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Chapter I

A differential geometric setting for
dynamic equivalence and dynamic
linearization
Jean-Baptiste Pomet

Abstract

This paper presents an (infinite dimensional) geometric framework for control system, based
on infinite jet bundles, where a system is represented by a single vector field and dynamic
equivalence (to be precise : equivalence by endogenous dynamic feedback) is conjugation by
diffeomorphisms. These diffeomorphisms are very much related to Lie-Bäcklund transforma-
tions.

It is proved in this framework that dynamic equivalence of single-input systems is the
same as static equivalence.

Keywords : Dynamic feedback equivalence, dynamic feedback linearization, infinite jet
bundles, contact transformations, Lie-Bäcklund transformations, flat systems.

I.1 Introduction

For a control system
ẋ = f(x, u) (I.1)

where x ∈ IRn is the state, and u ∈ IRm is the input, what one usually means by a dynamic
feedback is a system with a certain state z, input (x, v) and output u :

ż = g(x, z, v)
u = γ(x, z, v) .

(I.2)

When applying this dynamic feedback to system (I.1), one gets a system with state (x, z)
and input v : ẋ = f(x, γ(x, z, v)), ż = g(x, z, v). This system may be transformed with
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4 J.-B. Pomet, A differential geometric setting . . .

a change of coordinates X = φ(x, z) in the extended variables to a system Ẋ = h(X, v).
The problem of dynamic feedback linearization is stated in [7] by B. Charlet, J. Lévine and
R. Marino as the one of finding g, γ and φ such that Ẋ = h(X, v) be a linear controllable
system. When z is not present, γ and φ define a static feedback transformation in the usual
sense. This transformation is said to be invertible if φ is a diffeomorphism and γ is invertible
with respect to v; these transformations form a group of transformations. On the contrary,
when z is present, the simple fact that the general “dynamic feedback transformation” (I.2),
defined by g, γ and φ increases the size of the state prevents dynamic feedbacks in this sense
from being “invertible”.

In [16, 17], M. Fliess, J. Lévine, P. Martin and P. Rouchon introduced a notion of equiv-
alence in a differential algebraic framework where two systems are equivalent by endogenous
dynamic feedback if the two corresponding differential fields are algebraic over one another.
This is translated in a state-space representation by some (implicit algebraic) relations be-
tween the “new” and the “old” state, output and many derivatives of outputs transforming
one system into the other and vice-versa. It is proved that equivalence to controllable linear
system is equivalent to differential flatness, which is defined as existence of m elements in the
field which have the property to be a “linearizing output” or “flat output”. In [26, “Point de
vue analytique”], P. Martin introduced the notion of endogenous dynamic feedback as a dy-
namic feedback (I.2) where, roughly speaking, z is a function of x, u, u̇, ü . . .. He proved that
a system may be obtained from another one by nonsingular endogenous feedback if and only
if there exists a transformation of the same kind as in [16, 17] but explicit and analytic which
transforms one system into the other. This is called equivalence by endogenous dynamic
feedback as in the algebraic case. These transformations may either increase or decrease the
dimension of the state.

B. Jakubczyk gives in [23, 24] a notion of dynamic equivalence in terms of transformations
on “trajectories” of the system; different types of transformations are defined there in terms
of infinite jets of trajectories. One of them is proved there to be exactly the one studied here.
See after Definition I.1 for further comparisons.

In [36], W.F. Shadwick makes (prior to [16, 17, 23, 24]) a link between dynamic feedback
linearization and the notion of absolute equivalence defined by E. Cartan for Pfaffian systems.
It is not quite clear that this notion of equivalence coincides with equivalence in the sense of
[16, 17] or [23, 24], the formulation is very different.

The contribution of the present paper –besides Theorem I.3 which states that dynamic
equivalent single input systems with the same number of states are static equivalent– is to
give a geometric meaning to transformations which are exactly these introduced by P. Mar-
tin in [26] (endogenous dynamic feedback transformations). Our system is represented by a
single vector field on a certain “infinite-dimensional manifold”, and our transformations are
diffeomorphisms on this manifold. Then the action of these transformations on systems is
translated by the usual transformation diffeomorphisms induce on vector fields. There are of
course many technical difficulties in defining vector fields, diffeomorphisms or smooth func-
tions in these “infinite-dimensional manifolds”. The original motivation was to “geometrize”
the constructions made in [2, 33]; it grew up into the present framework which, we believe, has
some interest in itself, the geometric exposition of [2, 33] is contained in the paper reprinted
in Chapter II.

