the y as needed.

The least upper bound of two states is taken pointwise, both on the stak

types and the register types. It is unde�ned if the stak types have di�erent

heights, whih auses veri�ation to fail. This situation orresponds to a program

point where the run-time stak an have di�erent heights depending on the path

by whih the point is reahed; suh ode must be rejeted beause it an lead to

unbounded stak height, and therefore to stak overow. (Consider a loop that

pushes one more entry on the stak at eah iteration.)

The least upper bound of two register types an be >, ausing this register

to have type > in the merged state. This orresponds to the situation where

a register holds values of inompatible types in two arms of a onditional (e.g.

int in one arm and an objet referene in the other), and therefore is treated

as uninitialized (no further loads from this register) after the merge point. The

least upper bound of two stak slots an also be >, in whih ase Sun's algo-

rithm aborts veri�ation immediately. Alternatively, it is entirely harmless to

ontinue veri�ation after setting the stak slot to > in the merged state, sine

the orresponding value annot be used by any well-typed instrution, but simply

disarded by instrutions suh as pop or return.

3.3 Interfaes and least upper bounds

The dataow framework presented above requires that the type algebra, ordered

by the subtyping relation, onstitutes a semi-lattie. That is, every pair of types

possesses a smallest ommon supertype (least upper bound).

Unfortunately, this property does not hold if we take the veri�er type alge-

bra to be the Java soure-level type algebra (extended with > and null) and

the subtyping relation to be the Java soure-level assignment ompatibility re-

lation. The problem is that interfaes are types, just like lasses, and a lass an

implement several interfaes. Consider the following lasses:

interfae I { ... }

interfae J { ... }

lass C1 implements I, J { ... }

lass C2 implements I, J { ... }

The subtyping relation indued by these delarations is:

Objet

I J

C1 C2

This is obviously not a semi-lattie, sine the two types C1 and C2 have two

ommon super-types I and J that are not omparable (neither is subtype of the

other).

There are several ways to address this issue. One approah is to manipulate

sets of types during veri�ation instead of single types as we desribed earlier.

These sets of types are to be interpreted as onjuntive types, i.e. the set fI; Jg,

like the onjuntive type I ^ J, represents values that have both types I and J,

and therefore is a suitable least upper bound for the types fC1g and fC2g in the

example above. This is the approah followed by Qian [25℄ and also by Push

[24℄.

Another approah is to omplete the lass and interfae hierarhy of the

program into a lattie before performing veri�ation. In the example above, the

ompletion would add a pseudo-interfae IandJ extending both I and J, and

laim that C1 and C2 implement IandJ rather than I and J. We then obtain the

following semi-lattie:

Objet

I J

IandJ

C1 C2

The pseudo-interfae IandJ plays the same role as the set type fI; Jg in

the �rst approah desribed above. The di�erene is that the ompletion of the

lass/interfae hierarhy is performed one and for all, and veri�ation manipu-

lates only simple types rather than sets of types. This keeps veri�ation simple

and fast.

The simplest solution to the interfae problem is to be found in Sun's imple-

mentation of the JDK byteode veri�er. (This approah is doumented nowhere,

but an easily be inferred by experimentation.) Namely, byteode veri�ation ig-

nores interfaes, treating all interfae types as the lass type Objet. Thus, the

type algebra used by the veri�er ontains only proper lasses and no interfaes,

and subtyping between proper lasses is simply the inheritane relation between

them. Sine Java has single inheritane (a lass an implement several interfaes,

but inherit from one lass only), the subtyping relation is tree-shaped and triv-

ially forms a lattie: the least upper bound of two lasses is simply their losest

ommon anestor in the inheritane tree.

The downside of Sun's approah, ompared with the set-based or ompletion-

based approah, is that the veri�er annot guarantee statially that an objet

referene implements a given interfae. In partiular, the invokeinterfae I:m

instrution, whih invokes method m of interfae I on an objet, is not guar-

anteed to reeive at run-time an objet that atually implements I : the only

guarantee provided by Sun's veri�er is that it reeives an argument of type

Objet, that is, any objet referene. The invokeinterfae I:m instrution

must therefore hek dynamially that the objet atually implements I , and

raise an exeption if it does not.

3.4 Formalizations and proofs

Many formalizations and proofs of orretness of Java byteode veri�ation have

been published, and we have reasons to believe that many more have been devel-

oped internally, both in aademia and industry. With no laims to exhaustive-

ness, we will mention the works of Cohen [6℄ and Qian [25℄ among the �rst formal

spei�ations of the JVM. Qian's spei�ation is written in ordinary mathemat-

is, while Cohen's uses the spei�ation language of the ACL2 theorem prover.

