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Type-based analysis of uncaught exceptions

François Pessaux Xavier Leroy
INRIA Rocquencourt∗

Abstract

This paper presents a program analysis to estimate un-
caught exceptions in ML programs. This analysis relies
on unification-based type inference in a non-standard
type system, using rows to approximate both the flow of
escaping exceptions (a la effect systems) and the flow of
result values (a la control-flow analyses). The resulting
analysis is efficient and precise; in particular, arguments
carried by exceptions are accurately handled.

1 Introduction

Many modern programming languages such as Ada,
Modula-3, ML and Java provide built-in support for
exceptions: raising an exception at some program point
transfers control to the nearest handler for that exception
found in the dynamic call stack. Exceptions provide
safe and flexible error handling in applications: if an
exception is not explicitly handled in a function by the
programmer, it is automatically propagated upwards in
the call graph until a function that “knows” how to deal
with the exception is found. If no handler is provided for
the exception, program execution is immediately aborted,
thus pinpointing the unexpected condition during testing.
This stands in sharp contrast with the traditional C-style
reporting of error conditions as “impossible” return values
(such as null pointers or the integer −1): in this approach,
the programmer must write significant amount of code to
propagate error conditions upwards; moreover, it is very
easy to ignore an error condition altogether, often causing
the program to crash much later, or even complete but
produce incorrect results.

The downside of using exceptions for error reporting and
as a general non-local control structure is that it is very easy
to forget to catch an exception at the right place, i.e. to han-
dle an error condition. ML compilers generate no errors or
warnings in this case, and the programming mistake will
only show up during testing. Exhaustive testing of appli-
cations is difficult, and even more so in the case of error
conditions that are infrequent or hard to reproduce. Our
experience with large ML applications is that uncaught ex-
ceptions are the most frequent mode of failure.
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To address this issue, languages such as Modula-3 and
Java require the programmer to declare, for each function
or method, the set of exceptions that may escape out of
it. Those declarations are then checked statically during
type-checking by a simple intraprocedural analysis. This
forces programmers to be conscious of the flow of exceptions
through their programs.

Declaring escaping exceptions in functions and method
signatures works well in first-order, monomorphic programs,
but is not adequate for the kind of higher-order, polymor-
phic programming that ML promotes. Consider the map it-
erator on lists. In Modula-3 or Java, the programmer must
declare a set E of exceptions that the function argument to
map may raise; map, then, may raise the same exceptions E.
But E is fixed arbitrarily, thus preventing map from being
applied to functions that raise exceptions not in E. The
genericity of map can be restored by taking for E the set
of all possible exceptions, but then the precision of the ex-
ception analysis is dramatically decreased: all invocations of
map are then considered as potentially raising any exception.
(Similar problems arise in highly object-oriented Java pro-
grams using e.g. container classes and iterators intensively.)
To deal properly with higher-order functions, a very rich
language for exception declarations is required, including at
least exception polymorphism (variables ranging over sets
of exceptions) and arbitrary unions of exception sets. (See
section 2 for a more detailed discussion.) We believe that
such a complex language for declaring escaping exceptions
is beyond what programmers are willing to put up with.

The alternative that we follow in this paper is to infer
escaping exceptions from unannotated ML source code. In
other terms, we view the problem of detecting potentially
uncaught exceptions as a static debugging problem, where
static analyses are applied to the programs not to make them
faster via better code generation, but to make them safer by
pinpointing possible run-time failures. This approach has
several advantages with respect to the Modula-3/Java ap-
proach: it blends better with ML’s type inference; it does
not change the language and supports the static debugging
of “legacy” applications; it allows the use of complex approx-
imations of exception sets, as those need not be written by
the programmer (within reason – the results of the analysis
must still be understandable to the programmer). Finally,
the exception inference needs not be fully compatible with
the ML module system: a whole program analysis can be
considered (again within reason – analysis time should re-
main practical).

Several exception analyses for ML have been proposed
[8, 36, 35, 3, 4], some based on effect systems, some on
control-flow analyses, some on combinations of both (see
section 6 for a detailed discussion). The analysis presented
in this paper attempts to combine the efficiency of effect sys-
tems with the precision of flow analyses. It is based on unifi-
cation and non-standard type inference algorithms that have
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excellent running time and we hope should scale well to large
applications. At the same time, our analysis is still fairly
precise; in particular, it approximates not only the names of
the escaping exceptions, but also the arguments they carry –
a feature that is essential to analyze precisely many existing
ML programs. This constitutes the main technical contribu-
tion of this paper: integrate in the same unification-based
framework both approximation of exception effects in the
style of effect systems [28], and approximation of sets of val-
ues computed at each program point in the style of flow
analyses and soft typing [26, 32]. Finally, our analysis has
been implemented to cover the whole Objective Caml lan-
guage – not only core ML, but also datatypes, objects, and
the module system. We present some preliminary experi-
mental results obtained with our implementation.

The remainder of this paper is organized as follows. Sec-
tion 2 lists the main requirements for an ML exception anal-
ysis. Section 3 presents the non-standard type system we use
for exception analysis. Extension to the full Objective Caml
language is discussed in section 4; experimental results ob-
tained with our implementation, in section 5; and related
work, in section 6. Concluding remarks can be found in
section 7.

2 Design requirements

In this section, we list the main requirements for an ef-
fective exception analysis for ML, and show that they go
much beyond what can be expressed by exception declara-
tions in Modula-3 or Java. Existing exception analyses have
addressed some of these requirements, but none addresses
all.

2.1 Handling higher-order functions precisely

The exception behavior of higher-order functions depends
on the exceptions that can be raised by their functional ar-
guments. A form of polymorphism over escaping exceptions
is thus needed to analyze higher-order functions precisely.
Consider the map iterator over lists mentioned in introduc-
tion. An application map f l may raise whatever exception

the f argument may raise. Writing τ
ϕ→ τ ′ for the anno-

tated type of functions from type τ to type τ ′ whose set of
potentially escaping exception is ϕ, the behavior of map is
captured by the following annotated type scheme:

map : ∀α, β, ϕ. (α
ϕ→ β)

∅→ (α list
ϕ→ β list)

where α, β range over types and ϕ ranges over sets of excep-
tions. In general, the escaping exceptions for a higher-order
function are combinations ϕ1∪ . . .∪ϕn∪{C1; . . . ;Cn} where
the ϕi are variables representing the escaping exceptions for
functional arguments and the Cj are exception constants.
For instance, we have the following annotated type for func-
tion composition λf.λg.λx.f(g(x)):

∀α, β, γ, ϕ, ψ. (α
ϕ→ β)

∅→ (γ
ψ→ α)

∅→ γ
ϕ∪ψ
−→ β

Given the frequent use of higher-order functions in ML pro-
grams, an exception analysis for ML must handle them with
precision similar to what the annotated types above suggest.

Similar issues arise when functions are stored into data
structures such as lists or hash tables (as in callback tables
for instance). The exception analysis should keep track of
the union of the exceptions that can be raised by functions
contained in the structure. It is not acceptable to say that

any exception can be raised by applying a function retrieved
from the structure.

2.2 Handling exceptions as first-class values

In ML and Java, exceptions are first-class values: exception
values can be built in advance and passed through functions
before being raised. Consider for instance the following con-
trived example:

let test = λexn. try raise(exn) with E → 0

The exception behavior of this function is that test exn
raises the exception contained in the argument exn, except
when exn is actually the exception E, in which case no ex-
ception escapes out of test. We seek exception analyses
precise enough to capture this behavior.

It is true that the first-class character of exception val-
ues is rarely, if ever, used in actual ML programs. However,
there is one important idiom where an exception value ap-
pears: finalization. Consider:

let f = λx. try g(x)
with E → 0

| exn → finalization code; raise(exn)

Assuming g can raise exceptions E and E’, the exception
analyzer should recognize that the exn exception variable
can only take the value E’, thus the raise(exn) that re-
raises the exception after finalization can only raise E’, and
so does the function f itself.

2.3 Keeping track of exception arguments

ML exceptions can optionally carry arguments, just like all
other data type constructors. This argument can be tested
in the with part of an exception handler, using pattern-
matching on the exception value, so that only certain ex-
ceptions with certain arguments are caught. Consider the
following example:

exception Failure of string
let f = λx. if ... then ... else raise(Failure "f")
let g = λx. try f(x) with Failure "f" → 0

An exception analysis that only keeps track of the exception
head constructors (i.e. Failure above) but not of their argu-
ments (i.e. the string "f" above) fails to analyze this example
with sufficient precision: the analysis records that function
f may raise the Failure exception, hence it considers that
the application f(x) in g may raise Failure with any argu-
ment. Since the exception handler traps only Failure "f",
the analyzer concludes that g may raise Failure, while in
reality no exception can escape g.

