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Abstract. Bytecode verification is a crucial security component for Java
applets, on the Web and on embedded devices such as smart cards. This
paper describes the main bytecode verification algorithms and surveys
the variety of formal methods that have been applied to bytecode verifi-
cation in order to establish its correctness.

1 Introduction

Web applets have popularized the idea of downloading and executing untrusted
compiled code on the personal computer running the Web browser, without
user’s approval or intervention. Obviously, this raises major security issues: with-
out appropriate security measures, a malicious applet could mount a variety of
attacks against the local computer, such as destroying data (e.g. reformatting the
disk), modifying sensitive data (e.g. registering a bank transfer via the Quicken
home-banking software [4]), divulging personal information over the network, or
modifying other programs (Trojan attacks).

To make things worse, the applet model is now being transferred to high-
security embedded devices such as smart cards: the Java Card architecture [5]
allows for post-issuance downloading of applets on smart cards in sensitive ap-
plication areas such as payment and mobile telephony. This raises the stake
enormously: a security hole that allows a malicious applet to crash Windows
is perhaps tolerable, but is certainly not acceptable if it allows the applet to
perform non-authorized credit card transactions.

The solution put forward by the Java programming environment is to exe-
cute the applets in a so-called “sandbox”, which is an insulation layer preventing
direct access to the hardware resources and implementing a suitable access con-
trol policy [8,32,16]. The security of the sandbox model relies on the following
three components:

1. Applets are not compiled down to machine executable code, but rather to
bytecode for a virtual machine. The virtual machine manipulates higher-
level, more secure abstractions of data than the hardware processor, such as
object references instead of memory addresses.

2. Applets are not given direct access to hardware resources such as the se-
rial port, but only to a carefully designed set of API classes and methods
that perform suitable access control before performing interactions with the
outside world on behalf of the applet.



3. Upon downloading, the bytecode of the applet is subject to a static analysis
called bytecode verification, whose purpose is to make sure that the code
of the applet is well typed and does not attempt to bypass protections 1
and 2 above by performing ill-typed operations at run-time, such as forging
object references from integers, illegal casting of an object reference from
one class to another, calling directly private methods of the API, jumping
in the middle of an API method, or jumping to data as if it were code [9,
36, 15].

Thus, bytecode verification is a crucial security component in the Java “sand-
box” model: any bug in the verifier causing an ill-typed applet to be accepted
can potentially enable a security attack. At the same time, bytecode verification
is a complex process involving elaborate program analyses. Consequently, con-
siderable research efforts have been expended to specify the goals of bytecode
verification, formalize bytecode verification algorithms, and prove their correct-
ness.

The purpose of the present paper is to survey briefly this formal work on
bytecode verification. We explain what bytecode verification is, survey the var-
ious algorithms that have been proposed, outline the main problems they are
faced with, and give references to formal proofs of correctness. The thesis of this
paper is that bytecode verification can be (and has been) attacked from many
different angles, including dataflow analyses, abstract interpretation, type sys-
tems, model checking, and machine-checked proofs; thus, bytecode verification
provides an interesting playground for applying and relating various techniques
in computed-aided verification and formal methods in computing.

The remainder of this paper is organized as follows. Section 2 gives a quick
overview of the Java virtual machine and of bytecode verification. Section 3
presents the basic bytecode verification algorithm based on dataflow analysis.
Sections 4 and 5 concentrate on two delicate verification issues: checking ob-
ject initialization and dealing with JVM subroutines. Section 6 presents a more
abstract view of bytecode verification as model checking of an abstract interpre-
tation. Some issues specific to low-resources embedded systems are discussed in
section 7, followed by conclusions and perspectives in section 8.

2 Overview of the JVM and of bytecode verification

The Java Virtual Machine (JVM) [15] is a conventional stack-based abstract
machine. Most instructions pop their arguments off the stack, and push back
their results on the stack. In addition, a set of registers (also called local vari-
ables) is provided; they can be accessed via “load” and “store” instructions that
push the value of a given register on the stack or store the top of the stack in
the given register, respectively. While the architecture does not mandate it, most
Java compilers use registers to store the values of source-level local variables and
method parameters, and the stack to hold temporary results during evaluation
of expressions. Both the stack and the registers are part of the activation record
for a method. Thus, they are preserved across method calls. The entry point for



a method specifies the number of registers and stack slots used by the method,
thus allowing an activation record of the right size to be allocated on method
entry.

Control is handled by a variety of intra-method branch instructions: uncon-
ditional branch (“goto”), conditional branches (“branch if top of stack is 0”),
multi-way branches (corresponding to the switch Java construct). Exception
handlers can be specified as a table of (pci,pcee, C, h) quadruples, meaning that
if an exception of class C or a subclass of C' is raised by any instruction between
locations pe; and pes, control is transferred to the instruction at i (the exception
handler).

About 200 instructions are supported, including arithmetic operations, com-
parisons, object creation, field accesses and method invocations. The example in
Fig.1 should give the general flavor of JVM bytecode.

