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Abstra
t. Byte
ode veri�
ation is a 
ru
ial se
urity 
omponent for Java

applets, on the Web and on embedded devi
es su
h as smart 
ards. This

paper des
ribes the main byte
ode veri�
ation algorithms and surveys

the variety of formal methods that have been applied to byte
ode veri�-


ation in order to establish its 
orre
tness.

1 Introdu
tion

Web applets have popularized the idea of downloading and exe
uting untrusted


ompiled 
ode on the personal 
omputer running the Web browser, without

user's approval or intervention. Obviously, this raises major se
urity issues: with-

out appropriate se
urity measures, a mali
ious applet 
ould mount a variety of

atta
ks against the lo
al 
omputer, su
h as destroying data (e.g. reformatting the

disk), modifying sensitive data (e.g. registering a bank transfer via the Qui
ken

home-banking software [4℄), divulging personal information over the network, or

modifying other programs (Trojan atta
ks).

To make things worse, the applet model is now being transferred to high-

se
urity embedded devi
es su
h as smart 
ards: the Java Card ar
hite
ture [5℄

allows for post-issuan
e downloading of applets on smart 
ards in sensitive ap-

pli
ation areas su
h as payment and mobile telephony. This raises the stake

enormously: a se
urity hole that allows a mali
ious applet to 
rash Windows

is perhaps tolerable, but is 
ertainly not a

eptable if it allows the applet to

perform non-authorized 
redit 
ard transa
tions.

The solution put forward by the Java programming environment is to exe-


ute the applets in a so-
alled \sandbox", whi
h is an insulation layer preventing

dire
t a

ess to the hardware resour
es and implementing a suitable a

ess 
on-

trol poli
y [8, 32, 16℄. The se
urity of the sandbox model relies on the following

three 
omponents:

1. Applets are not 
ompiled down to ma
hine exe
utable 
ode, but rather to

byte
ode for a virtual ma
hine. The virtual ma
hine manipulates higher-

level, more se
ure abstra
tions of data than the hardware pro
essor, su
h as

obje
t referen
es instead of memory addresses.

2. Applets are not given dire
t a

ess to hardware resour
es su
h as the se-

rial port, but only to a 
arefully designed set of API 
lasses and methods

that perform suitable a

ess 
ontrol before performing intera
tions with the

outside world on behalf of the applet.



3. Upon downloading, the byte
ode of the applet is subje
t to a stati
 analysis


alled byte
ode veri�
ation, whose purpose is to make sure that the 
ode

of the applet is well typed and does not attempt to bypass prote
tions 1

and 2 above by performing ill-typed operations at run-time, su
h as forging

obje
t referen
es from integers, illegal 
asting of an obje
t referen
e from

one 
lass to another, 
alling dire
tly private methods of the API, jumping

in the middle of an API method, or jumping to data as if it were 
ode [9,

36, 15℄.

Thus, byte
ode veri�
ation is a 
ru
ial se
urity 
omponent in the Java \sand-

box" model: any bug in the veri�er 
ausing an ill-typed applet to be a

epted


an potentially enable a se
urity atta
k. At the same time, byte
ode veri�
ation

is a 
omplex pro
ess involving elaborate program analyses. Consequently, 
on-

siderable resear
h e�orts have been expended to spe
ify the goals of byte
ode

veri�
ation, formalize byte
ode veri�
ation algorithms, and prove their 
orre
t-

ness.

The purpose of the present paper is to survey brie
y this formal work on

byte
ode veri�
ation. We explain what byte
ode veri�
ation is, survey the var-

ious algorithms that have been proposed, outline the main problems they are

fa
ed with, and give referen
es to formal proofs of 
orre
tness. The thesis of this

paper is that byte
ode veri�
ation 
an be (and has been) atta
ked from many

di�erent angles, in
luding data
ow analyses, abstra
t interpretation, type sys-

tems, model 
he
king, and ma
hine-
he
ked proofs; thus, byte
ode veri�
ation

provides an interesting playground for applying and relating various te
hniques

in 
omputed-aided veri�
ation and formal methods in 
omputing.

The remainder of this paper is organized as follows. Se
tion 2 gives a qui
k

overview of the Java virtual ma
hine and of byte
ode veri�
ation. Se
tion 3

presents the basi
 byte
ode veri�
ation algorithm based on data
ow analysis.

Se
tions 4 and 5 
on
entrate on two deli
ate veri�
ation issues: 
he
king ob-

je
t initialization and dealing with JVM subroutines. Se
tion 6 presents a more

abstra
t view of byte
ode veri�
ation as model 
he
king of an abstra
t interpre-

tation. Some issues spe
i�
 to low-resour
es embedded systems are dis
ussed in

se
tion 7, followed by 
on
lusions and perspe
tives in se
tion 8.

2 Overview of the JVM and of byte
ode veri�
ation

The Java Virtual Ma
hine (JVM) [15℄ is a 
onventional sta
k-based abstra
t

ma
hine. Most instru
tions pop their arguments o� the sta
k, and push ba
k

their results on the sta
k. In addition, a set of registers (also 
alled lo
al vari-

ables) is provided; they 
an be a

essed via \load" and \store" instru
tions that

push the value of a given register on the sta
k or store the top of the sta
k in

the given register, respe
tively. While the ar
hite
ture does not mandate it, most

Java 
ompilers use registers to store the values of sour
e-level lo
al variables and

method parameters, and the sta
k to hold temporary results during evaluation

of expressions. Both the sta
k and the registers are part of the a
tivation re
ord

for a method. Thus, they are preserved a
ross method 
alls. The entry point for



a method spe
i�es the number of registers and sta
k slots used by the method,

thus allowing an a
tivation re
ord of the right size to be allo
ated on method

entry.

Control is handled by a variety of intra-method bran
h instru
tions: un
on-

ditional bran
h (\goto"), 
onditional bran
hes (\bran
h if top of sta
k is 0"),

multi-way bran
hes (
orresponding to the swit
h Java 
onstru
t). Ex
eption

handlers 
an be spe
i�ed as a table of (p


1

; p


2

; C; h) quadruples, meaning that

if an ex
eption of 
lass C or a sub
lass of C is raised by any instru
tion between

lo
ations p


1

and p


2

, 
ontrol is transferred to the instru
tion at h (the ex
eption

handler).

About 200 instru
tions are supported, in
luding arithmeti
 operations, 
om-

parisons, obje
t 
reation, �eld a

esses and method invo
ations. The example in

Fig. 1 should give the general 
avor of JVM byte
ode.