Note finally that the described transformations are very closely related to infinite order
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contact transformations or Lie-Bäcklund transformations or C-transformations, see [20, 1]
and that the geometric context we present here is the one of infinite jet spaces used in
[31, 25, 39, 35] for example to describe and study Lie-Bäcklund transformations. These
presentations however are far from being unified, for instance smooth functions do not have
to depend only on a finite number of variables in [35], and are not explicitly defined in
[1]. They also had to be adapted for many reasons in order to get a technically workable
framework; for instance, we prove an inverse function theorem which characterizes local
diffeomorphisms without having to refer to an inverse mapping which is of the same type.
The language of jet spaces and differential systems has been used already in control theory
by M. Fliess [12] and by J.-F. Pommaret [34], with a somewhat different purpose.

Some recent work by M. Fliess [13] (see also a complete exposition on this topic in E.
Delaleau’s [10]) points out that a more natural state-space representation than (I.1) for a
nonlinear system involves not only x and u, but also an arbitrary number of time-derivatives
of u; this is referred to as “generalized-state” representation, and we keep this name for the
infinite dimensional state-manifold, see section I.3. In [13, 10], the “natural” state-space
representation is F (x, ẋ, u, u̇, ü, . . . , u(J)) = 0 rather than (I.1). Here not only do we suppose
that ẋ is an explicit function of the other variables (“explicit representation” according to
[13, 10]) but also that J = 0 (“classical representation”). Almost everything in this paper
may be adapted to the “non-classical” case, i.e. to the case where some time-derivatives of
the input would appear in the right-hand side of (I.1); we chose the classical representation
for simplicity and because, as far as dynamic equivalence is concerned, a non-classical system
is equivalent to a classical one by simply “adding some integrators”; on the contrary, the
implicit case is completely out of the scope of this paper, see the end of section I.2.

Very recently the authors of [16, 17] have independently proposed a “differential geomet-
ric” approach for dynamic equivalence, see [18, 19], which is similar in spirit to the present
approach, although the technical results do differ. This was brought to the attention of the
author too late for a precise comparison between the two approaches.

The paper is organized as follows : section I.2 presents briefly the point of view of jet
spaces and contact structure for system (I.1) considered as a differential relation ẋ−f(x, u) =
0 (no theoretical material from this section is used elsewhere in the paper). Section I.3
presents in details the differential structure of the “generalized state-space manifold” where
coordinates are x, u, u̇, . . ., where we decide to represent a system by a single vector field.
Section I.4 defines in this context dynamic equivalence and relates it to notions already
introduced in the literature. Section I.5 deals with static equivalence. Section I.6 is devoted
to the single-input case, and states the result that dynamic equivalence and static equivalence
are then the same. Finally section I.7 is devoted to dynamic linearization, it introduces in a
geometric way the “linearizing outputs” defined for for dynamic linearization in [16, 17, 26].

I.2 Control systems as differential relations

This section is only meant to relate the approach described subsequently to some better
known theories. It does not contain rigorous arguments.

In the spirit of the work of J. Willems [40], or also of M. Fliess [13], one may consider that
the control system (I.1) is simply a differential relation on the functions of time x(t), u(t)
and that the object of importance is the set of solutions, i.e. of functions t 7→ (x(t), u(t))
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such that dx
dt (t) is identically equal to f(x(t), u(t)). Of course this description does not need

precisely a state-space description like (I.1).
The geometric way of describing the solution of this first order relation in the “independent

variable” t (time) and the “dependent variables” x and u is to consider, as in [1, 34, 25, 39, 31],
the fibration

IR× IRn+m π→ IR
(t, x, u) 7→ t

(I.3)

and its first jet manifold J1(π), which is simply T (IRn × IRm) × IR. A canonical set of
coordinates on J1(π) is (t, x, u, ẋ, u̇). The relation R(t, x, u, ẋ, u̇) = ẋ − f(x, u) = 0 defines
a sub-manifold R of the fiber bundle (I.3), which is obviously a sub-bundle. The contact
module on J1(π) is the module of 1-forms (or the codistribution) generated by the 1-forms
dxi − ẋidt and duj − u̇jdt, 1 ≤ i ≤ n, 1 ≤ j ≤ m. A “solution” of the differential system is a
section t 7→ (t, x(t), u(t), ẋ(t), u̇(t)) of the sub-bundle R, which annihilates the contact forms
(this simply means that dx

dt = ẋ and du
dt = u̇, i.e. that this section is the jet of a section of

(I.3)).
Since we wish to consider some transformations involving an arbitrary number of deriva-

tives, we need the infinite jet space J∞(π) of the fibration (I.3). For short, it is the projective
limit of the finite jet spaces Jk(π), and some natural coordinates on this “infinite-dimensional
manifold” are (t, x, u, ẋ, u̇, ẍ, ü, x(3), u(3), . . . . . . ). The contact forms are

dx(j)
i − x

(j+1)
i dt , du(j)

k − u
(j+1)
k dt


i = 1 . . . n
k = 1, . . .m
j ≥ 0

(I.4)