Source Java code:

static int factorial(int n)

{
int res;
for (res = 1; n > 0; n--) res = res * n;
return res;

}
Corresponding JVM bytecode:

method static int factorial(int), 2 registers, 2 stack slots

0: icomst_1 // push the integer constant 1
1: istore_1 // store it in register 1 (the res variable)
2: iload_0 // push register 0 (the n parameter)
3: ifle 14 // if negative or null, go to PC 14
6: iload_1 // push register 1 (res)
7: iload_0 // push register 0 (n)
8: imul // multiply the two integers at top of stack
9: istore_1 // pop result and store it in register 1
10: iinc 0, -1 // decrement register 0 (n) by 1
11: goto 2 // go to PC 2
14: iload_1 // load register 1 (res)
15: ireturn // return its value to caller

Fig. 1. An example of JVM bytecode

An important feature of the JVM is that most instructions are typed. For
instance, the iadd instruction (integer addition) requires that the stack initially
contains at least two elements, and that these two elements are of type int; it
then pushes back a result of type int. Similarly, a getfield C.f.r instruction
(access the instance field f of type 7 declared in class C) requires that the top of
the stack contains a reference to an instance of class C' or one of its sub-classes



(and not, for instance, an integer — this would correspond to an attempt to forge
an object reference by an unsafe cast); it then pops it and pushes back a value
of type 7 (the value of the field f). More generally, proper operation of the JVM
is not guaranteed unless the code meets the following conditions:

— Type correctness: the arguments of an instruction are always of the types
expected by the instruction.

— No stack overflow or underflow: an instruction never pops an argument off
an empty stack, nor pushes a result on a full stack (whose size is equal to
the maximal stack size declared for the method).

— Code containment: the program counter must always point within the code
for the method, to the beginning of a valid instruction encoding (no falling
off the end of the method code; no branches into the middle of an instruction
encoding).

— Register initialization: a load from a register must always follow at least one
store in this register; in other terms, registers that do not correspond to
method parameters are not initialized on method entrance, and it is an error
to load from an uninitialized register.

— Object initialization: when an instance of a class C is created, one of the
initialization methods for class C' (corresponding to the constructors for this
class) must be invoked before the class instance can be used.

— Access control: method invocations, field accesses and class references must
respect the visibility modifiers (private, protected, public, etc) of the
method, field or class.

One way to guarantee these conditions is to check them dynamically, while
executing the bytecode. This is called the “defensive JVM approach” in the liter-
ature [6]. However, checking these conditions at run-time is expensive and slows
down execution significantly. The purpose of bytecode verification is to check
these conditions once and for all, by static analysis of the bytecode at loading-
time. Bytecode that passes verification can then be executed at full speed, with-
out extra dynamic checks.

3 Basic verification by dataflow analysis

The first JVM bytecode verification algorithm is due to Gosling and Yellin at
Sun [9,36,15]. Almost all existing bytecode verifiers implement this algorithm.
It can be summarized as a dataflow analysis applied to a type-level abstract
interpretation of the virtual machine. Some advanced aspects of the algorithm
that go beyond standard dataflow analysis are described in sections 4 and 5. In
this section, we describe the basic ingredients of this algorithm: the type-level
abstract interpreter and the dataflow framework.

3.1 The type-level abstract interpreter

At the heart of all bytecode verification algorithms described in this paper is an
abstract interpreter for the JVM instruction set that executes JVM instructions



like a defensive JVM (including type tests, stack underflow and overflow tests,
etc), but operates over types instead of values. That is, the abstract interpreter
manipulates a stack of types and a register type (an array associating types
to register numbers). It simulates the execution of instructions at the level of
types. For instance, for the iadd instruction (integer addition), it checks that
the stack of types contains at least two elements, and that the top two elements
are the type int. It then pops the top two elements and pushes back the type
int corresponding to the result of the addition.

iconst n : (S, R) = (int.S, R) if |S| < Mstack
iadd : (int.int.S, R) — (int.S, R)
iload n : (S, R) — (int.S, R)
if 0 <n < Myey and R(n) = int and |S| < Mstack
istore n : (int.S, R) = (S, R{n + int}) if 0 < n < M,y
aconst_null : (S, R) — (null.S, R) if |S| < Mtack
aload n : (S, R) = (R(n).S, R)
if 0 <n < M;ey and R(n) <: Object and |S| < Myiack
astore n : (7.5, R) = (S, R{n + 7}) if 0 < n < M,y and 7 <: Object
getfield C.f.7 : (ref(D).S, R) = (7.5, R)if D <: C
invokestatic C.m.c : (1),...7.5, R) = (1.5, R)
ifo=71(r,...,7m)and 7 <:m fori=1...n

Fig. 2. Selected rules for the type-level abstract interpreter. Msiqcr is the maximal
stack size and M,y the maximal number of registers.

Figure 2 defines more formally the abstract interpreter on a number of repre-
sentative JVM instructions. The abstract interpreter is presented as a transition
relation ¢ : (S, R) — (S, R'), where i is the instruction, S and R the stack type
and register type before executing the instruction, and S’ and R’ the stack type
and register type after executing the instruction. Errors such as type mismatches
on the arguments, stack underflow, or stack overflow, are denoted by the absence
of a transition. For instance, there is no transition on iadd from an empty stack.

Notice that method invocations (such as the invokestatic instruction in
Fig. 2) are not treated by branching to the code of the invoked method, like the
concrete JVM does, but simply assume that the effect of the method invocation
on the stack is as described by the method signature given in the “invoke” in-
struction. All bytecode verification algorithms described in this paper proceed
method per method, assuming that all other methods are well-typed when veri-
fying the code of a method. A simple coinductive argument shows that if this is
the case, the program as a whole (the collection of all methods) is well typed.