Sour
e Java 
ode:

stati
 int fa
torial(int n)

{

int res;

for (res = 1; n > 0; n--) res = res * n;

return res;

}

Corresponding JVM byte
ode:

method stati
 int fa
torial(int), 2 registers, 2 sta
k slots

0: i
onst_1 // push the integer 
onstant 1

1: istore_1 // store it in register 1 (the res variable)

2: iload_0 // push register 0 (the n parameter)

3: ifle 14 // if negative or null, go to PC 14

6: iload_1 // push register 1 (res)

7: iload_0 // push register 0 (n)

8: imul // multiply the two integers at top of sta
k

9: istore_1 // pop result and store it in register 1

10: iin
 0, -1 // de
rement register 0 (n) by 1

11: goto 2 // go to PC 2

14: iload_1 // load register 1 (res)

15: ireturn // return its value to 
aller

Fig. 1. An example of JVM byte
ode

An important feature of the JVM is that most instru
tions are typed. For

instan
e, the iadd instru
tion (integer addition) requires that the sta
k initially


ontains at least two elements, and that these two elements are of type int; it

then pushes ba
k a result of type int. Similarly, a getfield C:f:� instru
tion

(a

ess the instan
e �eld f of type � de
lared in 
lass C) requires that the top of

the sta
k 
ontains a referen
e to an instan
e of 
lass C or one of its sub-
lasses



(and not, for instan
e, an integer { this would 
orrespond to an attempt to forge

an obje
t referen
e by an unsafe 
ast); it then pops it and pushes ba
k a value

of type � (the value of the �eld f). More generally, proper operation of the JVM

is not guaranteed unless the 
ode meets the following 
onditions:

{ Type 
orre
tness: the arguments of an instru
tion are always of the types

expe
ted by the instru
tion.

{ No sta
k over
ow or under
ow: an instru
tion never pops an argument o�

an empty sta
k, nor pushes a result on a full sta
k (whose size is equal to

the maximal sta
k size de
lared for the method).

{ Code 
ontainment: the program 
ounter must always point within the 
ode

for the method, to the beginning of a valid instru
tion en
oding (no falling

o� the end of the method 
ode; no bran
hes into the middle of an instru
tion

en
oding).

{ Register initialization: a load from a register must always follow at least one

store in this register; in other terms, registers that do not 
orrespond to

method parameters are not initialized on method entran
e, and it is an error

to load from an uninitialized register.

{ Obje
t initialization: when an instan
e of a 
lass C is 
reated, one of the

initialization methods for 
lass C (
orresponding to the 
onstru
tors for this


lass) must be invoked before the 
lass instan
e 
an be used.

{ A

ess 
ontrol: method invo
ations, �eld a

esses and 
lass referen
es must

respe
t the visibility modi�ers (private, prote
ted, publi
, et
) of the

method, �eld or 
lass.

One way to guarantee these 
onditions is to 
he
k them dynami
ally, while

exe
uting the byte
ode. This is 
alled the \defensive JVM approa
h" in the liter-

ature [6℄. However, 
he
king these 
onditions at run-time is expensive and slows

down exe
ution signi�
antly. The purpose of byte
ode veri�
ation is to 
he
k

these 
onditions on
e and for all, by stati
 analysis of the byte
ode at loading-

time. Byte
ode that passes veri�
ation 
an then be exe
uted at full speed, with-

out extra dynami
 
he
ks.

3 Basi
 veri�
ation by data
ow analysis

The �rst JVM byte
ode veri�
ation algorithm is due to Gosling and Yellin at

Sun [9, 36, 15℄. Almost all existing byte
ode veri�ers implement this algorithm.

It 
an be summarized as a data
ow analysis applied to a type-level abstra
t

interpretation of the virtual ma
hine. Some advan
ed aspe
ts of the algorithm

that go beyond standard data
ow analysis are des
ribed in se
tions 4 and 5. In

this se
tion, we des
ribe the basi
 ingredients of this algorithm: the type-level

abstra
t interpreter and the data
ow framework.

3.1 The type-level abstra
t interpreter

At the heart of all byte
ode veri�
ation algorithms des
ribed in this paper is an

abstra
t interpreter for the JVM instru
tion set that exe
utes JVM instru
tions



like a defensive JVM (in
luding type tests, sta
k under
ow and over
ow tests,

et
), but operates over types instead of values. That is, the abstra
t interpreter

manipulates a sta
k of types and a register type (an array asso
iating types

to register numbers). It simulates the exe
ution of instru
tions at the level of

types. For instan
e, for the iadd instru
tion (integer addition), it 
he
ks that

the sta
k of types 
ontains at least two elements, and that the top two elements

are the type int. It then pops the top two elements and pushes ba
k the type

int 
orresponding to the result of the addition.

i
onst n : (S; R)! (int:S; R) if jSj < M

sta
k

iadd : (int:int:S; R)! (int:S; R)

iload n : (S; R)! (int:S; R)

if 0 � n < M

reg

and R(n) = int and jSj < M

sta
k

istore n : (int:S; R)! (S; Rfn intg) if 0 � n < M

reg

a
onst null : (S; R)! (null:S; R) if jSj < M

sta
k

aload n : (S; R)! (R(n):S; R)

if 0 � n < M

reg

and R(n) <: Obje
t and jSj < M

sta
k

astore n : (�:S; R)! (S; Rfn �g) if 0 � n < M

reg

and � <: Obje
t

getfield C:f:� : (ref(D):S; R)! (�:S; R) if D <: C

invokestati
 C:m:� : (�

0

n

: : : �

0

1

:S; R)! (�:S; R)

if � = � (�

1

; : : : ; �

n

) and �

0

i

<: �

i

for i = 1 : : : n

Fig. 2. Sele
ted rules for the type-level abstra
t interpreter. M

sta
k

is the maximal

sta
k size and M

reg

the maximal number of registers.

Figure 2 de�nes more formally the abstra
t interpreter on a number of repre-

sentative JVM instru
tions. The abstra
t interpreter is presented as a transition

relation i : (S;R)! (S

0

; R

0

), where i is the instru
tion, S and R the sta
k type

and register type before exe
uting the instru
tion, and S

0

and R

0

the sta
k type

and register type after exe
uting the instru
tion. Errors su
h as type mismat
hes

on the arguments, sta
k under
ow, or sta
k over
ow, are denoted by the absen
e

of a transition. For instan
e, there is no transition on iadd from an empty sta
k.

Noti
e that method invo
ations (su
h as the invokestati
 instru
tion in

Fig. 2) are not treated by bran
hing to the 
ode of the invoked method, like the


on
rete JVM does, but simply assume that the e�e
t of the method invo
ation

on the sta
k is as des
ribed by the method signature given in the \invoke" in-

stru
tion. All byte
ode veri�
ation algorithms des
ribed in this paper pro
eed

method per method, assuming that all other methods are well-typed when veri-

fying the 
ode of a method. A simple 
oindu
tive argument shows that if this is

the 
ase, the program as a whole (the 
olle
tion of all methods) is well typed.

