Infinitesimal Brunovsky form for nonlinear systems, with applications to dynamic linearization

Abstract : We define, in an infinite-dimensional differential geometric framework, the "infinitesimal Brunovsky form" which we previously introduced in another framework and link it with equivalence via diffeomorphism to a linear system, which is the same as linearizability by "endogenous dynamic feedback". NB: this paper follows "A differential geometric setting for dynamic equivalence and dynamic linearization", by J.-B. Pomet, published in the same 1995 volume, which is its natural intrduction. This is a corrected version of the reports http://hal.inria.fr/inria-00074360 and http://hal.inria.fr/inria-00074361
Type de document :
Article dans une revue
Banach Center Publications, Institute of Mathematics Polish Academy of Sciences, 1995, 32, pp.19 - 33. 〈https://eudml.org/doc/262767〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01501090
Contributeur : Jean-Baptiste Pomet <>
Soumis le : lundi 3 avril 2017 - 20:26:50
Dernière modification le : mercredi 16 mai 2018 - 11:48:04
Document(s) archivé(s) le : mardi 4 juillet 2017 - 14:57:56

Fichier

1995-Varsovie.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01501090, version 1

Relations

  • est un autre format de inria-00074360 - That "rapport de recherche" was a preliminary version. The present document is a slightly enriched version of the published article.

Citation

Eduardo Aranda-Bricaire, Claude H. Moog, Jean-Baptiste Pomet. Infinitesimal Brunovsky form for nonlinear systems, with applications to dynamic linearization. Banach Center Publications, Institute of Mathematics Polish Academy of Sciences, 1995, 32, pp.19 - 33. 〈https://eudml.org/doc/262767〉. 〈hal-01501090〉

Partager

Métriques

Consultations de la notice

388

Téléchargements de fichiers

53