This lack of precision can be brushed aside as “unimpor-
tant” and “bad programming style anyway”. Indeed, the
programmer should have declared a specific constant excep-
tion Failure_f to report the error in f, rather than rely
on the general-purpose Failure exception. However, code
fragments similar to the example above appear in legacy
Caml applications that we would like to analyze. More im-
portantly, there are also legitimate uses of exceptions with
parameters. For instance, the Caml interface to Unix sys-
tem calls uses the following scheme to report Unix error
conditions:

type unix_error = EACCES | ENOENT | ENOSPC | ...
(* enumerated type with 67 constructors

representing Unix error codes *)
exception Unix_error of unix_error
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This allows user code to trap all Unix errors at once
(try ... with Unix_error(_) -> ...), and also to trap
particular errors (try ... with Unix_error(ENOENT) ->
...). Replacing Unix_error by 67 distinct exceptions, one
for each error code, would make the former very painful. It
is desirable that the exception analysis be able to show that
certain Unix_error exceptions with arguments representing
common errors (e.g. Unix_error(ENOENT), “no such file”)
are handled in the program and thus do not escape, while we
can accept that other Unix_error exceptions representing
rare errors are not handled in the program and may escape.

The problem with exception arguments is made worse
by the availability (in the Caml standard library at least)
of predefined functions to raise general-purpose exceptions
such as Failure above. Indeed, the example with Failure
above is more likely to appear under the following form:

exception Failure of string
let failwith = λmsg. raise(Failure msg)
let f = λx. if ... then ... else failwith("f")
let g = λx. try f(x) with Failure "f" → 0

Precise exception analysis in this example requires tracking
the string constant "f" not only when it appears as imme-
diate argument to the Failure exception constructor, but
also when it is passed to the function failwith. Hence the
exception analysis must also include some amount of data
flow analysis, not limited to exception values.

2.4 Running faster than control-flow analyses

All the requirements we have listed so far point towards
control-flow analyses in the style of Shiver’s k-CFA [26] or
Heintze’s SBA [9]. Control-flow analyses provide an approx-
imation of the set of values that can flow to each program
point. It is entirely straightforward to extend them to ap-
proximate also the set of escaping exceptions at each pro-
gram point at the same time as they approximate the set
of result values. Alternatively, the exception analysis can
be run as a second pass of dataflow analysis exploiting the
results of control-flow analysis [35], although this results in
some loss of precision, as the control flow can be determined
more accurately if exception information is available. This
exception analysis benefits from the relatively precise ap-
proximation of values provided by the control-flow analysis,
especially as far as exception arguments are concerned.

Our first implementation of an exception analyzer for
Objective Caml was indeed based on control-flow analysis:
0-CFA initially, then Jagannathan and Wright’s “polymor-
phic splitting” [12]. Our practical experience with this ap-
proach was mixed: the precision of the exception analysis
was satisfactory (at least with polymorphic splitting), but
the speed of the analysis left a lot to be desired. In partic-
ular, we observed quadratic behavior on several examples,
indicating that the analysis would not scale easily to large
programs1. Although sophisticated techniques have been
developed to speed up program analyses based of set inclu-
sion constraints such as CFA and SBA [2, 6, 5, 19], it is
still an open problem whether those analyses can scale to
100,000-line programs.

1The complexity of 0-CFA alone is O(n3), where n is the size of the
whole program. We did not observe cubic behavior on our tests, how-
ever. Quadratic behavior arises in the following not uncommon case:
assume that a group of functions of size k = O(n) recurses over a list
of m = O(n) elements given in extension in the program source. At
least m iteration of the analysis is required before fixpoint is reached
on the parameters and results of the functions. Since each iteration
takes time proportional to k, the time of the analysis is O(n2).

For these reasons, we decided to abandon analyses based
on CFA or more generally set inclusion constraints, and set-
tled for less precise but faster analyses based on equality
constraints and unification.

3 A type system for exception analysis

In the style of effect systems [16, 28], our exception anal-
ysis is presented as a type inference algorithm for a non-
standard type system. The type system uses unified mecha-
nisms based on row variables both to keep track of the effects
(sets of escaping exceptions) of expressions and to refine the
usual ML types by more precise information about the pos-
sible values of expressions. In this section, we present first
the typing rules for our type system (that is, the specifica-
tions for the exception analysis), then type inference issues
(the actual analysis).

3.1 The source language

The source language we consider in this paper is a simple
subset of ML with integers and exceptions as the only data
types, the ability to raise and handle exceptions, and sim-
plified pattern-matching.

Terms:
a ::= x identifier
| i integer constant
| λx. a application
| a1(a2) abstraction
| let x = a1 in a2 the let binding
| match a1 with p→ a2 | x→ a3 pattern-matching
| C | D(a) exception constr.
| try a1 with x→ a2 exception handler

Patterns:
p ::= x variable pattern
| i | C constant patterns
| D(p) constructed pattern

The match a1 with p → a2 | x → a3 performs pattern-
matching on the value of a1; if it matches the pattern p, the
branch a2 is evaluated; otherwise, a3 is evaluated. Multi-
case pattern matchings can be expressed by cascading match
expressions. The try a1 with x → a2 construct evalu-
ates a1; if an exception is raised, its value is bound to x
and a2 is evaluated. There is no syntactic form for rais-
ing an exception; instead, we assume predefined a raise
function in the environment. The try construct catches all
exceptions; catching only a given exception C is performed
by:

try a1 with x→ match x with C → a2 | y → raise(y)

The dynamic semantics for this language is given by the
reduction rules in figure 1, in the style of [33]. Values, eval-
uation contexts, and evaluation results are defined as:

Values:
v ::= i | C | D(v) | λx.a | raise

Evaluation contexts:
Γ ::= [ ] | Γ(a) | v(Γ) | D(Γ)
| let x = Γ in a
| match Γ with p→ a2 | x→ a3

| try Γ with x→ a
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(λx.a)(v) ⇒ a{x← v}
let x = v in a ⇒ a{x← v}

match v with p→ a2 | x→ a3 ⇒ σ(a2) if σ = M(v, p) is defined

match v with p→ a2 | x→ a3 ⇒ a3{x← v} if M(v, p) is undefined

try v with x→ a2 ⇒ v

(raise v)(a) ⇒ raise v

(λx.a)(raise v) ⇒ raise v

D(raise v) ⇒ raise v

let x = raise v in a ⇒ raise v

match raise v with p→ a2 | x→ a3 ⇒ raise v

try raise v with x→ a2 ⇒ a2{x← v}

Γ[a] ⇒ Γ[a′] if a⇒ a′

The pattern-matching function M(v, p):

M(v, x) = {x← v} M(i, i) = id M(C,C) = id M(D(v), D(p)) = M(v, p)

Figure 1: Reduction rules

Evaluation results:
r ::= v | raise v

A result of v indicates normal termination with return
value v; a result of raise v indicates an uncaught excep-
tion v.

3.2 The type algebra

The type system uses the following type algebra:

Type expressions:
τ ::= α type variable
| int[ϕ] integer type
| exn[ϕ] exception type

| τ1
ϕ→ τ2 function type

Type schemes:
σ ::= ∀αi, ρj , δk.τ

Rows:
ϕ ::= ρ row variable
| > all possible elements
| ε;ϕ the element ε plus whatever is in ϕ

Row elements:
ε ::= i :π integer constant
| C :π constant exception
| D(τ) parameterized exception

Presence annotations:
π ::= Pre element is present
| δ presence variable

As in effect systems, our function types τ1
ϕ→ τ2 are an-

notated by the latent effect ϕ of the function, that is, the
set of exceptions that may be raised during application of
the function. In addition, the base types exn[ϕ] and int[ϕ]
are also annotated by sets of exceptions and integers re-
spectively. Those sets refine the ML types exn and int by
restricting the values that an expression of type exn[ϕ] or
int[ϕ] can have.