Push [24℄ uses the Isabelle/HOL prover to formalize the dynami semantis of

a fragment of the JVM, the orresponding type-level abstrat interpreter used

by the veri�er, and proves the orretness of the latter with respet to the for-

mer: if the abstrat interpreter an do a transition i : (S;R) ! (S

0

; R

0

), then

for all onrete states (s; r) mathing (S;R), the onrete interpreter an do a

transition i : (s; r)! (s

0

; r

0

), and the �nal onrete state (s

0

; r

0

) mathes (S;R).

Nipkow [20℄ formalizes the dataow analysis framework in Isabelle/HOL and

proves its orretness.

4 Verifying objet initialization

Objet reation in the Java virtual mahine is a two-step proess: �rst, the

instrution new C reates a new objet, instane of the lass C, with all in-

stane �elds �lled with default values (0 for numerial �elds and null for refer-

ene �elds); seond, one of the initializer methods for lass C (methods named

C:<init> resulting from the ompilation of the onstrutor methods of C) must

be invoked on the newly reated objet. Initializer methods, just like their soure-

level ounterpart (onstrutors), are typially used to initialize instane �elds to

non-default values, although they an also perform nearly arbitrary omputa-

tions.

The JVM spei�ation requires that this two-step objet initialization pro-

tool be respeted. That is, the objet instane reated by the new instrution

is onsidered uninitialized, and none of the regular objet operations (i.e. store

the objet in a data struture, return it as method result, aess one of its �elds,

invoke one of its methods) is allowed on this uninitialized objet. Only when one

of the initializer methods for its lass is invoked on the new objet and return

normally is the new objet onsidered fully initialized and usable like any other

objet.

Unlike the register initialization property, this objet initialization property is

not ruial to ensure type safety at run-time: sine the new instrution initializes

the instane �elds of the new objet with orret values for their types, type

safety is not broken if the resulting default-initialized objet is used right away

without having alled an initializer method. However, the objet initialization

property is important to ensure that some invariants between instane �elds that

is established by the onstrutor of a lass atually hold for all objets of this

lass.

Stati veri�ation of objet initialization is made more omplex by the fat

that initialization methods operate by side-e�et: instead of taking an uninitial-

ized objet and returning an initialized objet, they simply take an uninitialized

objet, update its �elds, and return nothing. Hene, the ode generated by Java

ompilers for the soure-level statement x = new C(arg) is generally of the fol-

lowing form:

new C // reate uninitialized instane of C

dup // dupliate the referene to this instane

ode to ompute arg

invokespeial C.<init> // all the initializer

astore 3 // store initialized objet in x

That is, two referenes to the uninitialized instane of C are held on the stak.

The topmost referene is \onsumed" by the invoation of C.<init>. When

this initializer returns, the seond referene is now at the top of the stak and

now referenes a properly initialized objet, whih is then stored in the register

alloated to x. The triky point is that the initializer method is applied to one

objet referene on the stak, but it is another objet referene ontained in

the stak (whih happens to referene the same objet) whose status goes from

\uninitialized" to \fully initialized" in the proess.

As demonstrated above, stati veri�ation of objet initialization requires a

form of alias analysis (more preisely a must-alias analysis) to determine whih

objet referenes in the urrent state are guaranteed to refer to the same unini-

tialized objet that is passed as argument to an initializer method. While any

must-alias analysis an be used, Sun's veri�er uses a fairly simple analysis,

whereas an uninitialized objet is identi�ed by the position (program ounter

value) of the new instrution that reated it. More preisely, the type algebra is

enrihed by the types C

p

denoting an uninitialized instane of lass C reated

by a new instrution at PC p. An invoation of an initializer method C:<init>

heks that the �rst argument of the method is of type C

p

for some p, then pops

the arguments o� the stak type as usual, and �nally �nds all other ourrenes

of the type C

p

in the abstrat interpreter state (stak type and register types)

and replaes them by C. The following example shows how this works for a nested

initialization orresponding to the Java expression new C(new C(null)):

0: new C // stak type after: C

0

3: dup // C

0

, C

0

4: new C // C

0

, C

0

, C

4

7: dup // C

0

, C

0

, C

4

, C

4

8: aonst_null // C

0

, C

0

, C

4

, C

4

, null

9: invokespeial C.<init> // C

0

, C

0

, C

12: invokespeial C.<init> // C

15: ...

In partiular, the �rst invokespeial initializes only the instane reated at

PC 4, but not the one reated at PC 0.

This approah is orret only if at any given time, the mahine state ontains

at most one uninitialized objet reated at a given PC. Loops ontaining a new

instrution an invalidate this assumption, sine several distint objets reated

by this new instrution an be \in ight", yet are given the same uninitialized

objet type (same lass, same PC of reation). To avoid this problem, Sun's

veri�er requires that no uninitialized objet type appear in the mahine state

when a bakward branh is taken. Sine a ontrol-ow loop must take at least

one bakward branh, this guarantees that no initialized objets an be arried

over from one loop iteration to the next one, thus ensuring the orretness of

the \PC of reation" aliasing riterion.