The types manipulated by the abstract interpreter are similar to the source-
level types of the Java language. They include primitive types (int, long, float,
double), object reference types represented by the fully qualified names of the
corresponding classes, and array types. The boolean, byte, short and char
types of Java are identified with int. Two extra types are introduced: null to



represent the type of the null reference, and T to represent the contents of unini-
tialized registers, that is, any value. (“Load” instructions explicitly check that
the accessed register does not have type T, thus detecting accesses to uninitial-
ized registers.) A subtyping relation between these types, similar to that of the
Java language (the “assignment compatibility” relation), is defined as shown in

Fig. 3.
T
int %})J eckouble
int[] long [] C UbJ ect[]
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Fig. 3. Type expressions used by the verifier, with their subtyping relation. C, D, E are
user-defined classes, with D and E extending C. Not all types are shown.

3.2 The dataflow analysis

Verifying a method whose body is a straight-line piece of code (no branches) is
easy: we simply iterate the transition function of the abstract interpreter over
the instructions, taking the stack type and register type “after” the preceding
instruction as the stack type and register type “before” the next instruction. The
initial stack and register types reflect the state of the JVM on method entrance:
the stack type is empty; the types of the registers 0...n — 1 corresponding to
the n method parameters are set to the types of the corresponding parameters
in the method signature; the other registers n...M,,, — 1 corresponding to
uninitialized local variables are given the type T.

If the abstract interpreter gets “stuck”, i.e. cannot make a transition from
one of the intermediate states, then verification fails and the code is rejected.
Otherwise, verification succeeds, and since the abstract interpreter is a correct
approximation of a defensive JVM, we are certain that a defensive JVM will
not get stuck either executing the code. Thus, the code is correct and can be
executed safely by a regular, non-defensive JVM.

Branches and exception handlers introduce forks and joins in the control flow
of the method. Thus, an instruction can have several predecessors, with different
stack and register types “after” these predecessor instructions. Sun’s bytecode



verifier deals with this situation in the manner customary for data flow analysis:
the state (stack type and register type) “before” an instruction is taken to be
the least upper bound of the states “after” all predecessors of this instruction.
For instance, assume classes C; and C extend C', and we analyze a conditional
construct that stores a value of type C in register 0 in one arm, and a value of
type Cs in the other arm. (See Fig.4.) When the two arms meet, register 0 is
assumed to have type C, which is the least upper bound (the smallest common

supertype) of C; and Cs.
: Oy : O

l = lub(C1,C>)
Fig. 4. Handling joins in the control flow

More precisely, writing in(i) for the state “before” instruction ¢ and out(i)
for the state “after” i, the algorithm sets up the following dataflow equations:

i:in(i) — out(i)
in(i) = lub{out(]) | j predecessor of i}

for every instruction 7, plus
Z’n(lg) = (6,(Po,...,Pnfl,T,...,T))

for the start instruction ip (the Py are the types of the method parameters).
These equations are then solved by standard fixpoint iteration using Kildall’s
worklist algorithm [17, section 8.4]: an instruction ¢ is taken from the worklist
and its state “after” out(i) is determined from its state “before” in(i) using the
abstract interpreter; then, we replace in(j) by lub(in(j), out(i)) for each succes-
sor j of 4, and enter those successors j for which in(j) changed in the worklist.
The ﬁxpomt is reached when the worklist is empty, in which case verification
succeeds. Verification fails if a state with no transition is encountered, or one of
the least upper bounds is undefined.

As a trivial optimization of the algorithm above, the dataflow equations can
be set up at the level of extended basic blocks rather than individual instructions.
In other terms, it suffices to keep in working memory the states in(i) where i is
the first instruction of an extended basic block (i.e. a branch target); the other
states can be recomputed on the fly as needed.

The least upper bound of two states is taken pointwise, both on the stack
types and the register types. It is undefined if the stack types have different
heights, which causes verification to fail. This situation corresponds to a program
point where the run-time stack can have different heights depending on the path



by which the point is reached; such code must be rejected because it can lead to
unbounded stack height, and therefore to stack overflow. (Consider a loop that
pushes one more entry on the stack at each iteration.)

The least upper bound of two register types can be T, causing this register
to have type T in the merged state. This corresponds to the situation where
a register holds values of incompatible types in two arms of a conditional (e.g.
int in one arm and an object reference in the other), and therefore is treated
as uninitialized (no further loads from this register) after the merge point. The
least upper bound of two stack slots can also be T, in which case Sun’s algo-
rithm aborts verification immediately. Alternatively, it is entirely harmless to
continue verification after setting the stack slot to T in the merged state, since
the corresponding value cannot be used by any well-typed instruction, but simply
discarded by instructions such as pop or return.

3.3 Interfaces and least upper bounds

The dataflow framework presented above requires that the type algebra, ordered
by the subtyping relation, constitutes a semi-lattice. That is, every pair of types
possesses a smallest common supertype (least upper bound).

Unfortunately, this property does not hold if we take the verifier type alge-
bra to be the Java source-level type algebra (extended with T and null) and
the subtyping relation to be the Java source-level assignment compatibility re-
lation. The problem is that interfaces are types, just like classes, and a class can
implement several interfaces. Consider the following classes:

interface I { ... }
interface J { ... }
class C1 implements I, J { ... }
class C2 implements I, J { ... }

The subtyping relation induced by these declarations is:
Object

AN
I J

t >

C1 Cc2

This is obviously not a semi-lattice, since the two types C1 and C2 have two
common super-types I and J that are not comparable (neither is subtype of the
other).

There are several ways to address this issue. One approach is to manipulate
sets of types during verification instead of single types as we described earlier.
These sets of types are to be interpreted as conjunctive types, i.e. the set {I,J},
like the conjunctive type I A J, represents values that have both types I and J,
and therefore is a suitable least upper bound for the types {C1} and {C2} in the
example above. This is the approach followed by Qian [25] and also by Pusch
[24].