Sets of exceptions or integers are represented by rows
similar to those used for typing extensible records [31, 22,
24]. A row is either >, meaning that all values of the type
are possible (we do not have any more precise information),
or a sequence of row elements ε1 . . . εn terminated by a row
variable ρ. We impose the following equational theory on
rows to express that the order of elements in a row does not
matter (equation 1), and that > is absorbing (equation 2):

ε1; ε2; ϕ = ε2; ε1; ϕ (1)

i : Pre; > = > (2)

The absorption equation 2 applies only to integer row ele-
ments because we intend > to be used only in rows anno-
tating the int type. (The kinding rules below enforce this
invariant.) A > symbol is required for base types such as
int, which have an infinite (or at least very large) signature.
It is not required for datatypes such as exn, which have a
finite signature: a row enumerating all possible constructors
can be used instead (this is discussed in section 4.1.4 below).
Moreover, combining > and rows containing parameterized
constructors raises technical problems2; we prefer to avoid
the difficulty by restricting > to rows containing only integer
elements.

Rows and row variables support both polymorphism over
sets and a form of set union in a unification framework. For
instance, the two rows ε1; ρ1 and ε2; ρ2, which informally
represent the sets {ε1} and {ε2} respectively, unify into the
row ε1; ε2; ρ representing the set {ε1; ε2} via the substitution
{ρ1 ← (ε2; ρ); ρ2 ← (ε1; ρ)}.

A row element ε is either an integer constant i, a con-
stant exception constructor C, or a parameterized exception
constructor D(τ) carrying the annotated type τ of its argu-
ment. To maintain crucial kinding invariants (see below),

2The obvious absorption equation D(τ); > = > is unsound, as
it allows deductions such as D(α);> = > = D(β);>, which lead
to inconsistent typings. If ML had subtyping and a supertype > of
all types, a correct equation would be D(>); > = >. This equation
allows > to absorb any D(τ) (because D(τ);> <: D(>);> = >), but
only allows expansion of > into D(>); >, meaning correctly that no
information is available on the argument of D.
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` ρ :: K(ρ) ` > :: INT(S)
i /∈ S ` ϕ :: INT(S ∪ {i})
` (i :π; ϕ) :: INT(S)

C /∈ S ` ϕ :: EXN(S ∪ {C})
` (C :π; ϕ) :: EXN(S)

D /∈ S ` ϕ :: EXN(S ∪ {D}) ` τ wf

` (D(τ); ϕ) :: EXN(S)

` α wf
` ϕ :: INT(∅)
` int[ϕ] wf

` ϕ :: EXN(∅)
` exn[ϕ] wf

` τ1 wf ` ϕ :: EXN(∅) ` τ2 wf

` τ1
ϕ→ τ2 wf

Figure 2: Kinding rules

the constant row elements (i and C) also carry a presence
annotation, written π. A presence annotation can be either
Pre, meaning that the element is present in the set denoted
by the row expression; or a presence variable δ meaning that
the element is actually not present in the set denoted by the
row expression, but may be considered as present in order
to satisfy unification constraints.

Examples: The type int[>] denotes all integer values. The
type of integer addition is

∀ρ1, ρ2, ρ3, ρ4. int[ρ1]
ρ2→ int[ρ3]

ρ4→ int[>]

(no effects, no information known on the return value).

The type scheme ∀ρ. int[1 : Pre; 2 : Pre; ρ] stands for the
set {1; 2} and is the type of integer expressions that can
only evaluate to 1 or to 2. A universally quantified row
variable ρ that occurs only positively in a type should be
read as denoting the empty set of elements, for the same
reasons that ∀α.α denotes an empty set of values.

The type scheme ∀ρ, δ. int[1 : δ; 2 : Pre; ρ] stands for the
set {2}. Although 1 is mentioned in the row, it should not be
considered present in the set, since its presence annotation δ
is universally quantified and occurs only positively.

The type scheme ∀ρ, ρ′. exn[D(int[3 : Pre; 4 : Pre; ρ]); ρ′]
stands for the set of exceptions {D(3);D(4)}.

The raise predefined function has the following type

scheme: ∀α, ρ. exn[ρ]
ρ→ α. It expresses that an application

of raise never returns and raises exactly the exceptions that
it receives as argument.

Kinding of rows: To simplify the formulation of the typing
rules and to ensure the existence of principal unifiers and
principal typings, we require the following four structural
invariants on rows:

1. A given integer constant or exception constructor
should occur at most once in a row (for instance,
(D(τ); D(τ ′); ϕ) is not well-formed).

2. A row variable ρ is preceded by the same set of integer
constants and exception constructors in all row expres-
sions where it occurs (for instance, we cannot have
both (1 : Pre; ρ) and (2 : Pre; ρ) in the same deriva-
tion).

3. A row ϕ annotating an integer type int[ϕ] can only
contain integer elements i.

4. A row ϕ annotating an exception type exn[ϕ] or a func-

tion type τ1
ϕ→ τ2 can only contain constant or param-

eterized constructors C, D and must not end with >.

Invariants (1) and (2) are well known from earlier work on
record types [24]. Invariants (3) and (4) are more unusual.
They ensure a clear separation between annotations of int
types (composed of integer elements and possibly >) and
annotations of the exn types (composed of constructors and
no >). Since > absorbs only integer elements (equation 2),
we do not want it to occur in rows containing exception
constructors C, D.

Following [24, 18], we use kinds to enforce the invariants
above. Our kinds κ are composed of a tag (either INT or
EXN) and a set of constants and constructors:

κ ::= INT({i1, . . . , in}) | EXN({C1, . . . , Cp, D1, . . . , Dq})

The constants and constructors appearing in the set part of
a kind are those constants and constructors that must not
appear in rows of that kind (because they already appear
in elements concatenated before those rows). We assume
given a global mapping K assigning kinds to row variables,
and such that for each κ there are infinitely many variables
of that kind (i.e. K−1(κ) is infinite). The kinding rules are
shown in figure 2. They define the two judgements ` ϕ :: κ
(row ϕ has kind κ) and ` τ wf (type τ is well-formed).

3.3 The typing rules

Figure 3 shows the typing rules for our system. They define
the judgement E ` a : τ/ϕ, where E is the typing environ-
ment, a the term to type, τ the type of values that a may
evaluate to, and ϕ the set of exceptions that may escape dur-
ing the evaluation of a. All types appearing in the rules are
assumed to be well-kinded. We assume that typing starts in

the initial environment E0 = {raise : ∀α, ρ. exn[ρ]
ρ→ α}.

The rules for variables and let bindings (rules 1 and 5)
are standard, except that we generalize over all three kinds
of type variables. For variables as well as other language
constructs that never raise exceptions (rules 1, 2, 3, 7), the ϕ
component of the result is unconstrained and can be chosen
as needed to satisfy equality constraints in the remainder of
the typing derivation.

The rules for function abstraction and application
(rules 3 and 4) are the usual rules for effect systems. For
abstraction, the effect of the function body becomes the
latent effect of the function type. For application a1(a2),
we require that the same set ϕ of exceptions occurs as effect
of a1, latent effect of the function denoted by a1, and effect
of a2. This corresponds in our unification setting to taking
the union of those three effects.
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Typing of expressions:

τ ≤ E(x)

E ` x : τ
(1)

` ϕ′ :: INT({i}) ` ϕ :: EXN(∅)

E ` i : int[i : Pre; ϕ′]/ϕ
(2)

` τ1 wf E ⊕ {x : τ1} ` a : τ2/ϕ
′ ` ϕ :: EXN(∅)

E ` λx. a : (τ1
ϕ′→ τ2)/ϕ

(3)

E ` a1 : (τ ′
ϕ→ τ)/ϕ E ` a2 : τ ′/ϕ

E ` a1(a2) : τ/ϕ
(4)

E ` a1 : τ1/ϕ E ⊕ {x : Gen(τ1, E, ϕ)} ` a2 : τ/ϕ

E ` let x = a1 in a2 : τ/ϕ
(5)

E ` a1 : τ1/ϕ ` p : τ1 ⇒ E′ ` τ1 − p ; τ2 E ⊕ E′ ` a2 : τ/ϕ E ⊕ {x : τ2} ` a3 : τ/ϕ

E ` match a1 with p→ a2 | x→ a3 : τ/ϕ
(6)

` ϕ′ :: EXN({C}) ` ϕ :: EXN(∅)

E ` C : exn[C : Pre; ϕ′]/ϕ
(7)

τ ≤ TypeArg(D) E ` a : τ/ϕ ` ϕ′ :: EXN({D}) ` ϕ :: EXN(∅)

E ` D(a) : exn[D(τ); ϕ′]/ϕ
(8)

E ` a1 : τ/ϕ′ E ⊕ {x : exn[ϕ′]} ` a2 : τ/ϕ

E ` try a1 with x→ a2 : τ/ϕ
(9)

Typing of patterns:

` x : τ ⇒ {x : τ} (10) ` i : int[i : Pre;ϕ]⇒ {} (11) ` C : exn[C : Pre;ϕ]⇒ {} (12)

τ ≤ TypeArg(D) ` p : τ ⇒ E

` D(p) : exn[D(τ);ϕ]⇒ E
(13)

Pattern subtraction:

` τ ′ wf

` τ − x ; τ ′
(14) ` int[i : Pre;ϕ]− i ; int[i :π;ϕ] (15) ` exn[C : Pre;ϕ]− C ; exn[C :π;ϕ] (16)

` τ − p ; τ ′

` exn[D(τ);ϕ]−D(p) ; exn[D(τ ′);ϕ]
(17)

Instantiation and generalization:

τ ′ ≤ ∀αiρjδk. τ iff there exists τi, ϕj , πk such that τ ′ = τ{αi ← τi, ρj ← ϕj , δk ← πk} and ` τi wf and ` ϕj :: K(ρj).