Freund and Mithell [7℄ formalize this approah to verifying objet initializa-

tion. Bertot [2℄ proves the orretness of this approah using the Coq theorem

prover, and extrats a veri�ation algorithm from the proof.

5 Subroutines

Subroutines in the JVM are ode fragments that an be alled from several points

inside the ode of a method. To this end, the JVM provides two instrutions:

jsr branhes to a given label in the method ode and pushes a return address

to the following instrution; ret reovers a return address (from a register)

and branhes to the orresponding instrution. Subroutines are used to ompile

ertain exeption handling onstruts, and an also be used as a general ode-

sharing devie. The di�erene between a subroutine all and a method invoation

is that the body of the subroutine exeutes in the same ativation reord than

its aller, and therefore an aess and modify the registers of the aller.

5.1 The veri�ation problem with subroutines

Subroutines ompliate signi�antly byteode veri�ation by dataow analysis.

First, it is not obvious to determine the suessors of a ret instrution, sine

the return address is a �rst-lass value. As a �rst approximation, we an say

that a ret instrution an branh to any instrution that follows a jsr in the

method ode. (This approximation is too oarse in pratie; we will desribe

better approximations later.) Seond, the subroutine entry point ats as a merge

point in the ontrol-ow graph, ausing the register types at the points of all

to this subroutine to be merged. This an lead to exessive loss of preision in

the register types inferred, as the example in Fig. 5 shows.

// register 0 uninitialized here

0: jsr 100 // all subroutine at 100

3: ...

50: ionst_0

51: istore_0 // register 0 has type "int" here

52: jsr 100 // all subroutine at 100

55: iload_0 // load integer from register 0

56: ireturn // and return to aller

...

// subroutine at 100:

100: astore_1 // store return address in register 1

101: ... // exeute some ode that does not use register 0

110: ret 1 // return to aller

Fig. 5. An example of subroutine

The two jsr 100 at 0 and 52 have 100 as suessor. At 0, register 0 has type

>; at 52, it has type int. Thus, at 100, register 0 has type > (the least upper

bound of > and int). The subroutine body (between 101 and 110) does not

modify register 0, hene its type at 110 is still >. The ret 1 at 110 has 3 and

55 as suessors (the two instrutions following the two jsr 100). Thus, at 55,

register 0 has type > and annot be used as an integer by instrutions 55 and

56. This ode is therefore rejeted.

This behavior is ounter-intuitive. Calling a subroutine that does not use a

given register does not modify the run-time value of this register, so one ould

expet that it does not modify the veri�ation-time type of this register either.

Indeed, if the subroutine body was expanded inline at the two jsr sites, byteode

veri�ation would sueed as expeted.

The subroutine-based ompilation sheme for the try. . . finally onstrut

produes ode very muh like the above, with a register being uninitialized at

one all site of the subroutine and holding a value preserved by the subroutine at

another all site. Hene it is ruial that similar ode passes byteode veri�ation.

We will now see two re�nements of the dataow-based veri�ation algorithm that

ahieve this goal.

5.2 Sun's solution

We �rst desribe the approah implemented in Sun's JDK veri�er. It is desribed

informally in [15, setion 4.9.6℄, and formalized in [29, 25℄. This approah imple-

ments the intuition that a all to a subroutine should not hange the types of

registers that are not used in the subroutine body.

First, we need to make preise what a \subroutine body" is: sine JVM

byteode is unstrutured, subroutines are not syntatially delimited in the ode;

subroutine entry points are easily deteted (as targets of jsr instrutions), but it

is not immediately apparent whih instrutions an be reahed from a subroutine

entry point. Thus, a dataow analysis is performed, either before or in parallel

with the main type analysis. The outome of this analysis is a onsistent labeling

of every instrution by the entry point(s) for the subroutine(s) it logially belongs

to. From this labeling, we an then determine, for eah subroutine entry point `,

the return instrution Ret(`) for the subroutine, and the set of registers Used(`)

that are read or written by instrutions belonging to that subroutine.

The dataow equation for subroutine alls is then as follows. Let i be

an instrution jsr `, and j be the instrution immediately following i. Let

(S

jsr

; R

jsr

) = out(i) be the state \after" the jsr, and (S

ret

; R

ret

) = out(Ret(`))

be the state \after" the ret that terminates the subroutine. Then:

in(j) =

�

S

ret

; fr 7!

�

R

ret

(r) if r 2 Used(`)

R

jsr

(r) if r =2 Used(`)

g

�

In other terms, the state \before" the instrution j following the jsr is idential

to the state \after" the ret, exept for the types of the registers that are not

used by the subroutine, whih are taken from the state \after" the jsr.