Another approach is to complete the class and interface hierarchy of the
program into a lattice before performing verification. In the example above, the
completion would add a pseudo-interface IandJ extending both I and J, and
claim that C1 and C2 implement IandJ rather than I and J. We then obtain the
following semi-lattice:

Object
I ///" “\\\ J
‘V\\\ ///"
TandJ
///" “\\\
C1 C2

The pseudo-interface IandJ plays the same role as the set type {I,J} in
the first approach described above. The difference is that the completion of the
class/interface hierarchy is performed once and for all, and verification manipu-
lates only simple types rather than sets of types. This keeps verification simple
and fast.

The simplest solution to the interface problem is to be found in Sun’s imple-
mentation of the JDK bytecode verifier. (This approach is documented nowhere,
but can easily be inferred by experimentation.) Namely, bytecode verification ig-
nores interfaces, treating all interface types as the class type Object. Thus, the
type algebra used by the verifier contains only proper classes and no interfaces,
and subtyping between proper classes is simply the inheritance relation between
them. Since Java has single inheritance (a class can implement several interfaces,
but inherit from one class only), the subtyping relation is tree-shaped and triv-
ially forms a lattice: the least upper bound of two classes is simply their closest
common ancestor in the inheritance tree.

The downside of Sun’s approach, compared with the set-based or completion-
based approach, is that the verifier cannot guarantee statically that an object
reference implements a given interface. In particular, the invokeinterface I.m
instruction, which invokes method m of interface I on an object, is not guar-
anteed to receive at run-time an object that actually implements I: the only
guarantee provided by Sun’s verifier is that it receives an argument of type
Object, that is, any object reference. The invokeinterface [.m instruction
must therefore check dynamically that the object actually implements I, and
raise an exception if it does not.

3.4 Formalizations and proofs

Many formalizations and proofs of correctness of Java bytecode verification have
been published, and we have reasons to believe that many more have been devel-
oped internally, both in academia and industry. With no claims to exhaustive-
ness, we will mention the works of Cohen [6] and Qian [25] among the first formal
specifications of the JVM. Qian’s specification is written in ordinary mathemat-
ics, while Cohen’s uses the specification language of the ACL2 theorem prover.
Pusch [24] uses the Isabelle/HOL prover to formalize the dynamic semantics of



a fragment of the JVM, the corresponding type-level abstract interpreter used
by the verifier, and proves the correctness of the latter with respect to the for-
mer: if the abstract interpreter can do a transition ¢ : (S, R) — (S, R'), then
for all concrete states (s,r) matching (S, R), the concrete interpreter can do a
transition ¢ : (s,r) = (s',r'), and the final concrete state (s, r') matches (S, R).
Nipkow [20] formalizes the dataflow analysis framework in Isabelle/HOL and
proves its correctness.

4 Verifying object initialization

Object creation in the Java virtual machine is a two-step process: first, the
instruction new C creates a new object, instance of the class C, with all in-
stance fields filled with default values (0 for numerical fields and null for refer-
ence fields); second, one of the initializer methods for class C' (methods named
C.<init> resulting from the compilation of the constructor methods of C') must
be invoked on the newly created object. Initializer methods, just like their source-
level counterpart (constructors), are typically used to initialize instance fields to
non-default values, although they can also perform nearly arbitrary computa-
tions.

The JVM specification requires that this two-step object initialization pro-
tocol be respected. That is, the object instance created by the new instruction
is considered uninitialized, and none of the regular object operations (i.e. store
the object in a data structure, return it as method result, access one of its fields,
invoke one of its methods) is allowed on this uninitialized object. Only when one
of the initializer methods for its class is invoked on the new object and return
normally is the new object considered fully initialized and usable like any other
object.

Unlike the register initialization property, this object initialization property is
not crucial to ensure type safety at run-time: since the new instruction initializes
the instance fields of the new object with correct values for their types, type
safety is not broken if the resulting default-initialized object is used right away
without having called an initializer method. However, the object initialization
property is important to ensure that some invariants between instance fields that
is established by the constructor of a class actually hold for all objects of this
class.

Static verification of object initialization is made more complex by the fact
that initialization methods operate by side-effect: instead of taking an uninitial-
ized object and returning an initialized object, they simply take an uninitialized
object, update its fields, and return nothing. Hence, the code generated by Java
compilers for the source-level statement x = new C(arg) is generally of the fol-
lowing form:

new C // create uninitialized instance of C

dup // duplicate the reference to this instance
code to compute arg

invokespecial C.<init> // call the initializer



astore 3 // store initialized object in x

That is, two references to the uninitialized instance of C are held on the stack.
The topmost reference is “consumed” by the invocation of C.<init>. When
this initializer returns, the second reference is now at the top of the stack and
now references a properly initialized object, which is then stored in the register
allocated to x. The tricky point is that the initializer method is applied to one
object reference on the stack, but it is another object reference contained in
the stack (which happens to reference the same object) whose status goes from
“uninitialized” to “fully initialized” in the process.