Gen(τ, E, ϕ) is ∀αiρjδk. τ where {αi, ρj , δk, } = FV (τ) \ (FV (E) ∪ FV (ϕ)).

Figure 3: The typing rules

For integer constants and exception constructors (rules 2,
7 and 8), we record the actual value of the expression in the
approximation part of the type int or exn. For instance, the
type of i must be of the form int[i : Pre;ϕ], forcing i : Pre to
appear in the type of the expression. In rules 8 and 13, we
write TypeArg(D) for the type scheme of the argument of
constructor D, e.g. TypeArg(D) = ∀ρ. int[ρ] for an integer-
valued exception D.

For an exception handler try a1 with x → a2 (rule 9),
the effect ϕ1 of a1 is injected in the type exn[ϕ1] assumed
for x in a2.

The most interesting rule is rule 6 for the match con-
struct. This rule is crucial to the precision of our exception
analysis. When typing match a1 with p→ a2 | x→ a3, we
want to reflect the fact that the second alternative (x→ a3)
is selected only when the first alternative (p→ a2) does not
match the value of a1. In other terms, the type of values
that can “flow” to x in the second alternative is not the type
of the matched value a1, but the type of a1 from which we
have excluded all values matching the pattern p in the first
alternative.

To achieve this, rules 14–17 define the pattern subtrac-
tion predicate ` τ − p ; τ ′, meaning that τ ′ is a correct

type for the values of type τ that do not match pattern p.
For a variable pattern p = x (rule 14), all values match the
pattern, so it is correct to assume any τ ′ for the type of the
non-matched values. For an integer pattern p = i (rule 15),
we force τ to unify with int[i : Pre;ϕ], thus exposing in ϕ
the set of all possible values of type τ that are different
from i. Then, we take τ ′ = int[i :π;ϕ] for a suitable π. In
particular, if that π is unconstrained in the remainder of the
derivation, we can take π to be a fresh presence variable δ,
thus reflecting that i is not among the possible values of
type τ ′. The rules for exception patterns (rules 16 and 17)
are similar. If the exception has an argument, instead of
changing a presence annotation, we recursively subtract in
the type of the argument of the exception.

It is easy to see that the typing rules preserve the kinding
invariants: if E is well-kinded and E ` a : τ/ϕ, then ` τ wf
and ` ϕ :: EXN(∅).

3.4 Examples of typings

We now show some typings derivable in our system. These
are principal typings identical to those found by our ex-
ception analyzer. Consider first a simple handler for one
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exception C:

try raise(C)
with x → match x with C → 1 | y → raise y

The effect of raise(C) is C : Pre; ρ. Hence, the type of x is
exn[C : Pre; ρ]. Subtracting the pattern C from this type, we
obtain the type exn[C : δ; ρ] for y. Hence the effect of the
whole match expression, and also of the whole try expres-
sion, is C : δ; ρ. The type is int[1 : Pre; ρ′]. Since δ, ρ and ρ′

are generalizable and occur only positively, we have estab-
lished that no exception escapes the expression, and that it
can only evaluate to the integer 1.

We now extend the previous example along the lines of
the failwith example of section 2.3:

let failwith = λn. raise(D(n)) in
try failwith(42)
with x → match x with D(42) → 0 | y → raise y

We obtain the following intermediate typings:

failwith : ∀α, ρ1, ρ2. int[ρ1]
D(int[ρ1]);ρ2
−−−−−−−→ α

x : exn[D(int[42 : Pre; ρ3]); ρ4]

y : exn[D(int[42 : δ; ρ3]); ρ4]

Thus we conclude as before that no exception escapes this
expression.

For a representative example of higher-order functions,
consider function composition:

let compose = λf. λg. λx. f(g(x)) in
compose (λy. 0) (λz. raise(C)) 1

The type scheme for compose is ∀α, β, γ, ρ, ρ1, ρ2. (α
ρ→

β)
ρ1→ (γ

ρ→ α)
ρ2→ γ

ρ→ β. The three occurrences of ρ
express the union of the effects of f and g. The application
of compose above has effect C : Pre; ρ3.

Concerning exceptions as first-class values, the first ex-
ample from section 2.2 becomes:

let test =
λexn. try raise(exn)

with x → match x with C → 1
| y → raise(y)

in test(C)

The type scheme for test is ∀ρ, ρ′, δ. exn[C : Pre; ρ]
C : δ; ρ

−−→
int[1 : Pre; ρ′], expressing that the function raises whatever
exception it receives as argument, except C. The application
test(C) has thus type int[1 : Pre; ρ1] and effect C : δ2; ρ2.
Hence no exception escapes. The application test C’ where
C’ is another exception distinct from C would have effect
C : δ3; C′ : Pre; ρ3, thus showing that C’ may escape.

Finally, here is an (anecdotal) example that is ill-typed
in ML, but well-typed in our type system due to the refined
typing of pattern-matching:

match 1 with x -> x | e -> raise e

Since the first case of the matching is a catch-all, rule 6 lets
us assign the type exn[ρ′] for a fresh ρ′ to the variable e
bound by the second case, even though the matched value
is an integer. Hence the expression is well-typed, and more-
over we obtain that it has type int[1 : Pre; ρ] and raises no
exceptions (its effect is ρ′ for any ρ′).

3.5 Type soundness and correctness of the exception
analysis

We now establish the correctness of our exception analysis:
all uncaught exceptions are predicted by our effect system.
This property is closely connected to the type soundness of
our system.

Theorem 1 (Subject reduction) Reduction preserves
typing: if E0 ` a : τ/ϕ and a⇒ a′, then E0 ` a′ : τ/ϕ

The proof of subject reduction is mostly standard and
follows [33] closely. Detailed proofs of the statements in this
paper can be found in the technical report [14]. A key lemma
is the following property of pattern subtraction:

Lemma 2 (Correctness of subtraction) If E0 ` v :
τ/ϕ and M(v, p) is undefined (v does not match pattern p)
and ` τ − p ; τ ′, then E0 ` v : τ ′/ϕ.

The correctness of our exception analysis (all uncaught
exceptions are detected) is a simple corollary of subject re-
duction:

Theorem 3 (Correctness of exception analysis)
Let a be a complete program. Assume E0 ` a : τ/ϕ and

a
∗⇒ raise v. Then, either v = C and ϕ = C : Pre; ϕ′

for some C and ϕ′, or v = D(v′) and ϕ = D(τ ′);ϕ′ and
E0 ` v′ : τ ′/ϕ for some D, v′, τ ′, ϕ′. In either case, the
uncaught exception v is correctly predicted in the effect ϕ.

Type soundness for our non-standard type system fol-
lows from the subject reduction property and the following
lemma showing that well-typed expressions either reduce to
a value or to an uncaught exception, or loop, but never get
“stuck”.

Lemma 4 (Progress) If E0 ` a : τ/ϕ, then either a is
a value v, or a is an uncaught exception raise v, or there
exists a′ such that a⇒ a′.

3.6 Principal types and inference of types and exceptions

Just like the ML type system, our type system admits prin-
cipal types, which can be computed by a simple extension
of Milner’s algorithm W , thus implementing the exception
analysis.