In the example above, we have Ret(100) = 110 and register 0 is not in

Used(100). Hene the type of register 0 before instrution 55 (the instrution

following the jsr) is equal to the type after instrution 52 (the jsr itself), that

is int, instead of > (the type of register 0 after the ret 1 at 110).

While e�etive in pratie, Sun's approah to subroutine veri�ation raises

a hallenging issue: determining the subroutine struture is diÆult. Not only

subroutines are not syntatially delimited, but return addresses are stored in

general-purpose registers rather than on a subroutine-spei� stak, whih makes

traking return addresses and mathing ret/jsr pairs more diÆult. To faili-

tate the determination of the subroutine struture, the JVM spei�ation states

a number of restritions on orret JVM ode, suh as \two di�erent subroutines

annot `merge' their exeution to a single ret instrution" [15, setion 4.9.6℄.

These restritions seem rather ad-ho and spei� to the partiular subroutine

labeling algorithm that Sun's veri�er uses. Moreover, the desription of subrou-

tine labeling given in the JVM spei�ation is very informal and inomplete.

Several rational reonstrutions of this part of Sun's veri�er have been pub-

lished. The �rst, due to Abadi and Stata [29℄, is presented as a non-standard

type system, and determines the subroutine struture before heking the types.

The seond is due to Qian [26℄ and infers simultaneously the types and the

subroutine struture, in a way that is loser to Sun's implementation. The si-

multaneous determination of types and Used(`) sets ompliates the dataow

analysis: the transfer funtion of the analysis is no longer monotonous, and spe-

ial iteration strategies are required to reah the �xpoint. Finally, O'Callahan

[21℄ and Hagiya and Tozawa [10℄ also give non-standard type systems for sub-

routines based on ontinuation types and ontext-dependent types, respetively.

However, these papers give only type heking rules, but no e�etive veri�ation

(type inferene) algorithms.

While these works shed onsiderable light on the issue, they are arried in

the ontext of a small subset of the JVM that exludes exeptions and objet

initialization in partiular. Deliate interations between subroutines and objet

initialization were disovered later by Freund and Mithell [7℄, exposing a bug in

Sun's veri�er. As for exeptions, exeption handling ompliates signi�antly the

determination of the subroutine struture. Examination of byteode produed by

Java ompiler show two possible situations: either an exeption handler overs a

range of instrutions entirely ontained in a subroutine, in whih ase the ode

of the exeption handler should be onsidered as part of the same subroutine

(e.g. it an branh bak to the ret instrution that terminates the subroutine);

or, an exeption handler overs both instrutions belonging to a subroutine and

non-subroutine instrutions, in whih ase the ode of the handler should be

onsidered as outside the subroutine. The problem is that in the seond ase, we

have a branh (via the exeption handler) from a subroutine instrution to a non-

subroutine instrution, and this branh is not a ret instrution; this situation

is not allowed in Abadi and Stata's subroutine labeling system.

5.3 Polyvariant dataow analysis

An alternate solution to the subroutine problem, used in the Java Card o�-

ard veri�er [31℄, relies on a polyvariant dataow analysis: instrutions inside

subroutine bodies are analyzed several times, one per all site for the subroutine.

The priniples of polyvariant ow analyses, also alled ontext-sensitive analyses,

are well known [19, setion 3.6℄: whereas monovariant analyses maintain only

one state per program point, a polyvariant analysis allows several states per

program point. These states are indexed by ontours that usually approximate

the ontrol-ow path that led to eah state.

In the ase of byteode veri�ation, ontours are subroutine all staks: lists

of return addresses for the jsr instrutions that led to the orresponding state.

In the absene of subroutines, all the byteode for a method is analyzed in

the empty ontour. Thus, only one state is assoiated to eah instrution and

the analysis degenerates into the monovariant dataow analysis of setion 3.2.

However, when a jsr ` instrution is enountered in the urrent ontour , it

is treated as a branh to the instrution at ` in the augmented ontour `:.

Similarly, a ret r instrution is treated as a branh that restrits the urrent

ontext by popping one or several return addresses from (as determined by

the type of the register r).

In the example of Fig. 5, the two jsr 100 instrutions are analyzed in the

empty ontext ". This auses two \in" states to be assoiated with the instru-

tion at 100; one has ontour 3:", assigns type > to register 0, and ontains

retaddr(3) at the top of the stak

1

; the other state has ontour 55:", assigns

type int to register 0, and ontains retaddr(55) at the top of the stak. Then,

the instrutions at 101. . . 110 are analyzed twie, in the two ontours 3:" and

55:". In the ontour 3:", the ret 1 at 110 is treated as a branh to 3, where

register 0 still has type >. In the ontour 55:", the ret 1 is treated as a branh

to 55 with register 0 still having type int. By analyzing the subroutine body in

a polyvariant way, under two di�erent ontours, we avoided merging the types

> and int of register 0 at the subroutine entry point, and thus obtained the

desired type propagation behavior for register 0: > before and after the jsr 100

at 3, but int before and after the jsr 100 at 52.