As demonstrated above, static verification of object initialization requires a
form of alias analysis (more precisely a must-alias analysis) to determine which
object references in the current state are guaranteed to refer to the same unini-
tialized object that is passed as argument to an initializer method. While any
must-alias analysis can be used, Sun’s verifier uses a fairly simple analysis,
whereas an uninitialized object is identified by the position (program counter
value) of the new instruction that created it. More precisely, the type algebra is
enriched by the types C),, denoting an uninitialized instance of class C' created
by a new instruction at PC p. An invocation of an initializer method C.<init>
checks that the first argument of the method is of type C,, for some p, then pops
the arguments off the stack type as usual, and finally finds all other occurrences
of the type C, in the abstract interpreter state (stack type and register types)
and replaces them by C'. The following example shows how this works for a nested
initialization corresponding to the Java expression new C(new C(null)):

0: new C // stack type after: Cg

3: dup /! Co, Co

4: new C // Co, Co, C4

7: dup // Co, Co, Ca, Ca

8: aconst_null // Co, Co, Ca, Csa, null
9: invokespecial C.<init> // Co, Co, C

12: invokespecial C.<init> // C
15:

In particular, the first invokespecial initializes only the instance created at
PC 4, but not the one created at PC 0.

This approach is correct only if at any given time, the machine state contains
at most one uninitialized object created at a given PC. Loops containing a new
instruction can invalidate this assumption, since several distinct objects created
by this new instruction can be “in flight”, yet are given the same uninitialized
object type (same class, same PC of creation). To avoid this problem, Sun’s
verifier requires that no uninitialized object type appear in the machine state
when a backward branch is taken. Since a control-flow loop must take at least
one backward branch, this guarantees that no initialized objects can be carried
over from one loop iteration to the next one, thus ensuring the correctness of
the “PC of creation” aliasing criterion.



Freund and Mitchell [7] formalize this approach to verifying object initializa-
tion. Bertot [2] proves the correctness of this approach using the Coq theorem
prover, and extracts a verification algorithm from the proof.

5 Subroutines

Subroutines in the JVM are code fragments that can be called from several points
inside the code of a method. To this end, the JVM provides two instructions:
jsr branches to a given label in the method code and pushes a return address
to the following instruction; ret recovers a return address (from a register)
and branches to the corresponding instruction. Subroutines are used to compile
certain exception handling constructs, and can also be used as a general code-
sharing device. The difference between a subroutine call and a method invocation
is that the body of the subroutine executes in the same activation record than
its caller, and therefore can access and modify the registers of the caller.

5.1 The verification problem with subroutines

Subroutines complicate significantly bytecode verification by dataflow analysis.
First, it is not obvious to determine the successors of a ret instruction, since
the return address is a first-class value. As a first approximation, we can say
that a ret instruction can branch to any instruction that follows a jsr in the
method code. (This approximation is too coarse in practice; we will describe
better approximations later.) Second, the subroutine entry point acts as a merge
point in the control-flow graph, causing the register types at the points of call
to this subroutine to be merged. This can lead to excessive loss of precision in
the register types inferred, as the example in Fig. 5 shows.

// register 0 uninitialized here
0: jsr 100 // call subroutine at 100

50: iconst_0

51: istore_0 // register 0 has type ”int” here
52: jsr 100 // call subroutine at 100

55: iload_0 // load integer from register 0
56: ireturn // and return to caller

// subroutine at 100:

100: astore_1 // store return address in register 1
101: ... // execute some code that does not use register 0
110: ret 1 // return to caller

Fig. 5. An example of subroutine



The two jsr 100 at 0 and 52 have 100 as successor. At 0, register 0 has type
T; at 52, it has type int. Thus, at 100, register 0 has type T (the least upper
bound of T and int). The subroutine body (between 101 and 110) does not
modify register 0, hence its type at 110 is still T. The ret 1 at 110 has 3 and
55 as successors (the two instructions following the two jsr 100). Thus, at 55,
register 0 has type T and cannot be used as an integer by instructions 55 and
56. This code is therefore rejected.

This behavior is counter-intuitive. Calling a subroutine that does not use a
given register does not modify the run-time value of this register, so one could
expect that it does not modify the verification-time type of this register either.
Indeed, if the subroutine body was expanded inline at the two jsr sites, bytecode
verification would succeed as expected.

The subroutine-based compilation scheme for the try...finally construct
produces code very much like the above, with a register being uninitialized at
one call site of the subroutine and holding a value preserved by the subroutine at
another call site. Hence it is crucial that similar code passes bytecode verification.
We will now see two refinements of the dataflow-based verification algorithm that
achieve this goal.

5.2 Sun’s solution

We first describe the approach implemented in Sun’s JDK verifier. It is described
informally in [15, section 4.9.6], and formalized in [29,25]. This approach imple-
ments the intuition that a call to a subroutine should not change the types of
registers that are not used in the subroutine body.

First, we need to make precise what a “subroutine body” is: since JVM
bytecode is unstructured, subroutines are not syntactically delimited in the code;
subroutine entry points are easily detected (as targets of jsr instructions), but it
is not immediately apparent which instructions can be reached from a subroutine
entry point. Thus, a dataflow analysis is performed, either before or in parallel
with the main type analysis. The outcome of this analysis is a consistent labeling
of every instruction by the entry point(s) for the subroutine(s) it logically belongs
to. From this labeling, we can then determine, for each subroutine entry point ¢,
the return instruction Ret({) for the subroutine, and the set of registers Used ()
that are read or written by instructions belonging to that subroutine.

The dataflow equation for subroutine calls is then as follows. Let i be
an instruction jsr ¢, and j be the instruction immediately following i. Let
(Sjsr, Rjsr) = out(i) be the state “after” the jsr, and (Syet, Rret) = out(Ret({))
be the state “after” the ret that terminates the subroutine. Then:

P R.et(r) ifr € Used()
in(j) = (Sref’{r ~ {st,«(r) if 7 ¢ Used(() }>

In other terms, the state “before” the instruction j following the jsr is identical
to the state “after” the ret, except for the types of the registers that are not
used by the subroutine, which are taken from the state “after” the jsr.