The types manipulated by the abstra
t interpreter are similar to the sour
e-

level types of the Java language. They in
lude primitive types (int, long, float,

double), obje
t referen
e types represented by the fully quali�ed names of the


orresponding 
lasses, and array types. The boolean, byte, short and 
har

types of Java are identi�ed with int. Two extra types are introdu
ed: null to



represent the type of the null referen
e, and > to represent the 
ontents of unini-

tialized registers, that is, any value. (\Load" instru
tions expli
itly 
he
k that

the a

essed register does not have type >, thus dete
ting a

esses to uninitial-

ized registers.) A subtyping relation between these types, similar to that of the

Java language (the \assignment 
ompatibility" relation), is de�ned as shown in

Fig. 3.

>

Obje
tint long float double

C

D E

Obje
t[℄

C[℄

D[℄ E[℄

int[℄ long[℄

null

Fig. 3. Type expressions used by the veri�er, with their subtyping relation. C, D, E are

user-de�ned 
lasses, with D and E extending C. Not all types are shown.

3.2 The data
ow analysis

Verifying a method whose body is a straight-line pie
e of 
ode (no bran
hes) is

easy: we simply iterate the transition fun
tion of the abstra
t interpreter over

the instru
tions, taking the sta
k type and register type \after" the pre
eding

instru
tion as the sta
k type and register type \before" the next instru
tion. The

initial sta
k and register types re
e
t the state of the JVM on method entran
e:

the sta
k type is empty; the types of the registers 0 : : : n � 1 
orresponding to

the n method parameters are set to the types of the 
orresponding parameters

in the method signature; the other registers n : : :M

reg

� 1 
orresponding to

uninitialized lo
al variables are given the type >.

If the abstra
t interpreter gets \stu
k", i.e. 
annot make a transition from

one of the intermediate states, then veri�
ation fails and the 
ode is reje
ted.

Otherwise, veri�
ation su

eeds, and sin
e the abstra
t interpreter is a 
orre
t

approximation of a defensive JVM, we are 
ertain that a defensive JVM will

not get stu
k either exe
uting the 
ode. Thus, the 
ode is 
orre
t and 
an be

exe
uted safely by a regular, non-defensive JVM.

Bran
hes and ex
eption handlers introdu
e forks and joins in the 
ontrol 
ow

of the method. Thus, an instru
tion 
an have several prede
essors, with di�erent

sta
k and register types \after" these prede
essor instru
tions. Sun's byte
ode



veri�er deals with this situation in the manner 
ustomary for data 
ow analysis:

the state (sta
k type and register type) \before" an instru
tion is taken to be

the least upper bound of the states \after" all prede
essors of this instru
tion.

For instan
e, assume 
lasses C

1

and C

2

extend C, and we analyze a 
onditional


onstru
t that stores a value of type C

1

in register 0 in one arm, and a value of

type C

2

in the other arm. (See Fig. 4.) When the two arms meet, register 0 is

assumed to have type C, whi
h is the least upper bound (the smallest 
ommon

supertype) of C

1

and C

2

.

r

0

: C = lub(C

1

; C

2

)

r

0

: C

1

r

0

: C

2

Fig. 4. Handling joins in the 
ontrol 
ow

More pre
isely, writing in(i) for the state \before" instru
tion i and out(i)

for the state \after" i, the algorithm sets up the following data
ow equations:

i : in(i)! out(i)

in(i) = lubfout(j) j j prede
essor of ig

for every instru
tion i, plus

in(i

0

) = ("; (P

0

; : : : ; P

n�1

;>; : : : ;>))

for the start instru
tion i

0

(the P

k

are the types of the method parameters).

These equations are then solved by standard �xpoint iteration using Kildall's

worklist algorithm [17, se
tion 8.4℄: an instru
tion i is taken from the worklist

and its state \after" out(i) is determined from its state \before" in(i) using the

abstra
t interpreter; then, we repla
e in(j) by lub(in(j); out(i)) for ea
h su

es-

sor j of i, and enter those su

essors j for whi
h in(j) 
hanged in the worklist.

The �xpoint is rea
hed when the worklist is empty, in whi
h 
ase veri�
ation

su

eeds. Veri�
ation fails if a state with no transition is en
ountered, or one of

the least upper bounds is unde�ned.

As a trivial optimization of the algorithm above, the data
ow equations 
an

be set up at the level of extended basi
 blo
ks rather than individual instru
tions.

In other terms, it suÆ
es to keep in working memory the states in(i) where i is

the �rst instru
tion of an extended basi
 blo
k (i.e. a bran
h target); the other

states 
an be re
omputed on the 
y as needed.

The least upper bound of two states is taken pointwise, both on the sta
k

types and the register types. It is unde�ned if the sta
k types have di�erent

heights, whi
h 
auses veri�
ation to fail. This situation 
orresponds to a program

point where the run-time sta
k 
an have di�erent heights depending on the path



by whi
h the point is rea
hed; su
h 
ode must be reje
ted be
ause it 
an lead to

unbounded sta
k height, and therefore to sta
k over
ow. (Consider a loop that

pushes one more entry on the sta
k at ea
h iteration.)

The least upper bound of two register types 
an be >, 
ausing this register

to have type > in the merged state. This 
orresponds to the situation where

a register holds values of in
ompatible types in two arms of a 
onditional (e.g.

int in one arm and an obje
t referen
e in the other), and therefore is treated

as uninitialized (no further loads from this register) after the merge point. The

least upper bound of two sta
k slots 
an also be >, in whi
h 
ase Sun's algo-

rithm aborts veri�
ation immediately. Alternatively, it is entirely harmless to


ontinue veri�
ation after setting the sta
k slot to > in the merged state, sin
e

the 
orresponding value 
annot be used by any well-typed instru
tion, but simply

dis
arded by instru
tions su
h as pop or return.

3.3 Interfa
es and least upper bounds

The data
ow framework presented above requires that the type algebra, ordered

by the subtyping relation, 
onstitutes a semi-latti
e. That is, every pair of types

possesses a smallest 
ommon supertype (least upper bound).

Unfortunately, this property does not hold if we take the veri�er type alge-

bra to be the Java sour
e-level type algebra (extended with > and null) and

the subtyping relation to be the Java sour
e-level assignment 
ompatibility re-

lation. The problem is that interfa
es are types, just like 
lasses, and a 
lass 
an

implement several interfa
es. Consider the following 
lasses:

interfa
e I { ... }

interfa
e J { ... }


lass C1 implements I, J { ... }


lass C2 implements I, J { ... }

The subtyping relation indu
ed by these de
larations is:

Obje
t

I J

C1 C2

This is obviously not a semi-latti
e, sin
e the two types C1 and C2 have two


ommon super-types I and J that are not 
omparable (neither is subtype of the

other).

There are several ways to address this issue. One approa
h is to manipulate

sets of types during veri�
ation instead of single types as we des
ribed earlier.

These sets of types are to be interpreted as 
onjun
tive types, i.e. the set fI; Jg,

like the 
onjun
tive type I ^ J, represents values that have both types I and J,

and therefore is a suitable least upper bound for the types fC1g and fC2g in the

example above. This is the approa
h followed by Qian [25℄ and also by Pus
h

[24℄.