More formally, the polyvariant dataow equation for a jsr ` instrution at i

followed by an instrution at j is

in(`; j:) = (retaddr(j):S; T) where (S; T) = out(i;)

For a ret r instrution at i, the equation is

in(ra;

0

) = out(i;)

where the type of register r in the state out(i;) is retaddr(ra) and the ontext

0

is obtained from by popping return addresses until ra is found, that is,

 =

00

:ra:

0

.

1

The type retaddr(i) represents a return address to the instrution at i.

Another way to view polyvariant veri�ation is that it is exatly equivalent

to performing monovariant veri�ation on an expanded version of the byteode

where every subroutine all has been replaed by a distint opy of the subrou-

tine body. Instead of atually taking N opies of the subroutine body, we analyze

them N times in N di�erent ontours. Of ourse, dupliating subroutine bod-

ies before the monovariant veri�ation is not pratial, beause it requires prior

knowledge of the subroutine struture (to determine whih instrutions are part

of whih subroutine body), and as shown in setion 5.2, the subroutine stru-

ture is hard to determine exatly. The beauty of the polyvariant analysis is that

it determines the subroutine struture along the way, via the omputations on

ontours performed during the dataow analysis. Moreover, this determination

takes advantage of typing information suh as the retaddr(ra) types to deter-

mine with ertainty the point to whih a ret instrution branhes in ase of

early return from nested subroutines.

Another advantage of polyvariant veri�ation is that it has no problem deal-

ing with ode that is reahable both from subroutine bodies and from the main

program, suh as the exeption handlers mentioned at the end of setion 5.2:

rather than deiding whether suh exeption handlers are part of a subroutine

or not, the polyvariant analysis simply analyzes them several times, one in the

empty ontour and one or several times in subroutine ontours.

The downside of polyvariant veri�ation is that it is more omputationally

expensive than Sun's approah. In partiular, if subroutines are nested to depth

N , and eah subroutine is alled k times, the instrutions from the innermost sub-

routine are analyzed k

N

times instead of only one in Sun's algorithm. However,

typial Java ode has low nesting of subroutines: most methods haveN � 1, very

few have N = 2, and N > 2 is unheard of. Hene, the extra ost of polyvariant

veri�ation is entirely aeptable in pratie.

6 Model heking of abstrat interpretations

It is folk lore that dataow analyses an be viewed as model heking of abstrat

interpretations [28℄. Sine a large part of byteode veri�ation is obviously an

abstrat interpretation (of a defensive JVM at the type level), it is natural to

look at the remaining parts from a model-heking perspetive.

Posegga and Vogt [22℄ were the �rst to do so. They outline an algorithm that

takes the byteode for a method and generates a temporal logi formula that

holds if and only if the byteode is safe. They then use an o�-the-shelf model

heker to determine the validity of the formula. While this appliation uses

only a small part of the power and generality of temporal logi and of the model

heker, the approah sounds interesting for establishing �ner properties of the

byteode that go beyond the basi safety properties of byteode veri�ation (see

setion 8).

Unpublished work by Brisset [3℄ extrats the essene of Posegga and Vogt's

approah: the idea of exploring all reahable states of the abstrat interpreter.

Brisset onsiders the transition relation obtained by ombining the transition

relation of the type-level abstrat interpreter (Fig. 2) with the \suessor" re-

lation between instrutions. This relation is of the form (p; S;R) ! (p

0

; S

0

; R

0

),

meaning that the abstrat interpreter, started at PC p with stak type S and

register type R, an abstratly exeute the instrution at p and arrive at PC p

0

with stak type S

0

and register type R

0

.

Starting with the initial state (0; "; (P

0

; : : : ; P

n�1

;>; : : : ;>)) orresponding

to the method entry, we an then explore all states reahable by repeated ap-

pliations of the transition funtion. If we enounter a state where the abstrat

interpreter is \stuk" (annot make a transition beause some hek failed),

veri�ation fails and the byteode is rejeted. Otherwise, the orretness of the

abstrat interpretation guarantees that the onrete, defensive JVM interpreter

will never get \stuk" either during the exeution of the method ode, hene the

byteode is safe.

This algorithm always terminates beause the number of distint states is

�nite (albeit large), sine there is a �nite number of distint types used in the

program, and the height of the stak is bounded, and the number of registers is

�xed. Brisset formalized and proved the orretness of this approah in the Coq

proof assistant, and extrated the ML ode of a byteode veri�er from the proof.