In the example above, we have Ret(100) = 110 and register 0 is not in
Used(100). Hence the type of register 0 before instruction 55 (the instruction
following the jsr) is equal to the type after instruction 52 (the jsr itself), that
is int, instead of T (the type of register 0 after the ret 1 at 110).

While effective in practice, Sun’s approach to subroutine verification raises
a challenging issue: determining the subroutine structure is difficult. Not only
subroutines are not syntactically delimited, but return addresses are stored in
general-purpose registers rather than on a subroutine-specific stack, which makes
tracking return addresses and matching ret/jsr pairs more difficult. To facili-
tate the determination of the subroutine structure, the JVM specification states
a number of restrictions on correct JVM code, such as “two different subroutines
cannot ‘merge’ their execution to a single ret instruction” [15, section 4.9.6].
These restrictions seem rather ad-hoc and specific to the particular subroutine
labeling algorithm that Sun’s verifier uses. Moreover, the description of subrou-
tine labeling given in the JVM specification is very informal and incomplete.

Several rational reconstructions of this part of Sun’s verifier have been pub-
lished. The first, due to Abadi and Stata [29], is presented as a non-standard
type system, and determines the subroutine structure before checking the types.
The second is due to Qian [26] and infers simultaneously the types and the
subroutine structure, in a way that is closer to Sun’s implementation. The si-
multaneous determination of types and Used(f) sets complicates the dataflow
analysis: the transfer function of the analysis is no longer monotonous, and spe-
cial iteration strategies are required to reach the fixpoint. Finally, O’Callahan
[21] and Hagiya and Tozawa [10] also give non-standard type systems for sub-
routines based on continuation types and context-dependent types, respectively.
However, these papers give only type checking rules, but no effective verification
(type inference) algorithms.

While these works shed considerable light on the issue, they are carried in
the context of a small subset of the JVM that excludes exceptions and object
initialization in particular. Delicate interactions between subroutines and object
initialization were discovered later by Freund and Mitchell [7], exposing a bug in
Sun’s verifier. As for exceptions, exception handling complicates significantly the
determination of the subroutine structure. Examination of bytecode produced by
Java compiler show two possible situations: either an exception handler covers a
range of instructions entirely contained in a subroutine, in which case the code
of the exception handler should be considered as part of the same subroutine
(e.g. it can branch back to the ret instruction that terminates the subroutine);
or, an exception handler covers both instructions belonging to a subroutine and
non-subroutine instructions, in which case the code of the handler should be
considered as outside the subroutine. The problem is that in the second case, we
have a branch (via the exception handler) from a subroutine instruction to a non-
subroutine instruction, and this branch is not a ret instruction; this situation
is not allowed in Abadi and Stata’s subroutine labeling system.



5.3 Polyvariant dataflow analysis

An alternate solution to the subroutine problem, used in the Java Card off-
card verifier [31], relies on a polyvariant dataflow analysis: instructions inside
subroutine bodies are analyzed several times, once per call site for the subroutine.
The principles of polyvariant flow analyses, also called context-sensitive analyses,
are well known [19, section 3.6]: whereas monovariant analyses maintain only
one state per program point, a polyvariant analysis allows several states per
program point. These states are indexed by contours that usually approximate
the control-flow path that led to each state.

In the case of bytecode verification, contours are subroutine call stacks: lists
of return addresses for the jsr instructions that led to the corresponding state.
In the absence of subroutines, all the bytecode for a method is analyzed in
the empty contour. Thus, only one state is associated to each instruction and
the analysis degenerates into the monovariant dataflow analysis of section 3.2.
However, when a jsr ¢ instruction is encountered in the current contour c, it
is treated as a branch to the instruction at ¢ in the augmented contour Z.c.
Similarly, a ret r instruction is treated as a branch that restricts the current
context ¢ by popping one or several return addresses from ¢ (as determined by
the type of the register ).

In the example of Fig. 5, the two jsr 100 instructions are analyzed in the
empty context €. This causes two “in” states to be associated with the instruc-
tion at 100; one has contour 3.e, assigns type T to register 0, and contains
retaddr(3) at the top of the stack!; the other state has contour 55.c, assigns
type int to register 0, and contains retaddr(55) at the top of the stack. Then,
the instructions at 101...110 are analyzed twice, in the two contours 3. and
55.e. In the contour 3.e, the ret 1 at 110 is treated as a branch to 3, where
register 0 still has type T. In the contour 55.¢, the ret 1 is treated as a branch
to 55 with register O still having type int. By analyzing the subroutine body in
a polyvariant way, under two different contours, we avoided merging the types
T and int of register 0 at the subroutine entry point, and thus obtained the
desired type propagation behavior for register O: T before and after the jsr 100
at 3, but int before and after the jsr 100 at 52.

More formally, the polyvariant dataflow equation for a jsr £ instruction at ¢
followed by an instruction at j is

in(l, j.c) = (retaddr(j).S,T) where (S,T) = out(i,c)
For a ret r instruction at ¢, the equation is
in(ra,c') = out(i,c)
where the type of register r in the state out(i, c) is retaddr(ra) and the context

¢ is obtained from ¢ by popping return addresses until ra is found, that is,
c=c"ra.c.

! The type retaddr(i) represents a return address to the instruction at .