Another approa
h is to 
omplete the 
lass and interfa
e hierar
hy of the

program into a latti
e before performing veri�
ation. In the example above, the


ompletion would add a pseudo-interfa
e IandJ extending both I and J, and


laim that C1 and C2 implement IandJ rather than I and J. We then obtain the

following semi-latti
e:

Obje
t

I J

IandJ

C1 C2

The pseudo-interfa
e IandJ plays the same role as the set type fI; Jg in

the �rst approa
h des
ribed above. The di�eren
e is that the 
ompletion of the


lass/interfa
e hierar
hy is performed on
e and for all, and veri�
ation manipu-

lates only simple types rather than sets of types. This keeps veri�
ation simple

and fast.

The simplest solution to the interfa
e problem is to be found in Sun's imple-

mentation of the JDK byte
ode veri�er. (This approa
h is do
umented nowhere,

but 
an easily be inferred by experimentation.) Namely, byte
ode veri�
ation ig-

nores interfa
es, treating all interfa
e types as the 
lass type Obje
t. Thus, the

type algebra used by the veri�er 
ontains only proper 
lasses and no interfa
es,

and subtyping between proper 
lasses is simply the inheritan
e relation between

them. Sin
e Java has single inheritan
e (a 
lass 
an implement several interfa
es,

but inherit from one 
lass only), the subtyping relation is tree-shaped and triv-

ially forms a latti
e: the least upper bound of two 
lasses is simply their 
losest


ommon an
estor in the inheritan
e tree.

The downside of Sun's approa
h, 
ompared with the set-based or 
ompletion-

based approa
h, is that the veri�er 
annot guarantee stati
ally that an obje
t

referen
e implements a given interfa
e. In parti
ular, the invokeinterfa
e I:m

instru
tion, whi
h invokes method m of interfa
e I on an obje
t, is not guar-

anteed to re
eive at run-time an obje
t that a
tually implements I : the only

guarantee provided by Sun's veri�er is that it re
eives an argument of type

Obje
t, that is, any obje
t referen
e. The invokeinterfa
e I:m instru
tion

must therefore 
he
k dynami
ally that the obje
t a
tually implements I , and

raise an ex
eption if it does not.

3.4 Formalizations and proofs

Many formalizations and proofs of 
orre
tness of Java byte
ode veri�
ation have

been published, and we have reasons to believe that many more have been devel-

oped internally, both in a
ademia and industry. With no 
laims to exhaustive-

ness, we will mention the works of Cohen [6℄ and Qian [25℄ among the �rst formal

spe
i�
ations of the JVM. Qian's spe
i�
ation is written in ordinary mathemat-

i
s, while Cohen's uses the spe
i�
ation language of the ACL2 theorem prover.

Pus
h [24℄ uses the Isabelle/HOL prover to formalize the dynami
 semanti
s of



a fragment of the JVM, the 
orresponding type-level abstra
t interpreter used

by the veri�er, and proves the 
orre
tness of the latter with respe
t to the for-

mer: if the abstra
t interpreter 
an do a transition i : (S;R) ! (S

0

; R

0

), then

for all 
on
rete states (s; r) mat
hing (S;R), the 
on
rete interpreter 
an do a

transition i : (s; r)! (s

0

; r

0

), and the �nal 
on
rete state (s

0

; r

0

) mat
hes (S;R).

Nipkow [20℄ formalizes the data
ow analysis framework in Isabelle/HOL and

proves its 
orre
tness.

4 Verifying obje
t initialization

Obje
t 
reation in the Java virtual ma
hine is a two-step pro
ess: �rst, the

instru
tion new C 
reates a new obje
t, instan
e of the 
lass C, with all in-

stan
e �elds �lled with default values (0 for numeri
al �elds and null for refer-

en
e �elds); se
ond, one of the initializer methods for 
lass C (methods named

C:<init> resulting from the 
ompilation of the 
onstru
tor methods of C) must

be invoked on the newly 
reated obje
t. Initializer methods, just like their sour
e-

level 
ounterpart (
onstru
tors), are typi
ally used to initialize instan
e �elds to

non-default values, although they 
an also perform nearly arbitrary 
omputa-

tions.

The JVM spe
i�
ation requires that this two-step obje
t initialization pro-

to
ol be respe
ted. That is, the obje
t instan
e 
reated by the new instru
tion

is 
onsidered uninitialized, and none of the regular obje
t operations (i.e. store

the obje
t in a data stru
ture, return it as method result, a

ess one of its �elds,

invoke one of its methods) is allowed on this uninitialized obje
t. Only when one

of the initializer methods for its 
lass is invoked on the new obje
t and return

normally is the new obje
t 
onsidered fully initialized and usable like any other

obje
t.

Unlike the register initialization property, this obje
t initialization property is

not 
ru
ial to ensure type safety at run-time: sin
e the new instru
tion initializes

the instan
e �elds of the new obje
t with 
orre
t values for their types, type

safety is not broken if the resulting default-initialized obje
t is used right away

without having 
alled an initializer method. However, the obje
t initialization

property is important to ensure that some invariants between instan
e �elds that

is established by the 
onstru
tor of a 
lass a
tually hold for all obje
ts of this


lass.

Stati
 veri�
ation of obje
t initialization is made more 
omplex by the fa
t

that initialization methods operate by side-e�e
t: instead of taking an uninitial-

ized obje
t and returning an initialized obje
t, they simply take an uninitialized

obje
t, update its �elds, and return nothing. Hen
e, the 
ode generated by Java


ompilers for the sour
e-level statement x = new C(arg) is generally of the fol-

lowing form:

new C // 
reate uninitialized instan
e of C

dup // dupli
ate the referen
e to this instan
e


ode to 
ompute arg

invokespe
ial C.<init> // 
all the initializer



astore 3 // store initialized obje
t in x

That is, two referen
es to the uninitialized instan
e of C are held on the sta
k.

The topmost referen
e is \
onsumed" by the invo
ation of C.<init>. When

this initializer returns, the se
ond referen
e is now at the top of the sta
k and

now referen
es a properly initialized obje
t, whi
h is then stored in the register

allo
ated to x. The tri
ky point is that the initializer method is applied to one

obje
t referen
e on the sta
k, but it is another obje
t referen
e 
ontained in

the sta
k (whi
h happens to referen
e the same obje
t) whose status goes from

\uninitialized" to \fully initialized" in the pro
ess.