Theorem 5 (Principal unifiers) The set of well-kinded
types modulo equations (1) and (2) admits principal uni-
fiers. More precisely, there exists an algorithm mgu that, for
all system Q of well-kinded equations between types, either
returns a substitution µ that is a principal solution of Q, or
fails, meaning that Q has no solution. Moreover, the sub-
stitution µ preserves kinds in the following sense: for all α,
` µ(α) wf and for all ρ, ` µ(ρ) :: K(ρ).

In the theorem above, systems of well-kinded equations
are sets Q = {τi = τ ′i ;ϕj = ϕ′j ;πl = π′l} of equations be-
tween types, rows, row elements, and presence annotations
such that for all i, ` τi wf and ` τ ′i wf, and for all j, there
exists a kind κj such that ϕj :: κj and ϕ′j :: κj .

The existence of principal unifiers follows from the fact
that our equational theory is syntactic and regular [23]. The
algorithm mgu is given in appendix A.

Theorem 6 (Principal types) There exists a type infer-
ence algorithm W satisfying the following conditions:
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• (Correctness) If E is well-kinded and (τ, ϕ, θ) =
W (E, a) is defined, then θ(E) ` a : τ/ϕ.

• (Completeness) If E is well-kinded and there exists
a kind-preserving substitution θ′ and types τ ′, ϕ′ such
that θ′(E) ` a : τ ′/ϕ′, then (τ, ϕ, θ) = W (E, a) is de-
fined and there exists a substitution ψ such that τ ′ =
ψ(τ) and ϕ′ = ψ(ϕ) and θ′(v) = ψ(θ(v)) for all type,
row or presence variable v not used as a fresh variable
by algorithm W .

The algorithm W is shown in appendix B.

4 Extension to the full Objective Caml language

In this section, we discuss the main issues in extending the
analysis presented in section 3 to deal with the whole Ob-
jective Caml language [15].

4.1 Datatypes

User-defined datatypes (sum types) can be approximated in
several different ways, depending on the desired trade-off
between precision and speed of the analysis. We have con-
sidered the four approaches listed below (from most precise
to least precise).

4.1.1 Full approximation of datatypes

The first approach applies to datatypes the same treatments
as for exceptions: we annotate the type by a row ϕ approx-
imating the possible values of that type, as constant con-
structors with presence annotations, and unary constructors
with types of arguments. Consider the source-level datatype
definition

type ~α t = C1 | . . . | Cn | D1 of µ1 | . . . | Dm of µm

where the µi are unannotated ML types. The propagation
of approximations is captured by the following type schemes
assigned to the constructors Ci and Di:

Ci : ∀~α, ρ′. ~α t[Ci : Pre; ρ′]

Di : ∀~α, ~ρ, ρ′, ρ′′. τi
ρ′′→ ~α t[Di(τi); ρ

′]

where τi is the annotated type obtained from µi by adding
distinct fresh row variables taken from ~ρ on every type con-
structor that carries a row annotation. For instance, given
the declaration

type intlist = Nil | Cons of int * intlist

we assign Nil and Cons the type schemes

Nil : ∀ρ. intlist[Nil : Pre; ρ]

Cons : ∀ρ1, ρ2, ρ3, ρ4. int[ρ1]× intlist[ρ2]
ρ3→

intlist[Cons(int[ρ1]× intlist[ρ2]); ρ4]

Recursive datatypes such as intlist above naturally lead
to recursive type expressions. Consider:

let tail =
λx. match x with Cons(hd,tl) → tl | l → l

During inference, tl and l receive types intlist[ρ1] and
intlist[Cons(int[ρ2] × intlist[ρ1]); ρ3] respectively. If
only finite type expressions are allowed, those two types
have no unifier and the program is rejected by the analysis.
This is not acceptable, so we extend our type system with
recursive (infinite, regular) type expressions. On the ex-
ample above, we obtain µα. intlist[Cons(int[ρ2]× α); ρ3].
The extension of our type system with recursive type
expressions involves replacing term unification by graph
unification in the type inference algorithm, but this causes
no technical difficulties.

4.1.2 “Looped” approximations for recursive datatypes

The approximation scheme described above has the unde-
sirable side-effect of recording in the type approximation
the whole structure of a data structure given in exten-
sion. If the data types involved are recursive, we may
end up with very large type approximations. Continu-
ing the intlist example above, consider the expression
`n = Cons(i1, Cons(i2, . . . , Cons(in, Nil) . . .)). With the
type of Cons given above, this expression is given an
annotated type that is of depth n and records not only
the fact that the list contains the integers i1 . . . in (an
information that might be useful to analyze exceptions),
but also the fact that the list has length n and that its
first element is i1, the second i2, etc. The latter piece of
information is, on practical examples, useless for analyzing
exceptions. Moreover, such large approximations slow down
the analysis.

A solution to this problem comes from the following re-
mark: as soon as one of those big data structures given in
extension is passed to a sufficiently complex function, its
big, unfolded annotated type is going to be unified with a
recursive type, forcing all the information in the big type to
be folded back into a smaller recursive type. For instance,
if we pass the list `n to the tail function shown above, the
type of the list will be unified into

τn = µα. intlist[Cons(int[i1 : Pre; . . . ; in : Pre; ρ1]× α);

Nil : Pre; ρ2]

The idea, then, is to force this folding into a recursive type
when the data structure is created, by giving recursive, pre-
folded types to the data type constructors. This is easily
achieved by unifying, in the type of the constructors, all
occurrences of the recursively-defined type in argument po-
sition with the occurrence of the recursively-defined type in
result position. For instance, in the case of the Cons con-
structor of type intlist, we start with the type

int[ρ1]× intlist[ρ2]
ρ3→

intlist[Cons(int[ρ1]× intlist[ρ2]); ρ4]

as in the previous section, then unify the two under-
lined intlist types, then generalize the free variables,

obtaining Cons : ∀ρ1, ρ3, ρ4. int[ρ1] × τ
ρ3→ τ where τ is

µα.intlist[Cons(int[ρ1]×α); ρ4]. With this type for Cons,
the list `n is given the reasonably compact type τn shown
above.

This technique of “looping” the types of constructors also
works for parameterized datatypes, as long as they are reg-
ular (the data type constructor is used with the same pa-
rameters in the argument types of the constructors). For
non-regular datatypes such as

type ’a nreg = Leaf of ’a | Node of ’a list nreg
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the unification of the occurrences of t in the type of Node
would render that constructor essentially useless. Fortu-
nately, such non-regular data types are extremely rare in
actual programs, so we can use full approximations for them
without impacting performance.

4.1.3 Adding row parameters to datatypes

An alternative to annotating datatype constructors with
rows is to add row parameters to the type constructor re-
flecting the row annotations on exn, int and function types
contained within the datatype. This technique is used by
Fähndrich et al [4]. For instance, the ML datatype defini-
tion

type t = A of int | B of exn | C of t | D of t

is turned into

type (ρ1, ρ2) t = A of int[ρ1] | B of exn[ρ2]
| C of (ρ1, ρ2) t | D of (ρ1, ρ2) t

Two parameters ρ1 and ρ2 were added in order to reflect in
the type t the possible values of types int and exn contained
in that type. The type t itself is not annotated by a row
recording which constructors A, B, C and D are present in
values of that type. The net effect is to forget the structure
of terms of type t, while correctly remembering the integers
and exception values contained in the structure.

In practice, this solution appears to be slightly less pre-
cise and slightly more efficient than full approximations of
non-recursive datatypes and looped approximations of re-
cursive datatypes: type expressions are smaller, but in the
case of t above, looped approximations can express the fact
that a value of type t lack one of the constructors C or D,
while this is not captured in the solution based on extra row
parameters.

On datatypes that are not annotated by a row, we can no
longer perform type subtraction during pattern-matching,
since we have no approximation on the structure of values
of that type. Hence, we simply consider that subtraction is
the identity relation on those datatypes.

4.1.4 Datatypes without any approximations

For maximal speed and minimal precision, we can put no
annotations at all on a datatype (neither a row approxima-
tion nor extra row parameters). This way, we forget not
only the structure of values of that type, but also the excep-
tions, functions and base values contained in that type. Of
course, this forces us to make very pessimistic assumptions
on values extracted from a datatype without approximation.
For instance, if we extract an integer by pattern-matching
on such a datatype, we must give it type int[>] since it can
really be any integer. This is reflected in the types of con-
structors by putting > annotations on all annotated types in
the constructor argument. In the intlist example above,
if we choose not to annotate intlist at all, we must give
its constructors the following types:

Nil : intlist

Cons : ∀ρ1. int[>]× intlist
ρ1→ intlist

This approach assumes that we have > annotations for
all types, while the type system from section 3 only has >
for type int. However, we can allow > to annotate other
base types such as float and string. For exceptions and
other datatypes, since there are finitely many constructors,

we can use a (potentially recursive) row enumerating all con-
structors of the datatype instead of a built-in constant >.
In the case of lists, for instance, we can use the following
“top row” Tlist(α, ρ):

Tlist(α, ρ) = µρ′. Nil : Pre; Cons(α× α list[ρ′]); ρ

The annotated type τ list[Tlist(τ, ρ)] correctly represents
any list of elements of type τ .