This approah is oneptually interesting beause it is the ultimate polyvari-

ant analysis: rather than having one stak-register type per ontrol point (as in

Sun's veri�er), or one suh type per ontrol point and per subroutine ontour

(as in setion 5.3), we an have arbitrarily many stak-register types per ontrol

point, depending on the number of ontrol-ow paths that lead to this ontrol

point. Consider for instane the ontrol-ow joint depited in Fig. 4. While the

dataow-based algorithms verify the instrutions following the join point only

one under the assumption r : lub(C

1

; C

2

) = C, Brisset's algorithm veri�es them

twie, one under the assumption r : C

1

, one under the assumption r : C

2

.

In other terms, this analysis is polyvariant not only with respet to subroutine

alls, but to all onditional or N -way branhes as well. This renders the analysis

impratial, sine it runs in time exponential in the number of suh branhes

in the method. (Consider a ontrol-ow graph with N onditional onstruts in

sequene, eah assigning a di�erent type to registers r

1

: : : r

N

; this auses the

ode following the last onditional to be veri�ed 2

N

times under 2

N

di�erent

register types.)

Of ourse, the preision of Brisset's algorithm an be degraded by apply-

ing widening steps in order to redue the number of states. Some transitions

(p; S;R) ! (p

0

; S

0

; R

0

) an be replaed by (p; S;R) ! (p

0

; S

00

; R

00

) where

R

0

<: R

00

and S

0

<: S

00

. If the abstrat interpreter is still not stuk on any of

the reahable states, the byteode remains safe. The monovariant dataow anal-

ysis of setion 3.2 orresponds to keeping only one state per program point by

replaing multiple states by their least upper bounds. The polyvariant dataow

analysis of setion 5.3 is similar, exept that the merging of states into least

upper bounds is relaxed for subroutines and ontrolled via ontours.

Another interest of Brisset's approah is that it allows us to reonsider some

of the design deisions explained in setions 3.3 and 4. For instane, Brisset's

algorithm never omputes least upper bounds of types, but simply heks sub-

typing relations between types. Thus, it an be applied to any subtyping relation,

not just relations that form a semi-lattie. Indeed, it an keep trak of interfae

types and verify invokeinterfae instrutions aurately, without having to

deal with sets of types or lattie ompletion.

7 Byteode veri�ation on small omputers

Java virtual mahines run not only in personal omputers and workstations, but

also in a variety of embedded omputers, suh as personal digital assistants, mo-

bile phones, and smart ards. Extending the Java model of safe post-issuane

ode downloading to these devies requires that byteode veri�ation be per-

formed on the embedded system itself. However, byteode veri�ation is an ex-

pensive proess that exeeds the resoures (proessing power and memory spae)

of small embedded systems. For instane, a typial Java ard (Java-enabled smart

ard) has 1 or 2 kilo-bytes of RAM and an 8-bit miroproessor that is approx-

imately 1000 times slower than a personal omputer. Fitting a byteode veri�er

into one of these devies requires new veri�ation algorithms, whih we disuss

now.

7.1 Lightweight byteode veri�ation using erti�ates

Inspired by Neula and Lee's proof-arrying ode [18℄, Rose and Rose [27℄ pro-

pose to split byteode veri�ation into two phases: the ode produer omputes

the stak and register types at branh targets and transmit these so-alled er-

ti�ates along with the byteode; the embedded system, then, simply heks

that the ode is well-typed with respet to the types given in the erti�ates,

rather than inferring these types itself. In other terms, the embedded system no

longer solves iteratively the dataow equations haraterizing orret byteode,

but simply heks that the types provided in the ode erti�ates are indeed a

solution of these equations.

The bene�ts of this approah are twofold. First, heking a solution is faster

than inferring one, sine we avoid the ost of the �xpoint iteration. This speeds

up veri�ation to some extent

2

. Seond, erti�ates are only read, but never

modi�ed during veri�ation. Hene, they an be stored in persistent rewritable

memory (EEPROM or Flash). Smart ard-lass embedded systems o�er rela-

tively large amounts of persistent memory (e.g. 16-32 kilo-bytes). Writing data

to suh memory is slow (1000-10000 times slower than reading from it), hene it

is not possible to store there rapidly-hanging data suh as the �xpoint omputed

by a standard veri�ation algorithm. However, Rose and Rose's erti�ates are

written only one, on reeption of the byteode, and only read during veri�a-

tion, so they an �t in the \omfortable" EEPROM memory spae.

2

The speedup is not as important as one might expet, sine experiments show that

the �xpoint is usually reahed after examining every instrution at most twie [13℄.