Another way to view polyvariant verification is that it is exactly equivalent
to performing monovariant verification on an expanded version of the bytecode
where every subroutine call has been replaced by a distinct copy of the subrou-
tine body. Instead of actually taking N copies of the subroutine body, we analyze
them N times in N different contours. Of course, duplicating subroutine bod-
ies before the monovariant verification is not practical, because it requires prior
knowledge of the subroutine structure (to determine which instructions are part
of which subroutine body), and as shown in section 5.2, the subroutine struc-
ture is hard to determine exactly. The beauty of the polyvariant analysis is that
it determines the subroutine structure along the way, via the computations on
contours performed during the dataflow analysis. Moreover, this determination
takes advantage of typing information such as the retaddr(ra) types to deter-
mine with certainty the point to which a ret instruction branches in case of
early return from nested subroutines.

Another advantage of polyvariant verification is that it has no problem deal-
ing with code that is reachable both from subroutine bodies and from the main
program, such as the exception handlers mentioned at the end of section 5.2:
rather than deciding whether such exception handlers are part of a subroutine
or not, the polyvariant analysis simply analyzes them several times, once in the
empty contour and once or several times in subroutine contours.

The downside of polyvariant verification is that it is more computationally
expensive than Sun’s approach. In particular, if subroutines are nested to depth
N, and each subroutine is called & times, the instructions from the innermost sub-
routine are analyzed k" times instead of only once in Sun’s algorithm. However,
typical Java code has low nesting of subroutines: most methods have N < 1, very
few have N = 2, and N > 2 is unheard of. Hence, the extra cost of polyvariant
verification is entirely acceptable in practice.

6 Model checking of abstract interpretations

It is folk lore that dataflow analyses can be viewed as model checking of abstract
interpretations [28]. Since a large part of bytecode verification is obviously an
abstract interpretation (of a defensive JVM at the type level), it is natural to
look at the remaining parts from a model-checking perspective.

Posegga and Vogt [22] were the first to do so. They outline an algorithm that
takes the bytecode for a method and generates a temporal logic formula that
holds if and only if the bytecode is safe. They then use an off-the-shelf model
checker to determine the validity of the formula. While this application uses
only a small part of the power and generality of temporal logic and of the model
checker, the approach sounds interesting for establishing finer properties of the
bytecode that go beyond the basic safety properties of bytecode verification (see
section 8).

Unpublished work by Brisset [3] extracts the essence of Posegga and Vogt’s
approach: the idea of exploring all reachable states of the abstract interpreter.
Brisset considers the transition relation obtained by combining the transition



relation of the type-level abstract interpreter (Fig.2) with the “successor” re-
lation between instructions. This relation is of the form (p, S, R) — (p',S’, R’),
meaning that the abstract interpreter, started at PC p with stack type S and
register type R, can abstractly execute the instruction at p and arrive at PC p/
with stack type S’ and register type R'.

Starting with the initial state (0,¢, (Po,-..,Pn-1,T,..., T)) corresponding
to the method entry, we can then explore all states reachable by repeated ap-
plications of the transition function. If we encounter a state where the abstract
interpreter is “stuck” (cannot make a transition because some check failed),
verification fails and the bytecode is rejected. Otherwise, the correctness of the
abstract interpretation guarantees that the concrete, defensive JVM interpreter
will never get “stuck” either during the execution of the method code, hence the
bytecode is safe.

This algorithm always terminates because the number of distinct states is
finite (albeit large), since there is a finite number of distinct types used in the
program, and the height of the stack is bounded, and the number of registers is
fixed. Brisset formalized and proved the correctness of this approach in the Coq
proof assistant, and extracted the ML code of a bytecode verifier from the proof.

This approach is conceptually interesting because it is the ultimate polyvari-
ant analysis: rather than having one stack-register type per control point (as in
Sun’s verifier), or one such type per control point and per subroutine contour
(as in section 5.3), we can have arbitrarily many stack-register types per control
point, depending on the number of control-flow paths that lead to this control
point. Consider for instance the control-flow joint depicted in Fig.4. While the
dataflow-based algorithms verify the instructions following the join point only
once under the assumption r : lub(Cy, Cy) = C, Brisset’s algorithm verifies them
twice, once under the assumption r : C1, once under the assumption r : C.

In other terms, this analysis is polyvariant not only with respect to subroutine
calls, but to all conditional or N-way branches as well. This renders the analysis
impractical, since it runs in time exponential in the number of such branches
in the method. (Consider a control-flow graph with N conditional constructs in
sequence, each assigning a different type to registers ry ...ry; this causes the
code following the last conditional to be verified 2V times under 2V different
register types.)

Of course, the precision of Brisset’s algorithm can be degraded by apply-
ing widening steps in order to reduce the number of states. Some transitions
(pc,S,R) — (pc’,S',R") can be replaced by (pc,S,R) — (pc',S",R") where
R’ <: R" and S' <: S". If the abstract interpreter is still not stuck on any of
the reachable states, the bytecode remains safe. The monovariant dataflow anal-
ysis of section 3.2 corresponds to keeping only one state per program point by
replacing multiple states by their least upper bounds. The polyvariant dataflow
analysis of section 5.3 is similar, except that the merging of states into least
upper bounds is relaxed for subroutines and controlled via contours.

Another interest of Brisset’s approach is that it allows us to reconsider some
of the design decisions explained in sections 3.3 and 4. For instance, Brisset’s



algorithm never computes least upper bounds of types, but simply checks sub-
typing relations between types. Thus, it can be applied to any subtyping relation,
not just relations that form a semi-lattice. Indeed, it can keep track of interface
types and verify invokeinterface instructions accurately, without having to
deal with sets of types or lattice completion.