As demonstrated above, stati
 veri�
ation of obje
t initialization requires a

form of alias analysis (more pre
isely a must-alias analysis) to determine whi
h

obje
t referen
es in the 
urrent state are guaranteed to refer to the same unini-

tialized obje
t that is passed as argument to an initializer method. While any

must-alias analysis 
an be used, Sun's veri�er uses a fairly simple analysis,

whereas an uninitialized obje
t is identi�ed by the position (program 
ounter

value) of the new instru
tion that 
reated it. More pre
isely, the type algebra is

enri
hed by the types C

p

denoting an uninitialized instan
e of 
lass C 
reated

by a new instru
tion at PC p. An invo
ation of an initializer method C:<init>


he
ks that the �rst argument of the method is of type C

p

for some p, then pops

the arguments o� the sta
k type as usual, and �nally �nds all other o

urren
es

of the type C

p

in the abstra
t interpreter state (sta
k type and register types)

and repla
es them by C. The following example shows how this works for a nested

initialization 
orresponding to the Java expression new C(new C(null)):

0: new C // sta
k type after: C

0

3: dup // C

0

, C

0

4: new C // C

0

, C

0

, C

4

7: dup // C

0

, C

0

, C

4

, C

4

8: a
onst_null // C

0

, C

0

, C

4

, C

4

, null

9: invokespe
ial C.<init> // C

0

, C

0

, C

12: invokespe
ial C.<init> // C

15: ...

In parti
ular, the �rst invokespe
ial initializes only the instan
e 
reated at

PC 4, but not the one 
reated at PC 0.

This approa
h is 
orre
t only if at any given time, the ma
hine state 
ontains

at most one uninitialized obje
t 
reated at a given PC. Loops 
ontaining a new

instru
tion 
an invalidate this assumption, sin
e several distin
t obje
ts 
reated

by this new instru
tion 
an be \in 
ight", yet are given the same uninitialized

obje
t type (same 
lass, same PC of 
reation). To avoid this problem, Sun's

veri�er requires that no uninitialized obje
t type appear in the ma
hine state

when a ba
kward bran
h is taken. Sin
e a 
ontrol-
ow loop must take at least

one ba
kward bran
h, this guarantees that no initialized obje
ts 
an be 
arried

over from one loop iteration to the next one, thus ensuring the 
orre
tness of

the \PC of 
reation" aliasing 
riterion.



Freund and Mit
hell [7℄ formalize this approa
h to verifying obje
t initializa-

tion. Bertot [2℄ proves the 
orre
tness of this approa
h using the Coq theorem

prover, and extra
ts a veri�
ation algorithm from the proof.

5 Subroutines

Subroutines in the JVM are 
ode fragments that 
an be 
alled from several points

inside the 
ode of a method. To this end, the JVM provides two instru
tions:

jsr bran
hes to a given label in the method 
ode and pushes a return address

to the following instru
tion; ret re
overs a return address (from a register)

and bran
hes to the 
orresponding instru
tion. Subroutines are used to 
ompile


ertain ex
eption handling 
onstru
ts, and 
an also be used as a general 
ode-

sharing devi
e. The di�eren
e between a subroutine 
all and a method invo
ation

is that the body of the subroutine exe
utes in the same a
tivation re
ord than

its 
aller, and therefore 
an a

ess and modify the registers of the 
aller.

5.1 The veri�
ation problem with subroutines

Subroutines 
ompli
ate signi�
antly byte
ode veri�
ation by data
ow analysis.

First, it is not obvious to determine the su

essors of a ret instru
tion, sin
e

the return address is a �rst-
lass value. As a �rst approximation, we 
an say

that a ret instru
tion 
an bran
h to any instru
tion that follows a jsr in the

method 
ode. (This approximation is too 
oarse in pra
ti
e; we will des
ribe

better approximations later.) Se
ond, the subroutine entry point a
ts as a merge

point in the 
ontrol-
ow graph, 
ausing the register types at the points of 
all

to this subroutine to be merged. This 
an lead to ex
essive loss of pre
ision in

the register types inferred, as the example in Fig. 5 shows.

// register 0 uninitialized here

0: jsr 100 // 
all subroutine at 100

3: ...

50: i
onst_0

51: istore_0 // register 0 has type "int" here

52: jsr 100 // 
all subroutine at 100

55: iload_0 // load integer from register 0

56: ireturn // and return to 
aller

...

// subroutine at 100:

100: astore_1 // store return address in register 1

101: ... // exe
ute some 
ode that does not use register 0

110: ret 1 // return to 
aller

Fig. 5. An example of subroutine



The two jsr 100 at 0 and 52 have 100 as su

essor. At 0, register 0 has type

>; at 52, it has type int. Thus, at 100, register 0 has type > (the least upper

bound of > and int). The subroutine body (between 101 and 110) does not

modify register 0, hen
e its type at 110 is still >. The ret 1 at 110 has 3 and

55 as su

essors (the two instru
tions following the two jsr 100). Thus, at 55,

register 0 has type > and 
annot be used as an integer by instru
tions 55 and

56. This 
ode is therefore reje
ted.

This behavior is 
ounter-intuitive. Calling a subroutine that does not use a

given register does not modify the run-time value of this register, so one 
ould

expe
t that it does not modify the veri�
ation-time type of this register either.

Indeed, if the subroutine body was expanded inline at the two jsr sites, byte
ode

veri�
ation would su

eed as expe
ted.

The subroutine-based 
ompilation s
heme for the try. . . finally 
onstru
t

produ
es 
ode very mu
h like the above, with a register being uninitialized at

one 
all site of the subroutine and holding a value preserved by the subroutine at

another 
all site. Hen
e it is 
ru
ial that similar 
ode passes byte
ode veri�
ation.

We will now see two re�nements of the data
ow-based veri�
ation algorithm that

a
hieve this goal.

5.2 Sun's solution

We �rst des
ribe the approa
h implemented in Sun's JDK veri�er. It is des
ribed

informally in [15, se
tion 4.9.6℄, and formalized in [29, 25℄. This approa
h imple-

ments the intuition that a 
all to a subroutine should not 
hange the types of

registers that are not used in the subroutine body.

First, we need to make pre
ise what a \subroutine body" is: sin
e JVM

byte
ode is unstru
tured, subroutines are not synta
ti
ally delimited in the 
ode;

subroutine entry points are easily dete
ted (as targets of jsr instru
tions), but it

is not immediately apparent whi
h instru
tions 
an be rea
hed from a subroutine

entry point. Thus, a data
ow analysis is performed, either before or in parallel

with the main type analysis. The out
ome of this analysis is a 
onsistent labeling

of every instru
tion by the entry point(s) for the subroutine(s) it logi
ally belongs

to. From this labeling, we 
an then determine, for ea
h subroutine entry point `,

the return instru
tion Ret(`) for the subroutine, and the set of registers Used(`)

that are read or written by instru
tions belonging to that subroutine.

The data
ow equation for subroutine 
alls is then as follows. Let i be

an instru
tion jsr `, and j be the instru
tion immediately following i. Let

(S

jsr

; R

jsr

) = out(i) be the state \after" the jsr, and (S

ret

; R

ret

) = out(Ret(`))

be the state \after" the ret that terminates the subroutine. Then:

in(j) =

�

S

ret

; fr 7!