The “no approximation” approach described in this para-
graph may look excessively coarse, but is actually quite ef-
fective for datatypes that introduce no base types, exception
types, nor function types. Prominent examples are the built-
in ML types α list and α array, where the α parameter
already records all the information we need about list and
array elements. For instance, a list of functions from inte-

gers to booleans has type (int[ϕ1]
ϕ2→ bool[ϕ3]) list, where

ϕ2 denotes the union of the effects of all functions present
in the list. A function extracted from that list and applied
has effect ϕ2, and not any exception as one might naively
expect.

4.1.5 Choosing a datatype approximation

The choice between the four datatype analysis strategies
described above can be done on a per-datatype basis,
depending on the shape of the datatype definition. We
have considered several simple heuristics to perform this
choice. Our first prototype used full approximations for
non-parameterized datatypes, and no approximations for
parameterized datatypes. Our current prototype uses full
approximations for non-recursive or non-regular datatypes,
looped approximations for recursive datatypes, and no
approximations for built-in types without interesting
structure (arrays and floating-point numbers, for instance).
Another factor that we plan to integrate in the heuristic
is whether the datatype introduces any exception type,
function type, or base type likely to be an exception
argument (string and int, essentially); if not, we could
favor the “no approximation” approach.

4.2 Tuples and records

Tuple types are not approximated specially: each com-
ponent of the tuple type carries its own annotation. For
instance, int[1 : Pre; 2 : Pre; ρ] × int[3 : Pre; 4 : Pre; ρ′]
stands for the set of four pairs {1; 2} × {3; 4}. Pattern
subtraction on tuple types is not pointwise subtraction,
which would lead to incorrect results. Consider the
type int[1 : Pre; ρ] × int[2 : Pre; 3 : Pre; ρ′]. Subtracting
pointwise the pattern (1, 2) from this type would lead to
type int[1 : δ; ρ] × int[2 : δ′; 3 : Pre; ρ′], which is incorrect
since the value (1, 3) is no longer in the set. Therefore,
the current implementation perform no subtraction on
tuples: we take ` (τ1 × τ2) − (p1, p2) ; τ1 × τ2. For a
more refined behavior, we could perform subtraction on
one of the components if all other components are matched
against catch-all patterns. For instance, we could take
` (τ1 × τ2)− (p1, x2) ; τ ′1 × τ2 if ` τ1 − p1 ; τ ′1.

Unlike in SML, records in Caml are declared and
matched by name. We analyze them like datatypes, by
annotating the name of the record type by a row of a partic-
ular form. The row contains exactly one element recording
the annotated type of every field. Pattern subtraction for
record types behaves as in the case of tuples.

To summarize, the extended type algebra for datatypes,
tuples and records is as follows:
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Type expressions:
τ ::= . . .
| ~τ t[ϕ] approximated type constructor
| ~τ t non-approximated type constructor
| τ1 × . . .× τn tuple type

Row elements:
ε ::= . . . | {lbl1 : τ1; . . . ; lbln : τn}

4.3 Mutable data structures

Mutable data structures (references, arrays, records with
mutable fields) are trivially handled: it suffices to introduce
the standard value restriction on let-generalization [34].
This results in a precise approximation of mutable data. For

instance, an array of functions has type (τ1
ϕ→ τ2) array,

where ϕ is the union of the latent effects of all functions
stored in the array. In contrast, control-flow analyses would
lose track of which functions are stored in the array, and thus
also of the exceptions they may raise, unless supplemented
by a region (aliasing) analysis.

4.4 Objects and classes

Because our system already uses recursive types, OCaml-
style objects do not add significant complexity to our frame-
work. We just need to extend the type algebra with object
types, that is, polymorphic records of methods [21]. The
type of each method is annotated by its latent effect. No
extension to rows and row elements are needed. Since there
are no object patterns in pattern-matching, pattern subtrac-
tion needs not be modified.

The OCaml class language interferes very little with the
exception analysis. No significant modifications to the class
type-checker are needed.

4.5 Modules and functors

Structures are assigned annotated signatures containing an-
notated types for the value components. Type abbrevia-
tions are currently handled by systematic expansion of their
definitions3.

For matching a structure S against a signature Σ, there
are two possible semantics. The opaque semantics says that
the only things known about the restriction (S : Σ) is what
Σ publicizes. In our case, since user-provided signatures Σ
contain no annotations, this amounts to forgetting the result
of the analysis of S and assume > annotation on all value
components of the restricted structure. The transparent se-
mantics simply check that S matches Σ, but the restriction
(S : Σ) retains all information known about S. We imple-
mented the transparent semantics, as the opaque semantics
results in too much information loss. (The opaque semantics
also precludes choosing datatype annotations based on the
definition of the datatype.)

Similar problems arise with functors. All is known about
the parameter of a functor is its syntactic signature. Hence,
a naive analysis would assume > annotation on all compo-
nents of the functor argument. For better precision, one
could use techniques based on conjunctive types such as
[25]. Other issues with functors are still unclear, such as

3This might cause performance problems in conjunction with
OCaml objects, which relies intensively on type abbreviations to make
type expressions more manageable [21]. If this turns out to be a prob-
lem, we could also handle abbreviations by adding extra row parame-
ters to the type constructors, as described in [4] and in section 4.1.3.

the generativity of exception declaration in functor bodies,
and the impact of the “exception polymorphism” offered by
functors (a functor can take one or several exceptions as
arguments, and have a different exception behavior depend-
ing on whether those arguments are instantiated later with
identical or different exceptions).

For simplicity, we chose not to analyze functors when
they are defined, but instead expand the functor body at
each application and re-analyze the β-reduced body. Al-
though this transformation increases the size of the analyzed
source, the Caml programs we are interested in do not use
functors intensively and this simple approach to analyzing
functors works well in practice.

4.6 Separate analysis

Transparent signature matching precludes “true” separate
analysis (where any module can be analyzed separately
knowing only the syntactic signatures of the modules it
imports). We can still do “bottom-up” separate analysis,
however: a module can be analyzed separately provided the
implementations of its imports have been analyzed already,
and their annotated signatures inferred.

Since annotated signature for a module may contain free
row variables (e.g. if the module defines mutable structures),
separately analyzing several clients of that module may re-
sult in independent instantiations of those free variables.
Those instantiations are recorded in the result of the anal-
ysis of each module, and reconciled in a final “linking” pass
before displaying the results of the analysis.

4.7 Polymorphic recursion

Polymorphic recursion as introduced by Mycroft [17] is not
needed to type-check the source OCaml language, but is de-
sirable to enhance the precision of our exception analyzer.
With ML-style monomorphic recursion, we obtain false pos-
itives on functions that recursively call themselves inside a
try. . . with. Consider:

let rec f =
λx. try f(x) with C → () | y → raise y

The latent effect inferred for f is C; ρ because the effect of
f(x) is unified with the type of the pattern C at a time
where the type of f is not yet generalized. With polymorphic

recursion, we can assign f the type scheme ∀α, ρ. α ρ→ unit
both outside and inside the recursion; it is a fresh instance
of that type scheme that gets unified with the type of C, thus
not polluting the type scheme of f.

Although type inference with polymorphic recursion is
undecidable [13], there exists incomplete inference algo-
rithms that work very well in practice. We experimented
with Henglein’s algorithm [11] and with a home-grown al-
gorithm based on restricted fixpoint iteration and obtained
good results.

5 Experimental results

In this section, we present some experimental results
obtained with our implementation. Currently, our analyzer
implements all extensions described in section 4 except
objects4. The analyzer is compiled with the OCaml 2.00
native-code compiler and runs on a Pentium II 333 Mhz
workstation under Linux.