This infinite dimensional “manifold” is described in [25] for example, and we will recall in
next section what we really need. The “Cartan distribution” is the one annihilated by all
these forms, it is spanned by the single vector field

∂

∂t
+ ẋ

∂

∂x
+ u̇

∂

∂u
+ ẍ

∂

∂ẋ
+ ü

∂

∂u̇
+ . . . . . . (I.5)

where ẋ ∂
∂x stands for

∑
i ẋi

∂
∂xi

, u̇ ∂
∂u for

∑
i u̇i

∂
∂ui

... The relation R has to be replaced by its
infinite prolongation, i.e. R itself plus all its “Lie derivatives” along (I.5) :

R(t, x, u, ẋ, u̇) = ẋ − f(x, u) = 0
R1(t, x, u, ẋ, u̇, ẍ, ü) = ẍ − ∂f

∂x ẋ − ∂f
∂u u̇ = 0

R2(t, x, u, ẋ, u̇, ẍ, ü, x(3), u(3)) = x(3) − . . . = 0
...

(I.6)

This defines a sub-bundle R∞ of J∞(π). A “solution” of the differential system is a section
t 7→ (t, x(t), u(t), ẋ(t), u̇(t), ẍ(t), ü(t), . . .) of the sub-bundleR∞, which annihilates the contact
forms; it is obviously defined uniquely by x(t) and u(t) such that dx

dt (t) = f(x(t), u(t)) with
the functions u(j) and x(j) obtained by differentiating x(t) and u(t).

R∞ is a sub-bundle of J∞(π) which has a particular form : since the relations allow one to
explicitly express all the time-derivatives ẋ, ẍ, x(3), . . . of x as functions of x, u, u̇, ü, u(3), . . .,
a natural set of coordinates on this sub-manifold is (t, x, u, u̇, ü, . . .); note that if, instead of
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the explicit form (I.1), we had an implicit system f(x, u, u̇) = 0, this would not be true. The
vector field (I.5), which spans the Cartan distribution is tangent to R∞, and its expression
in the coordinates (t, x, u, u̇, ü, . . .) considered as coordinates on R∞ is

∂

∂t
+ f(x, u)

∂

∂x
+ u̇

∂

∂u
+ ü

∂

∂u̇
+ . . . + u(k+1) ∂

∂u(k)
+ . . . . . . (I.7)

and the restriction of the contact forms are dx− fdt, du(j)−uj+1dt, j ≥ 0. The sub-bundles
R∞ obtained for different systems are therefore all diffeomorphic to a certain “canonical
object” independent of the system, and where coordinates are (t, x, u, u̇, ü, . . .), let this object
be IR×Mm,n

∞ whereMm,n
∞ is described in more details in next section and the first factor IR is

time, with an embedding ψ of IR×Mm,n
∞ into J∞(π) which defines a diffeomorphism between

R∞ and IR ×Mm,n
∞ ; this embedding depends on the system and completely determines it;

it pulls back the contact module on J∞(π) to a certain module of forms on IR ×Mm,n
∞ and

the Cartan vector field (I.5) into (I.7). The points in J∞(π) which are outside R∞ are not
really of interest to the system, so that we only need to retain R∞, and it turns out that
all the information is contained in IR×Mm,n

∞ and the vector field (I.7) which translates the
way the contact module is pulled back by the embedding of IR ×Mm,n

∞ into J∞(π) whose
image is R∞. This is the point of view defended in [39] for example where such a manifold
endowed with what it inherits from the contact structure on J∞(π) is called a “diffiety”. It
is only in the special case of explicit systems like (I.1) that all diffieties can be parameterized
by x, u, u̇, . . . and therefore can all be represented by the single object Mm,n

∞ , endowed with
a contact structure, or a Cartan vector field, which of course depends on the system.