�

R

ret

(r) if r 2 Used(`)

R

jsr

(r) if r =2 Used(`)

g

�

In other terms, the state \before" the instru
tion j following the jsr is identi
al

to the state \after" the ret, ex
ept for the types of the registers that are not

used by the subroutine, whi
h are taken from the state \after" the jsr.



In the example above, we have Ret(100) = 110 and register 0 is not in

Used(100). Hen
e the type of register 0 before instru
tion 55 (the instru
tion

following the jsr) is equal to the type after instru
tion 52 (the jsr itself), that

is int, instead of > (the type of register 0 after the ret 1 at 110).

While e�e
tive in pra
ti
e, Sun's approa
h to subroutine veri�
ation raises

a 
hallenging issue: determining the subroutine stru
ture is diÆ
ult. Not only

subroutines are not synta
ti
ally delimited, but return addresses are stored in

general-purpose registers rather than on a subroutine-spe
i�
 sta
k, whi
h makes

tra
king return addresses and mat
hing ret/jsr pairs more diÆ
ult. To fa
ili-

tate the determination of the subroutine stru
ture, the JVM spe
i�
ation states

a number of restri
tions on 
orre
t JVM 
ode, su
h as \two di�erent subroutines


annot `merge' their exe
ution to a single ret instru
tion" [15, se
tion 4.9.6℄.

These restri
tions seem rather ad-ho
 and spe
i�
 to the parti
ular subroutine

labeling algorithm that Sun's veri�er uses. Moreover, the des
ription of subrou-

tine labeling given in the JVM spe
i�
ation is very informal and in
omplete.

Several rational re
onstru
tions of this part of Sun's veri�er have been pub-

lished. The �rst, due to Abadi and Stata [29℄, is presented as a non-standard

type system, and determines the subroutine stru
ture before 
he
king the types.

The se
ond is due to Qian [26℄ and infers simultaneously the types and the

subroutine stru
ture, in a way that is 
loser to Sun's implementation. The si-

multaneous determination of types and Used(`) sets 
ompli
ates the data
ow

analysis: the transfer fun
tion of the analysis is no longer monotonous, and spe-


ial iteration strategies are required to rea
h the �xpoint. Finally, O'Callahan

[21℄ and Hagiya and Tozawa [10℄ also give non-standard type systems for sub-

routines based on 
ontinuation types and 
ontext-dependent types, respe
tively.

However, these papers give only type 
he
king rules, but no e�e
tive veri�
ation

(type inferen
e) algorithms.

While these works shed 
onsiderable light on the issue, they are 
arried in

the 
ontext of a small subset of the JVM that ex
ludes ex
eptions and obje
t

initialization in parti
ular. Deli
ate intera
tions between subroutines and obje
t

initialization were dis
overed later by Freund and Mit
hell [7℄, exposing a bug in

Sun's veri�er. As for ex
eptions, ex
eption handling 
ompli
ates signi�
antly the

determination of the subroutine stru
ture. Examination of byte
ode produ
ed by

Java 
ompiler show two possible situations: either an ex
eption handler 
overs a

range of instru
tions entirely 
ontained in a subroutine, in whi
h 
ase the 
ode

of the ex
eption handler should be 
onsidered as part of the same subroutine

(e.g. it 
an bran
h ba
k to the ret instru
tion that terminates the subroutine);

or, an ex
eption handler 
overs both instru
tions belonging to a subroutine and

non-subroutine instru
tions, in whi
h 
ase the 
ode of the handler should be


onsidered as outside the subroutine. The problem is that in the se
ond 
ase, we

have a bran
h (via the ex
eption handler) from a subroutine instru
tion to a non-

subroutine instru
tion, and this bran
h is not a ret instru
tion; this situation

is not allowed in Abadi and Stata's subroutine labeling system.



5.3 Polyvariant data
ow analysis

An alternate solution to the subroutine problem, used in the Java Card o�-


ard veri�er [31℄, relies on a polyvariant data
ow analysis: instru
tions inside

subroutine bodies are analyzed several times, on
e per 
all site for the subroutine.

The prin
iples of polyvariant 
ow analyses, also 
alled 
ontext-sensitive analyses,

are well known [19, se
tion 3.6℄: whereas monovariant analyses maintain only

one state per program point, a polyvariant analysis allows several states per

program point. These states are indexed by 
ontours that usually approximate

the 
ontrol-
ow path that led to ea
h state.

In the 
ase of byte
ode veri�
ation, 
ontours are subroutine 
all sta
ks: lists

of return addresses for the jsr instru
tions that led to the 
orresponding state.

In the absen
e of subroutines, all the byte
ode for a method is analyzed in

the empty 
ontour. Thus, only one state is asso
iated to ea
h instru
tion and

the analysis degenerates into the monovariant data
ow analysis of se
tion 3.2.

However, when a jsr ` instru
tion is en
ountered in the 
urrent 
ontour 
, it

is treated as a bran
h to the instru
tion at ` in the augmented 
ontour `:
.

Similarly, a ret r instru
tion is treated as a bran
h that restri
ts the 
urrent


ontext 
 by popping one or several return addresses from 
 (as determined by

the type of the register r).

In the example of Fig. 5, the two jsr 100 instru
tions are analyzed in the

empty 
ontext ". This 
auses two \in" states to be asso
iated with the instru
-

tion at 100; one has 
ontour 3:", assigns type > to register 0, and 
ontains

retaddr(3) at the top of the sta
k

1

; the other state has 
ontour 55:", assigns

type int to register 0, and 
ontains retaddr(55) at the top of the sta
k. Then,

the instru
tions at 101. . . 110 are analyzed twi
e, in the two 
ontours 3:" and

55:". In the 
ontour 3:", the ret 1 at 110 is treated as a bran
h to 3, where

register 0 still has type >. In the 
ontour 55:", the ret 1 is treated as a bran
h

to 55 with register 0 still having type int. By analyzing the subroutine body in

a polyvariant way, under two di�erent 
ontours, we avoided merging the types

> and int of register 0 at the subroutine entry point, and thus obtained the

desired type propagation behavior for register 0: > before and after the jsr 100

at 3, but int before and after the jsr 100 at 52.

More formally, the polyvariant data
ow equation for a jsr ` instru
tion at i

followed by an instru
tion at j is

in(`; j:
) = (retaddr(j):S; T ) where (S; T ) = out(i; 
)

For a ret r instru
tion at i, the equation is

in(ra; 


0

) = out(i; 
)

where the type of register r in the state out(i; 
) is retaddr(ra) and the 
ontext




0

is obtained from 
 by popping return addresses until ra is found, that is,


 = 


00

:ra:


0

.

1

The type retaddr(i) represents a return address to the instru
tion at i.