4The analysis of objects and classes was prototyped separately and
remains to be merged in our main implementation.
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Test program Size Analysis time Analysis speed OCaml type-
(lines) (lines per sec.) checking time

1. Huffman compression 233 0.07/0.08 s 3300/2900 l/s 0.08 s
2. Knuth-Bendix 441 0.14/0.16 s 3200/2800 l/s 0.14 s
3. Docteur (Eliza clone) 556 0.81/0.83 s 680/670 l/s 0.10 s
4. Lexer generator 1169 0.27/0.32 s 4300/3700 l/s 0.20 s
5. Nucleic 2919 1.90/1.88 s 1530/1550 l/s 0.62 s
6. OCaml standard library 3082 2.52/2.52 s 1200/1200 l/s 1.89 s
7. Analyzer of .h files 3088 0.54/0.58 s 5700/5300 l/s 0.27 s
8. Our exception analyzer 12235 10.3/16.1 s 1200/760 l/s 3.86 s
9. The OCaml bytecode compiler 17439 12.6/22.9 s 1400/760 l/s 4.00 s

Figure 4: Experimental results (without polymorphic recursion/with polymorphic recursion)

Analysis speed: Figure 4 gives timings for the analysis of
various small to medium-sized OCaml programs. We give
timings both without and with polymorphic recursion. For
comparison, we also give the time OCaml takes to parse
and type-check those programs. (The timings given include
parsing and pre-processing as well as analysis time.)

The overall performances are quite good, in the order of
1000–2000 lines of source per second. Programs that contain
large data structures given in extension (Nucleic, Docteur)
take longer to analyze due to the large size of the rows an-
notating the types of those data structures. On average,
the exception analysis takes twice as much time as OCaml
type inference; the ratio ranges between 1 (on simple pro-
grams) and 8 (on Docteur, because of the large constant data
structures). Polymorphic recursion slows down the analysis
somewhat on the largest benchmarks, but the slowdown re-
mains acceptable compared with the increase in precision.

Precision of the analysis: We have manually inspected the
output of the analyzer on our benchmark programs. Pro-
grams 1, 3, 4, 5 and 7 have a relatively simple exception
behavior, and our analysis reports exact results for those
programs: there are no false positives except run-time errors
such as “division by zero” or “array index out of bounds”,
which require extra analyses (or even general program proof)
to show that they cannot occur.

For Knuth-Bendix, which has a quite complicated excep-
tion structure, 8 exceptions (Failure with 8 different string
arguments) appearing in the source are correctly reported
as non-escaping; 7 exceptions (one Invalid_argument and
6 Failure) are reported as potentially escaping, and can
actually occur in some circumstances. Without polymor-
phic recursion, the analysis reports two false positives (one
Not_found and one Failure), which correspond to recur-
sive functions containing try . . . with around recursive calls.
Adding polymorphic recursion as discussed in section 4.7
removes one of those false positives. The other one is still
there, because our incomplete inference algorithm for poly-
morphic recursion fails to give a type polymorphic enough to
one of the functions. A more precise algorithm such as Hen-
glein’s [11] would probably eliminate the other false positive
as well.

The larger examples 8 and 9 exhibit another source of
false positives: mutable data structures (references and ar-
rays) containing functions. As mentioned in section 4.3, the
row variables appearing in approximations of mutable data
structures are not generalized, hence “collect” all exceptions
at their use sites. For instance:

let r = ref(λx. ...) in

let f = λy. if cond then !r y
else raise C

in !r 0

r has type int
ρ→ int where ρ is not generalized. When

typing f, the effect of raise C is unified with that of !r y,
hence ρ becomes C : Pre; ρ′ and the application !r 0 appears
to raise C.

6 Related work

6.1 Exception analyses for ML

Several exception analyses for ML are described in the lit-
erature. Guzmán and Suárez [8] develop a simple type and
effect system to keep track of escaping exceptions. Their
system does not handle exceptions as first-class values, nor
exceptions carrying arguments. The first exception analysis
proposed by Yi [36] is based on general abstract interpreta-
tion techniques, and runs too slowly to be usable in practice.
Later, Yi and Ryu [35] developed a more efficient analysis
roughly equivalent to a conventional control-flow analysis
to approximate the call graph and the values of exceptions,
followed by a data-flow analysis to estimate uncaught ex-
ceptions.

Fähndrich and Aiken [3, 4] have applied their BANE
toolkit for constraint-based program analyses to the prob-
lem of analyzing uncaught exceptions in SML. Their system
uses a combination of inclusion constraints (as in control-
flow analyses) to approximate the control flow, and equality
constraints (unification) between annotated types to keep
track of exception values.

To compare performances between [35], [3] and our ana-
lyzer, we used two of our benchmarks for which we have a
faithful SML translation: Knuth-Bendix and Nucleic. The
times reported below are of the form t1/t2, where t1 is the
time spent in exception analysis only, and t2 is the total
program analysis time, including parsing and type-checking
in addition to exception analysis.

Test program Yi-Ryu BANE us
Knuth-Bendix 1.2/1.5 s 1.6/2.2 s 0.06/0.14 s
Nucleic 3.8/7.8 s 3.3/7.6 s 1.45/1.86 s

From these figures, our exception analysis seems notably
faster. However, there are many external factors that influ-
ence the total running times of the analyses (such as the Yi-
Ryu and BANE analyses being compiled by SML/NJ while
ours is compiled by Objective Caml), so the figures above
are not conclusive.
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The main difference between the analyses of [35, 3] and
ours is the approximation of arguments carried by excep-
tions: they approximate only exception and function values
carried by exceptions, but our analysis is the only one that
also approximates exception arguments that are strings, in-
tegers, or datatypes. As explained in section 2.3, approxi-
mating all arguments of exceptions is crucial to obtain pre-
cise analysis of many real applications.

In theory, our unification-based analysis should be less
precise than analyses based on inclusion constraints such
as [35, 3]: the bidirectional propagation of information per-
formed by unification causes exception effects to “leak” in
types where those exceptions cannot actually occur. It is
easy to construct artificial examples of such leaks, e.g. by re-
placing let-bound identifiers by λ-bound identifiers. How-
ever, those examples do not seem to occur in actual pro-
grams. The only leaks we observed in actual programs were
related either to deficiencies of our incomplete algorithm for
typing polymorphic recursion, or to functions contained in-
side mutable data structures. On those two cases, [3] obtains
more precise results than our analysis.

6.2 Other related work

Our use of rows with row variables and presence annotations
to approximate values of base types and sum types is essen-
tially identical to Rémy’s typing of extensible variants [22].
Another application of Rémy’s encoding is the soft typing
system for Scheme of [32].

There is a natural connection between exception anal-
ysis and type inference for extensible variants: using the
well-known functional encoding of exceptions (where each
subexpression is transformed to return a value of a variant
type, either an exception tag or NormalResult(v) where v is
the value of the subexpression), estimating uncaught excep-
tions is equivalent to inferring precise variant types. Pottier
[20] outlines an exception analysis thus derived from a type
inferencer for ML with subtyping.

Refinement types [7] also introduce annotations on types
to characterize subsets of ML’s data types. Our approach
is less ambitious than refinement types, in that it does not
try to capture “deep” structural invariants of recursive data
structures; on the other hand, type inference is much easier.

The principles of effect systems were studied extensively
in the early ’90s [16, 28], but few practical applications have
been developed since. An impressive application is the re-
gion analysis of Tofte et al. [30, 29]. Like ours, its precision
is improved by typing recursion polymorphically.

Several program analyses based on unification and run-
ning in quasi-linear time have been proposed as faster alter-
natives to more conventional dataflow analyses. Two well-
known examples are Henglein’s tagging analysis [10] and
Steensgaard’s aliasing analysis [27]. Baker [1] suggests other
examples of unification-based analyses.

7 Conclusions and future work

It is often said that unification-based program analyses are
faster, but less precise than more general constraint-based
analyses such as CFA or SBA. For exception analysis, our
experience indicates that a combination of unification, let-
polymorphism, and polymorphic recursion is in practice al-
most as precise as analyses based on inclusion constraints.
(The only case where our analysis is noticeably less precise
than inclusion constraints is when references to functions are
used intensively.) The running times of our algorithm seem

excellent (although its theoretical complexity is at least as
high as that of ML type inference). In turn, this good ef-
ficiency of our analysis allows us to keep more information
on exception arguments than the other exception analyses,
increasing greatly the precision of the analysis on certain
ML programs. Thus, we see an interesting case of “less is
more”, where an a priori imprecise technology (unification)
allows to improve eventually the precision of the analysis.