Finally, since everything is time-invariant, one may “drop” the variable t (or quotient
by time-translations, or project on the sub-manifold {t = 0} which is possible because all
objects are invariant along the fibers) and work with the coordinates (x, u, u̇, ü, . . .) only,
with f ∂

∂x + u̇ ∂
∂u + ü ∂

∂u̇ + . . . instead of (I.7); solutions are curves which are tangent to this
vector field. This is the point of view we adopt here, and this is described in details in next
section.

I.3 The generalized state-space manifold

The phrase “generalized state” denotes the use of many derivatives of the input as in [13, 10].
The “infinite-dimensional manifold” Mm,n

∞ we are going to consider is parameterized by
x, u, u̇, ü, . . .; in order to keep things simple, we define it in coordinates, i.e. a point of Mm,n

∞
is simply a sequence of numbers, as in [30] for example. It may be extended to x and u
living in arbitrary manifolds via local coordinates, but, since dynamic equivalence is local in
nature, the present description is suitable.

I.3.1 The manifold, functions and mappings

For k ≥ −1, let Mm,n
k be IRn × (IRm)k+1 (Mm,n

−1 is IRn), and let us denote the coordinates
in Mm,n

k by
(x , u , u̇ , ü , . . . , u(k) )

where x is in IRn and u, u̇, . . . are in IRm. Mm,n
∞ is the space of infinite sequences

(x , u , u̇ , ü , . . . , u(j) , u(j+1) , . . . ) .
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For simplicity, we shall use the following notation :

U = (u, u̇, ü, u(3), . . .) , X = (x,U) = (x, u, u̇, ü, u(3), . . .) . (I.8)

Let, for k ≥ −1, the projection πk, from Mm,n
∞ to Mm,n

k be defined by :

πk(X ) = (x, u, u̇, . . . , u(k)) k ≥ 0
π−1(X ) = x .

(I.9)

Mm,n
∞ may be constructed as the projective limit of Mm,n

k , and this naturally endows it with
the weakest such that all these projections are continuous (product topology); a basis of the
topology are the sets

π−1
k (O) , O open subset of Mm,n

k .

This topology makes Mm,n
∞ a topological vector space, which is actually a Fréchet space

(see for instance [4]). It is easy to see that continuous linear forms are these which depend only
on a finite number of coordinates. This leads one to the (false) idea that there is a natural way
of defining differentiability so that differentiable functions depend only on a finite number of
variables, which is exactly the class of smooth functions we wish to consider (as in most of the
literature on differential system and jet spaces [1, 25, 30, 31, 39]), since they translate into
realistic dynamic feedbacks from the system theoretic point of view. It is actually possible
to define a very natural notion of differentiability in Fréchet spaces (see for instance the
very complete [21]) but there is nothing wrong in this framework with smooth functions
depending on infinitely many variables. For instance the function mapping (u, u̇, ü, u(3), . . .)
to

∑∞
j=0

1
2j ρ(u

(j)

j ), with ρ a smooth function with compact support containing 0 vanishing at
0 as well as its derivatives of all orders depends on all the variables at zero, but it is smooth
in this framework. It is hard to imagine a local definition of differentiability which would
classify this function non-smooth.

Here, we do not wish to consider smooth functions or smooth maps depending on infinitely
many variables; we therefore define another differentiable structure, which agrees with the
one usually used for differential systems [31, 1, 30, 25, 39] :

• A function h from an open subset V of Mm,n
∞ to IR (or to any finite-dimensional

manifold) is a smooth function at X ∈ V if and only if, locally at each point, it
depends only on a finite number of derivatives of u and, as a function of a finite number
of variables, it is smooth (of class C∞); more technically : if and only if there exists
an open neighborhood U of X in V , an integer ρ, and a smooth function hρ from an
open subset of Mm,n

ρ to IR (or to the finite-dimensional manifold under consideration)
such that h(Y) = hρ ◦ πρ(Y) for all Y in U . It is a smooth function on V if it is a
smooth function at all X in V . The highest ρ such that h actually depends on the
ρth derivative of u on any neighborhood of X (-1 if it depends on x only on a certain
neighborhood of X ) we will call the order of h at X , and we denote it by δ(h)(X ).
It is also the largest integer such that ∂h

∂u(ρ) (this may be defined in coordinates and is
obviously a smooth function) is not identically zero on any neighborhood of X . Note
that δ(h) may be unbounded on Mm,n

∞ . We denote by C∞(V ) the algebra of smooth
functions from V to IR, C∞(Mm,n

∞ ) if V = Mm,n
∞ .
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• A smooth mapping from an open subset V of Mm,n
∞ to Mm̃,ñ

∞ is a map ϕ from V to
Mm̃,ñ

∞ such that, for any ψ in C∞(Mm̃,ñ
∞ ), ψ ◦ ϕ is in C∞(V ). It is a smooth mapping

at X if it is a smooth mapping from a certain neighborhood of X to Mm̃,ñ
∞ . Of course,

in coordinates, it is enough that this be true for ψ any coordinate function. For such
a map and for all k, there exists locally an integer ρk and a (unique) smooth map ϕk

from πρk
(V ) ⊂Mm,n

ρk
to Mm̃,ñ

k such that

πk ◦ ϕ = ϕk ◦ πρk
. (I.10)

The smallest possible ρk at a point X is δ(πk ◦ ϕ)(X ).