Another way to view polyvariant veri�
ation is that it is exa
tly equivalent

to performing monovariant veri�
ation on an expanded version of the byte
ode

where every subroutine 
all has been repla
ed by a distin
t 
opy of the subrou-

tine body. Instead of a
tually taking N 
opies of the subroutine body, we analyze

them N times in N di�erent 
ontours. Of 
ourse, dupli
ating subroutine bod-

ies before the monovariant veri�
ation is not pra
ti
al, be
ause it requires prior

knowledge of the subroutine stru
ture (to determine whi
h instru
tions are part

of whi
h subroutine body), and as shown in se
tion 5.2, the subroutine stru
-

ture is hard to determine exa
tly. The beauty of the polyvariant analysis is that

it determines the subroutine stru
ture along the way, via the 
omputations on


ontours performed during the data
ow analysis. Moreover, this determination

takes advantage of typing information su
h as the retaddr(ra) types to deter-

mine with 
ertainty the point to whi
h a ret instru
tion bran
hes in 
ase of

early return from nested subroutines.

Another advantage of polyvariant veri�
ation is that it has no problem deal-

ing with 
ode that is rea
hable both from subroutine bodies and from the main

program, su
h as the ex
eption handlers mentioned at the end of se
tion 5.2:

rather than de
iding whether su
h ex
eption handlers are part of a subroutine

or not, the polyvariant analysis simply analyzes them several times, on
e in the

empty 
ontour and on
e or several times in subroutine 
ontours.

The downside of polyvariant veri�
ation is that it is more 
omputationally

expensive than Sun's approa
h. In parti
ular, if subroutines are nested to depth

N , and ea
h subroutine is 
alled k times, the instru
tions from the innermost sub-

routine are analyzed k

N

times instead of only on
e in Sun's algorithm. However,

typi
al Java 
ode has low nesting of subroutines: most methods haveN � 1, very

few have N = 2, and N > 2 is unheard of. Hen
e, the extra 
ost of polyvariant

veri�
ation is entirely a

eptable in pra
ti
e.

6 Model 
he
king of abstra
t interpretations

It is folk lore that data
ow analyses 
an be viewed as model 
he
king of abstra
t

interpretations [28℄. Sin
e a large part of byte
ode veri�
ation is obviously an

abstra
t interpretation (of a defensive JVM at the type level), it is natural to

look at the remaining parts from a model-
he
king perspe
tive.

Posegga and Vogt [22℄ were the �rst to do so. They outline an algorithm that

takes the byte
ode for a method and generates a temporal logi
 formula that

holds if and only if the byte
ode is safe. They then use an o�-the-shelf model


he
ker to determine the validity of the formula. While this appli
ation uses

only a small part of the power and generality of temporal logi
 and of the model


he
ker, the approa
h sounds interesting for establishing �ner properties of the

byte
ode that go beyond the basi
 safety properties of byte
ode veri�
ation (see

se
tion 8).

Unpublished work by Brisset [3℄ extra
ts the essen
e of Posegga and Vogt's

approa
h: the idea of exploring all rea
hable states of the abstra
t interpreter.

Brisset 
onsiders the transition relation obtained by 
ombining the transition



relation of the type-level abstra
t interpreter (Fig. 2) with the \su

essor" re-

lation between instru
tions. This relation is of the form (p; S;R) ! (p

0

; S

0

; R

0

),

meaning that the abstra
t interpreter, started at PC p with sta
k type S and

register type R, 
an abstra
tly exe
ute the instru
tion at p and arrive at PC p

0

with sta
k type S

0

and register type R

0

.

Starting with the initial state (0; "; (P

0

; : : : ; P

n�1

;>; : : : ;>)) 
orresponding

to the method entry, we 
an then explore all states rea
hable by repeated ap-

pli
ations of the transition fun
tion. If we en
ounter a state where the abstra
t

interpreter is \stu
k" (
annot make a transition be
ause some 
he
k failed),

veri�
ation fails and the byte
ode is reje
ted. Otherwise, the 
orre
tness of the

abstra
t interpretation guarantees that the 
on
rete, defensive JVM interpreter

will never get \stu
k" either during the exe
ution of the method 
ode, hen
e the

byte
ode is safe.

This algorithm always terminates be
ause the number of distin
t states is

�nite (albeit large), sin
e there is a �nite number of distin
t types used in the

program, and the height of the sta
k is bounded, and the number of registers is

�xed. Brisset formalized and proved the 
orre
tness of this approa
h in the Coq

proof assistant, and extra
ted the ML 
ode of a byte
ode veri�er from the proof.

This approa
h is 
on
eptually interesting be
ause it is the ultimate polyvari-

ant analysis: rather than having one sta
k-register type per 
ontrol point (as in

Sun's veri�er), or one su
h type per 
ontrol point and per subroutine 
ontour

(as in se
tion 5.3), we 
an have arbitrarily many sta
k-register types per 
ontrol

point, depending on the number of 
ontrol-
ow paths that lead to this 
ontrol

point. Consider for instan
e the 
ontrol-
ow joint depi
ted in Fig. 4. While the

data
ow-based algorithms verify the instru
tions following the join point only

on
e under the assumption r : lub(C

1

; C

2

) = C, Brisset's algorithm veri�es them

twi
e, on
e under the assumption r : C

1

, on
e under the assumption r : C

2

.

In other terms, this analysis is polyvariant not only with respe
t to subroutine


alls, but to all 
onditional or N -way bran
hes as well. This renders the analysis

impra
ti
al, sin
e it runs in time exponential in the number of su
h bran
hes

in the method. (Consider a 
ontrol-
ow graph with N 
onditional 
onstru
ts in

sequen
e, ea
h assigning a di�erent type to registers r

1

: : : r

N

; this 
auses the


ode following the last 
onditional to be veri�ed 2

N

times under 2

N

di�erent

register types.)

Of 
ourse, the pre
ision of Brisset's algorithm 
an be degraded by apply-

ing widening steps in order to redu
e the number of states. Some transitions

(p
; S;R) ! (p


0

; S

0

; R

0

) 
an be repla
ed by (p
; S;R) ! (p


0

; S

00

; R

00

) where

R

0

<: R

00

and S

0

<: S

00

. If the abstra
t interpreter is still not stu
k on any of

the rea
hable states, the byte
ode remains safe. The monovariant data
ow anal-

ysis of se
tion 3.2 
orresponds to keeping only one state per program point by

repla
ing multiple states by their least upper bounds. The polyvariant data
ow

analysis of se
tion 5.3 is similar, ex
ept that the merging of states into least

upper bounds is relaxed for subroutines and 
ontrolled via 
ontours.

Another interest of Brisset's approa
h is that it allows us to re
onsider some

of the design de
isions explained in se
tions 3.3 and 4. For instan
e, Brisset's



algorithm never 
omputes least upper bounds of types, but simply 
he
ks sub-

typing relations between types. Thus, it 
an be applied to any subtyping relation,

not just relations that form a semi-latti
e. Indeed, it 
an keep tra
k of interfa
e

types and verify invokeinterfa
e instru
tions a

urately, without having to

deal with sets of types or latti
e 
ompletion.