There are two limitations to this approah. First, it is urrently not known

how to deal with subroutines in this framework. Indeed, Sun proposed to drop

subroutines entirely in order to use Rose and Rose's byteode veri�ation algo-

rithm in the KVM, one of Sun's embedded variants of the JVM [30℄. Seond,

erti�ates are relatively large: without ompression, about the same size as

the ode they annotate; with ompression, about 20% of the ode size. Even if

erti�ates are stored in persistent memory, they an still exeed the available

memory spae.

7.2 On-ard veri�ation with o�-ard ode transformation

The Java Card byteode veri�er desribed in [13℄ attaks the memory prob-

lem from another angle. Like the standard byteode veri�er, it solves dataow

equations using �xpoint iteration. To redue memory requirements, however, it

has only one global register type that is shared between all ontrol points in

the method. In other terms, the solution it infers is suh that a given register

has the same type throughout the method. For similar reasons, it also requires

that the stak be empty at eah branh instrution and at eah branh target

instrution. With these extra restritions, byteode veri�ation an be done in

spae O(M

stak

+M

reg

), instead of O(N

branh

� (M

stak

+M

reg

)) for Sun's algo-

rithm, where N

branh

is the number of branh targets. In pratie, the memory

requirements are small enough that all data strutures omfortably �t in RAM

on a smart ard.

One drawbak of this approah is that register initialization an no longer be

heked statially, and must be replaed by run-time initialization of registers

to safe values (0 or null) on method entrane. Another drawbak is that the

extra restritions imposed by the on-ard veri�er ause perfetly legal byteode

(that passes Sun's veri�er) to be rejeted. To address the latter issue, we rely

on an o�-ard transformation, performed on the byteode of the applet, that

transforms any legal byteode (that passes Sun's veri�er) into equivalent byte-

ode that passes the on-ard veri�er. The o�-ard transformations inlude stak

normalizations around branhes and register realloation by graph oloring, and

inrease the size of the ode by less than 2% [13℄.

8 Conlusions and perspetives

Java byteode veri�ation is now a well researhed tehnique, although it is still

de�ned only by Sun's referene implementation: all the formal works reviewed

in this paper have not yet resulted in a omplete formal spei�ation of what it

is and what it guarantees.

A largely open question is whether byteode veri�ation an go beyond basi

type safety and initialization properties, and statially establish more advaned

properties of applets, suh as resoure usage (bounding the amount of memory

alloated) and reativeness (bounding the running time of an applet between

two interations with the outside world). Controlling resoure usage is espeially

important for Java Card applets: sine Java Card does not guarantee the presene

of a garbage olletor, applets are supposed to alloate all the objets they need

at installation time, then run in onstant spae.

Other properties of interest inlude aess ontrol and information ow. Cur-

rently, the Java seurity manager performs all aess ontrol heks dynamially.

Various stati analyses and program transformations have been proposed to per-

form some of these heks statially [35, 23℄. As for information ow (an applet

does not \leak" on�dential information that it an aess), this property is

essentially impossible to hek dynamially; several type systems have been pro-

posed to enfore it statially [34, 33, 11, 1℄.

Finally, the seurity of the sandbox model relies not only on byteode veri-

�ation, but also on the proper implementation of the API given to the applet.

The majority of known applet-based attaks exploit (in a type-safe way) bugs

in the API, rather than breaking type safety through bugs in the veri�er. Veri�-

ation of the API is a promising and largely open area of appliation for formal

methods [14, 12℄.

Referenes

1. M. Abadi, A. Banerjee, N. Heintze, and J. G. Rieke. A ore alulus of dependeny.

In 26th symp. Priniples of Progr. Lang, pages 147{160. ACM Press, 1999.

2. Y. Bertot. A Coq formalization of a type heker for objet initialization in the

Java virtual mahine. Researh report 4047, INRIA, 2000. Also published in the

proeedings of CAV'01.

3. P. Brisset. Vers un v�eri�eur de byteode Java erti��e. Seminar given at Eole

Normale Sup�erieure, Paris, Otober 2nd 1998.

4. K. Brunnstein. Hostile AtiveX ontrol demonstrated. RISKS Forum, 18(82), Feb.

1997.

5. Z. Chen. Java Card Tehnology for Smart Cards: Arhiteture and Programmer's

Guide. The Java Series. Addison-Wesley, 2000.

6. R. Cohen. The defensive Java virtual mahine spei�ation. Tehnial report,

Computational Logi In., 1997.

7. S. N. Freund and J. C. Mithell. A type system for objet initialization in the Java

byteode language. ACM Trans. Prog. Lang. Syst., 22(5), 2000.

8. L. Gong. Inside Java 2 platform seurity: arhiteture, API design, and implemen-

tation. The Java Series. Addison-Wesley, 1999.