7 Bytecode verification on small computers

Java virtual machines run not only in personal computers and workstations, but
also in a variety of embedded computers, such as personal digital assistants, mo-
bile phones, and smart cards. Extending the Java model of safe post-issuance
code downloading to these devices requires that bytecode verification be per-
formed on the embedded system itself. However, bytecode verification is an ex-
pensive process that exceeds the resources (processing power and memory space)
of small embedded systems. For instance, a typical Java card (Java-enabled smart
card) has 1 or 2 kilo-bytes of RAM and an 8-bit microprocessor that is approx-
imately 1000 times slower than a personal computer. Fitting a bytecode verifier
into one of these devices requires new verification algorithms, which we discuss
now.

7.1 Lightweight bytecode verification using certificates

Inspired by Necula and Lee’s proof-carrying code [18], Rose and Rose [27] pro-
pose to split bytecode verification into two phases: the code producer computes
the stack and register types at branch targets and transmit these so-called cer-
tificates along with the bytecode; the embedded system, then, simply checks
that the code is well-typed with respect to the types given in the certificates,
rather than inferring these types itself. In other terms, the embedded system no
longer solves iteratively the dataflow equations characterizing correct bytecode,
but simply checks that the types provided in the code certificates are indeed a
solution of these equations.

The benefits of this approach are twofold. First, checking a solution is faster
than inferring one, since we avoid the cost of the fixpoint iteration. This speeds
up verification to some extent?. Second, certificates are only read, but never
modified during verification. Hence, they can be stored in persistent rewritable
memory (EEPROM or Flash). Smart card-class embedded systems offer rela-
tively large amounts of persistent memory (e.g. 16-32 kilo-bytes). Writing data
to such memory is slow (1000-10000 times slower than reading from it), hence it
is not possible to store there rapidly-changing data such as the fixpoint computed
by a standard verification algorithm. However, Rose and Rose’s certificates are
written only once, on reception of the bytecode, and only read during verifica-
tion, so they can fit in the “comfortable” EEPROM memory space.

2 The speedup is not as important as one might expect, since experiments show that
the fixpoint is usually reached after examining every instruction at most twice [13].



There are two limitations to this approach. First, it is currently not known
how to deal with subroutines in this framework. Indeed, Sun proposed to drop
subroutines entirely in order to use Rose and Rose’s bytecode verification algo-
rithm in the KVM, one of Sun’s embedded variants of the JVM [30]. Second,
certificates are relatively large: without compression, about the same size as
the code they annotate; with compression, about 20% of the code size. Even if
certificates are stored in persistent memory, they can still exceed the available
memory space.

7.2 On-card verification with off-card code transformation

The Java Card bytecode verifier described in [13] attacks the memory prob-
lem from another angle. Like the standard bytecode verifier, it solves dataflow
equations using fixpoint iteration. To reduce memory requirements, however, it
has only one global register type that is shared between all control points in
the method. In other terms, the solution it infers is such that a given register
has the same type throughout the method. For similar reasons, it also requires
that the stack be empty at each branch instruction and at each branch target
instruction. With these extra restrictions, bytecode verification can be done in
space O(Mgiqck + Mpeg), instead of O(Npranch X (Mstack + Mreg)) for Sun’s algo-
rithm, where Np.qnepn is the number of branch targets. In practice, the memory
requirements are small enough that all data structures comfortably fit in RAM
on a smart card.

One drawback of this approach is that register initialization can no longer be
checked statically, and must be replaced by run-time initialization of registers
to safe values (0 or null) on method entrance. Another drawback is that the
extra restrictions imposed by the on-card verifier cause perfectly legal bytecode
(that passes Sun’s verifier) to be rejected. To address the latter issue, we rely
on an off-card transformation, performed on the bytecode of the applet, that
transforms any legal bytecode (that passes Sun’s verifier) into equivalent byte-
code that passes the on-card verifier. The off-card transformations include stack
normalizations around branches and register reallocation by graph coloring, and
increase the size of the code by less than 2% [13].

8 Conclusions and perspectives

Java bytecode verification is now a well researched technique, although it is still
defined only by Sun’s reference implementation: all the formal works reviewed
in this paper have not yet resulted in a complete formal specification of what it
is and what it guarantees.

A largely open question is whether bytecode verification can go beyond basic
type safety and initialization properties, and statically establish more advanced
properties of applets, such as resource usage (bounding the amount of memory
allocated) and reactiveness (bounding the running time of an applet between
two interactions with the outside world). Controlling resource usage is especially



important for Java Card applets: since Java Card does not guarantee the presence
of a garbage collector, applets are supposed to allocate all the objects they need
at installation time, then run in constant space.

Other properties of interest include access control and information flow. Cur-
rently, the Java security manager performs all access control checks dynamically.
Various static analyses and program transformations have been proposed to per-
form some of these checks statically [35,23]. As for information flow (an applet
does not “leak” confidential information that it can access), this property is
essentially impossible to check dynamically; several type systems have been pro-
posed to enforce it statically [34,33,11,1].

Finally, the security of the sandbox model relies not only on bytecode veri-
fication, but also on the proper implementation of the API given to the applet.
The majority of known applet-based attacks exploit (in a type-safe way) bugs
in the API, rather than breaking type safety through bugs in the verifier. Verifi-
cation of the API is a promising and largely open area of application for formal
methods [14,12].
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