7 Byte
ode veri�
ation on small 
omputers

Java virtual ma
hines run not only in personal 
omputers and workstations, but

also in a variety of embedded 
omputers, su
h as personal digital assistants, mo-

bile phones, and smart 
ards. Extending the Java model of safe post-issuan
e


ode downloading to these devi
es requires that byte
ode veri�
ation be per-

formed on the embedded system itself. However, byte
ode veri�
ation is an ex-

pensive pro
ess that ex
eeds the resour
es (pro
essing power and memory spa
e)

of small embedded systems. For instan
e, a typi
al Java 
ard (Java-enabled smart


ard) has 1 or 2 kilo-bytes of RAM and an 8-bit mi
ropro
essor that is approx-

imately 1000 times slower than a personal 
omputer. Fitting a byte
ode veri�er

into one of these devi
es requires new veri�
ation algorithms, whi
h we dis
uss

now.

7.1 Lightweight byte
ode veri�
ation using 
erti�
ates

Inspired by Ne
ula and Lee's proof-
arrying 
ode [18℄, Rose and Rose [27℄ pro-

pose to split byte
ode veri�
ation into two phases: the 
ode produ
er 
omputes

the sta
k and register types at bran
h targets and transmit these so-
alled 
er-

ti�
ates along with the byte
ode; the embedded system, then, simply 
he
ks

that the 
ode is well-typed with respe
t to the types given in the 
erti�
ates,

rather than inferring these types itself. In other terms, the embedded system no

longer solves iteratively the data
ow equations 
hara
terizing 
orre
t byte
ode,

but simply 
he
ks that the types provided in the 
ode 
erti�
ates are indeed a

solution of these equations.

The bene�ts of this approa
h are twofold. First, 
he
king a solution is faster

than inferring one, sin
e we avoid the 
ost of the �xpoint iteration. This speeds

up veri�
ation to some extent

2

. Se
ond, 
erti�
ates are only read, but never

modi�ed during veri�
ation. Hen
e, they 
an be stored in persistent rewritable

memory (EEPROM or Flash). Smart 
ard-
lass embedded systems o�er rela-

tively large amounts of persistent memory (e.g. 16-32 kilo-bytes). Writing data

to su
h memory is slow (1000-10000 times slower than reading from it), hen
e it

is not possible to store there rapidly-
hanging data su
h as the �xpoint 
omputed

by a standard veri�
ation algorithm. However, Rose and Rose's 
erti�
ates are

written only on
e, on re
eption of the byte
ode, and only read during veri�
a-

tion, so they 
an �t in the \
omfortable" EEPROM memory spa
e.

2

The speedup is not as important as one might expe
t, sin
e experiments show that

the �xpoint is usually rea
hed after examining every instru
tion at most twi
e [13℄.



There are two limitations to this approa
h. First, it is 
urrently not known

how to deal with subroutines in this framework. Indeed, Sun proposed to drop

subroutines entirely in order to use Rose and Rose's byte
ode veri�
ation algo-

rithm in the KVM, one of Sun's embedded variants of the JVM [30℄. Se
ond,


erti�
ates are relatively large: without 
ompression, about the same size as

the 
ode they annotate; with 
ompression, about 20% of the 
ode size. Even if


erti�
ates are stored in persistent memory, they 
an still ex
eed the available

memory spa
e.

7.2 On-
ard veri�
ation with o�-
ard 
ode transformation

The Java Card byte
ode veri�er des
ribed in [13℄ atta
ks the memory prob-

lem from another angle. Like the standard byte
ode veri�er, it solves data
ow

equations using �xpoint iteration. To redu
e memory requirements, however, it

has only one global register type that is shared between all 
ontrol points in

the method. In other terms, the solution it infers is su
h that a given register

has the same type throughout the method. For similar reasons, it also requires

that the sta
k be empty at ea
h bran
h instru
tion and at ea
h bran
h target

instru
tion. With these extra restri
tions, byte
ode veri�
ation 
an be done in

spa
e O(M

sta
k

+M

reg

), instead of O(N

bran
h

� (M

sta
k

+M

reg

)) for Sun's algo-

rithm, where N

bran
h

is the number of bran
h targets. In pra
ti
e, the memory

requirements are small enough that all data stru
tures 
omfortably �t in RAM

on a smart 
ard.

One drawba
k of this approa
h is that register initialization 
an no longer be


he
ked stati
ally, and must be repla
ed by run-time initialization of registers

to safe values (0 or null) on method entran
e. Another drawba
k is that the

extra restri
tions imposed by the on-
ard veri�er 
ause perfe
tly legal byte
ode

(that passes Sun's veri�er) to be reje
ted. To address the latter issue, we rely

on an o�-
ard transformation, performed on the byte
ode of the applet, that

transforms any legal byte
ode (that passes Sun's veri�er) into equivalent byte-


ode that passes the on-
ard veri�er. The o�-
ard transformations in
lude sta
k

normalizations around bran
hes and register reallo
ation by graph 
oloring, and

in
rease the size of the 
ode by less than 2% [13℄.

8 Con
lusions and perspe
tives

Java byte
ode veri�
ation is now a well resear
hed te
hnique, although it is still

de�ned only by Sun's referen
e implementation: all the formal works reviewed

in this paper have not yet resulted in a 
omplete formal spe
i�
ation of what it

is and what it guarantees.

A largely open question is whether byte
ode veri�
ation 
an go beyond basi


type safety and initialization properties, and stati
ally establish more advan
ed

properties of applets, su
h as resour
e usage (bounding the amount of memory

allo
ated) and rea
tiveness (bounding the running time of an applet between

two intera
tions with the outside world). Controlling resour
e usage is espe
ially



important for Java Card applets: sin
e Java Card does not guarantee the presen
e

of a garbage 
olle
tor, applets are supposed to allo
ate all the obje
ts they need

at installation time, then run in 
onstant spa
e.

Other properties of interest in
lude a

ess 
ontrol and information 
ow. Cur-

rently, the Java se
urity manager performs all a

ess 
ontrol 
he
ks dynami
ally.

Various stati
 analyses and program transformations have been proposed to per-

form some of these 
he
ks stati
ally [35, 23℄. As for information 
ow (an applet

does not \leak" 
on�dential information that it 
an a

ess), this property is

essentially impossible to 
he
k dynami
ally; several type systems have been pro-

posed to enfor
e it stati
ally [34, 33, 11, 1℄.

Finally, the se
urity of the sandbox model relies not only on byte
ode veri-

�
ation, but also on the proper implementation of the API given to the applet.

The majority of known applet-based atta
ks exploit (in a type-safe way) bugs

in the API, rather than breaking type safety through bugs in the veri�er. Veri�-


ation of the API is a promising and largely open area of appli
ation for formal

methods [14, 12℄.
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