Some engineering issues remain to be solved before our
analysis can be applied to large ML applications. The main
practical issue is displaying the results of the analysis in
a readable way. The volume of information contained in
annotated type expressions can be overwhelming. The pro-
grammer should be able to select different levels of display
abstracting some of that information.
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A The unification algorithm

In this appendix, we give the unification algorithm for our
type algebra modulo the two equations (1) and (2). We de-
fine the head constructor H(ε) of a row element ε as follows:

H(i :π) = i H(C :π) = C H(D(τ)) = D

The algorithm handles the left commutativity axiom (equa-
tion (1)) like in [24].

mgu(∅) = id

Unification between types:

mgu({α = α} ∪Q) = mgu(Q)

mgu({α = τ} ∪Q) =

mgu(Q{α← τ}) ◦ {α← τ}
if α /∈ FV (τ)

mgu({τ = α} ∪Q) =

mgu(Q{α← τ}) ◦ {α← τ}
if α /∈ FV (τ)

mgu({int[ϕ1] = int[ϕ2]} ∪Q) =

mgu({ϕ1 = ϕ2} ∪Q)

mgu({exn[ϕ1] = exn[ϕ2]} ∪Q) =

mgu({ϕ1 = ϕ2} ∪Q)

mgu({τ1
ϕ1→ τ ′1 = τ2

ϕ2→ τ ′2} ∪Q) =

mgu({τ1 = τ2;ϕ1 = ϕ2; τ ′1 = τ ′2} ∪Q)

Unification between rows:

mgu({ρ = ρ} ∪Q) = mgu(Q)

mgu({ρ = ϕ} ∪Q) =

mgu(Q{ρ← ϕ}) ◦ {ρ← ϕ}
if ρ /∈ FV (ϕ)

mgu({ϕ = ρ} ∪Q) =

mgu(Q{ρ← ϕ}) ◦ {ρ← ϕ}
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if ρ /∈ FV (ϕ)

mgu({> = >} ∪Q) = mgu(Q)

mgu({(i :π;ϕ) = >} ∪Q) =

mgu({π = Pre;ϕ = >} ∪Q)

mgu({> = (i :π;ϕ)} ∪Q) =

mgu({π = Pre;ϕ = >} ∪Q)

mgu({(ε1;ϕ1) = (ε2;ϕ2)} ∪Q) =

mgu({ε1 = ε2} ∪Q)

if H(ε1) = H(ε2)

mgu({(ε1;ϕ1) = (ε2;ϕ2)} ∪Q) =

mgu({ϕ1 = (ε2; ρ);ϕ2 = (ε1; ρ)} ∪Q)

if H(ε1) 6= H(ε2)

and ρ is not free in the l.h.s.

and has kind t(S ∪ {H(ε1), H(ε2)})
where t(S) is the kind of ε1;ϕ1 and ε2;ϕ2

Unification between row elements:

mgu({(i :π1) = (i :π2)} ∪Q) =

mgu({π1 = π2} ∪Q)

mgu({(C :π1) = (C :π2)} ∪Q) =

mgu({π1 = π2} ∪Q)

mgu({D(τ1) = D(τ2)} ∪Q) =

mgu({τ1 = τ2} ∪Q)

Unification between presence annotations:

mgu({δ = δ} ∪Q) = mgu(Q)

mgu({δ = π} ∪Q) =

mgu(Q{δ ← π}) ◦ {δ ← π} if π 6= δ

mgu({π = δ} ∪Q) =

mgu(Q{δ ← π}) ◦ {δ ← π} if π 6= δ

mgu({Pre = Pre} ∪Q) = mgu(Q)

If none of the cases above is applicable, mgu(Q) is undefined.

B The type inference algorithm

The result of the algorithm W (E, a) is the triple (τ, ϕ, θ)
defined by induction on a as follows:

If a is x (with x ∈ Dom(E)):
let ρ be a fresh variable of kind EXN(∅)
take τ = Inst(E(x)) and ϕ = ρ and θ = id .

If a is i:
let ρ be a fresh variable of kind INT({i})
let ρ′ be a fresh variable of kind EXN(∅)
take τ = int[i : Pre; ρ] and ϕ = ρ′ and θ = id .

If a is λx. a1:
let α be a fresh variable
let (τ1, ϕ1, θ1) = W (E ⊕ {x : α}, a1)
let ρ be a fresh variable of kind EXN(∅)
take τ = θ1(α)

ϕ→ τ1 and ϕ = ρ and θ = θ1.

If a is a1(a2):
let (τ1, ϕ1, θ1) = W (E, a1)
let (τ2, ϕ2, θ2) = W (θ1(E), a2)
let α be a fresh variable
let µ = mgu{θ2(τ1) = τ2

ϕ2→ α, θ2(ϕ1) = ϕ2}
take τ = µ(α) and ϕ = µ(ϕ2) and θ = µ ◦ θ2 ◦ θ1.

If a is let x = a1 in a2:
let (τ1, ϕ1, θ1) = W (E, a1)
let (τ2, ϕ2, θ2) = W (θ1(E)⊕ {x : Gen(τ1, θ1(E), ϕ1)}, a2)
let µ = mgu{θ2(ϕ1) = ϕ2}
take τ = µ(τ2) and ϕ = µ(ϕ2) and θ = µ ◦ θ2 ◦ θ1.

If a is match a1 with p→ a2 | x→ a3:
let (τ1, ϕ1, θ1) = W (E, a1)
let (E′, τ ′, ψ) = Patsubtr(p, τ1)
let (τ2, ϕ2, θ2) = W (ψ(θ1(E))⊕ E′, a2)
let (τ3, ϕ3, θ3) = W (θ2(ψ(θ1(E)))⊕ {x : θ2(τ ′)}, a3)
let µ = mgu{θ3(τ2) = τ3, θ3(ϕ2) = ϕ3, θ3(θ2(ψ(ϕ1))) = ϕ3}
take τ = µ(τ3) and ϕ = µ(ϕ3) and θ = µ ◦ θ3 ◦ θ2 ◦ ψ ◦ θ1.

If a is C:
let ρ be a fresh variable of kind EXN({C})
let ρ′ be a fresh variable of kind EXN(∅)
take τ = exn[C : Pre; ρ] and ϕ = ρ′ and θ = id .

If a is D(a1):
let (τ1, ϕ1, θ1) = W (E, a1)
let τ2 = Inst(TypeArg(D))
let µ = mgu{τ2 = τ1}
let ρ be a fresh variable of kind EXN({D})
let ρ′ be a fresh variable of kind EXN(∅)
take τ = exn[D(µ(τ1)); ρ] and ϕ = ρ′ and θ = µ ◦ θ1.

If a is try a1 with x→ a2:
let (τ1, ϕ1, θ1) = W (E, a1)
let (τ2, ϕ2, θ2) = W (θ1(E)⊕ {x : exn[ϕ1]}, a2)
let µ = mgu{θ2(τ1) = τ2}
take τ = µ(τ2) and ϕ = µ(ϕ2) and θ = µ ◦ θ2 ◦ θ1.

The auxiliary function Inst(σ) (trivial instance):
Inst(∀αi, ρj , δk. τ) is τ{αi ← α′i, ρj ← ρ′j , δk ← δ′k} where
α′i, ρ

′
j , δ
′
k are fresh variables such that ρ′j and ρj have the

same kind for all j.

The auxiliary function Patsubtr (typing of patterns and
pattern subtraction): Patsubtr(p, τ) is the triple (E, τ ′, θ)
defined by induction on p as follows:

If p is x:
let α be a fresh variable
take E = {x : τ} and τ ′ = α and θ = id .

If p is i:
let ρ be a fresh variable of kind INT({i})
let µ = mgu{τ = int[i : Pre; ρ]}
let δ be a fresh presence variable
take E = ∅ and τ ′ = int[i : δ;µ(ρ)] and θ = µ.

If p is C:
let ρ be a fresh variable of kind EXN({C})
let µ = mgu{τ = exn[C : Pre; ρ]}
let δ be a fresh presence variable
take E = ∅ and τ ′ = exn[C : δ;µ(ρ)] and θ = µ.

If p is D(p1):
let τ1 = Inst(TypeArg(D))
let (E1, τ

′
1, θ1) = Patsubtr(p1, τ1)

let ρ be a fresh variable of kind EXN({D})
let µ = mgu{τ = exn[D(θ1(τ1)); ρ]}
take E = µ(E1) and τ ′ = exn[D(µ(τ ′1));µ(ρ)] and θ = µ◦θ1.
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