9. J. A. Gosling. Java intermediate byteodes. In Pro. ACM SIGPLAN Workshop

on Intermediate Representations, pages 111{118. ACM, 1995.

10. M. Hagiya and A. Tozawa. On a new method for dataow analysis of Java virtual

mahine subroutines. In G. Levi, editor, SAS'98, volume 1503 of LNCS, pages

17{32. Springer-Verlag, 1998.

11. N. Heintze and J. G. Rieke. The SLam alulus: programming with serey and

integrity. In 25th symp. Priniples of Progr. Lang, pages 365{377. ACM Press,

1998.

12. M. Huisman, B. Jaobs, and J. van den Berg. A ase study in lass library ver-

i�ation: Java's Vetor lass. Tehnial Report CSI-R0007, Computing Siene

Institute, University of Nijmegen, 2000.

13. X. Leroy. On-ard byteode veri�ation for Java Card. Submitted for publiation,

available from http://ristal.inria.fr/~xleroy, 2001.

14. X. Leroy and F. Rouaix. Seurity properties of typed applets, volume 1603 of LNCS,

pages 147{182. Springer-Verlag, 1999.

15. T. Lindholm and F. Yellin. The Java Virtual Mahine Spei�ation. The Java

Series. Addison-Wesley, 1999. Seond edition.

16. G. MGraw and E. Felten. Seuring Java. John Wiley & Sons, 1999.

17. S. S. Muhnik. Advaned ompiler design and implementation. Morgan Kaufmann,

1997.

18. G. C. Neula. Proof-arrying ode. In POPL'97, pages 106{119. ACM Press, 1997.

19. F. Nielson, H. R. Nielson, and C. Hankin. Priniples of program analysis. Springer-

Verlag, 1999.

20. T. Nipkow. Veri�ed byteode veri�ers. In Foundations of Software Siene and

Computation Strutures (FOSSACS'01). Springer-Verlag, 2001. To appear.

21. R. O'Callahan. A simple, omprehensive type system for Java byteode subrou-

tines. In POPL'99, pages 70{78. ACM Press, 1999.

22. J. Posegga and H. Vogt. Java byteode veri�ation using model heking. In

Workshop Fundamental Underpinnings of Java, 1998.

23. F. Pottier, C. Skalka, and S. Smith. A systemati approah to stati aess ontrol.

In D. Sands, editor, Proeedings of the 10th European Symposium on Programming

(ESOP'01), volume 2028 of LNCS, pages 30{45. Springer-Verlag, 2001.

24. C. Push. Proving the soundness of a Java byteode veri�er spei�ation in Is-

abelle/HOL. In W. R. Cleaveland, editor, TACAS'99, volume 1579 of LNCS, pages

89{103. Springer-Verlag, 1999.

25. Z. Qian. A formal spei�ation of Java virtual mahine instrutions for objets,

methods and subroutines. In J. Alves-Foss, editor, Formal syntax and semantis

of Java, volume 1523 of LNCS. Springer-Verlag, 1998.

26. Z. Qian. Standard �xpoint iteration for Java byteode veri�ation. ACM Trans.

Prog. Lang. Syst., 22(4):638{672, 2000.

27. E. Rose and K. Rose. Lightweight byteode veri�ation. InWorkshop Fundamental

Underpinnings of Java, 1998.

28. D. A. Shmidt. Data ow analysis is model heking of abstrat interpretations.

In POPL'98, pages 38{48. ACM Press, 1998.

29. R. Stata and M. Abadi. A type system for Java byteode subroutines. ACM Trans.

Prog. Lang. Syst., 21(1):90{137, 1999.

30. Sun Mirosystems. Java 2 platform miro edition tehnology for reating mo-

bile devies. White paper, http://java.sun.om/produts/ld/wp/KVMwp.pdf,

2000.

31. Trusted Logi. O�-ard byteode veri�er for Java Card. Distributed as part of

Sun's Java Card Development Kit, 2001.

32. G. Vigna, editor. Mobile Agents and Seurity, volume 1419 of Leture Notes in

Computer Siene. Springer-Verlag, 1998.

33. D. Volpano and G. Smith. A type-based approah to program seurity. In Proeed-

ings of TAPSOFT'97, Colloquium on Formal Approahes in Software Engineering,

volume 1214 of LNCS, pages 607{621. Springer-Verlag, 1997.

34. D. Volpano, G. Smith, and C. Irvine. A sound type system for seure ow analysis.

Journal of Computer Seurity, 4(3):1{21, 1996.

35. D. Walker. A type system for expressive seurity poliies. In 27th symp. Priniples

of Progr. Lang, pages 254{267. ACM Press, 2000.

36. F. Yellin. Low level seurity in Java. In Proeedings of the Fourth International

World Wide Web Conferene, pages 369{379. O'Reilly, 1995.