• A diffeomorphism from an open subset V of Mm,n
∞ to an open subset Ṽ of Mm̃,ñ

∞ is
a smooth mapping ϕ from V to Ṽ which is invertible and is such that ϕ−1 is a smooth
mapping from Ṽ to V .

• A static diffeomorphism ϕ from an open subset V of Mm,n
∞ to an open subset Ṽ of

Mm̃,ñ
∞ is a diffeomorphism from V to Ṽ such that for all k, δ(πk ◦ ϕ)(X ) is constant

equal to k.

• A (local) system of coordinates on Mm,n
∞ (at a certain point) is a sequence (hα)α≥0

of smooth functions (defined on a neighborhood of the point under consideration) such
that the smooth mapping X 7→ (hα(X ))α≥0 is a local diffeomorphism onto an open
subset of IRIN , considered as M1,0

∞ .

Note that the functions x1, . . . , xn, u1, . . . , um, u̇1, . . . , u̇m, . . . are coordinates in this sense.
Actually, this makes all the “manifolds” Mm,n

∞ globally diffeomorphic to M1,0
∞ , so that they

are all diffeomorphic to one another (this can be viewed as renumbering the natural co-
ordinates). The following proposition shows that static diffeomorphisms are much more
restrictive: they preserve n and m.

Proposition I.1 Let ϕ be a static diffeomorphism from an open set U of Mm,n
∞ to an open

set V of Mm̃,ñ
∞ . Its inverse ϕ−1 is also a static diffeomorphism and ϕ induces, for all k ≥ 0, a

diffeomorphism ϕk from Mm,n
k to Mm̃,ñ

k (from IRn to IRñ for k = −1). Its existence therefore
implies ñ = n and m̃ = m.

Proof : For all k ≥ −1, since δ(ϕ◦πk) = k, there exists a mapping ϕk from πk(U) to πk(V )
satisfying (I.10) with ρk = k. All these mappings are onto because if one of them was not
onto, (I.10) would imply that ϕ is onto either. Now let us consider ϕ−1; it is a diffeomorphism
from V to U and there exists therefore, for all k, an integer σk and a smooth map

(
ϕ−1

)
k

from πσk
(V ) ⊂Mm̃,ñ

σk
to Mm,n

k such that

πk ◦ ϕ−1 =
(
ϕ−1

)
k
◦ πσk

. (I.11)

Applying ϕ on the right to both sides and using the fact that πσk
◦ ϕ = ϕσk

◦ πσk
, we get

πk =
(
ϕ−1

)
k
◦ ϕσk

◦ πσk
. (I.12)
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Applied to (x, u, u̇, . . .), this means

(x, u, u̇, . . . , u(k)) =
(
ϕ−1

)
k (y, v, v̇, . . . , v(k), . . . , v(σk))

with (y, v, v̇, . . . , v(k), . . . , v(σk)) = ϕσk
(x, u, u̇, . . . , u(k), . . . , u(σk))

(I.13)

Since ϕσk
is onto and each v(j) depends only on x, u, . . . , u(j), (I.13) implies that

(
ϕ−1

)
k

depends only on y, v, v̇, . . . , v(k). Therefore σk might have been taken to be k, and then one
has (I.12) with σk = k and therefore(

ϕ−1
)
k
◦ ϕk = Id

Mm̃,m̃
k

(I.14)

which proves that each ϕk is a diffeomorphism and ends the proof.
Let us define, as examples of diffeomorphisms, the (non static !) diffeomorphisms

Υn,(p1,...,pm) from Mm,n
∞ Mm,n+p1+...+pm

∞ which “adds pk integrators on the kth input” :

Υn,(p1,...,pm)(x,U) = (z,V) with
z = (x, u1, u̇1 . . . u

(p1−1)
1 , . . . , um, u̇m, . . . u

(pm−1)
m )

v
(j)
k = u

(j+pk)
k .

(I.15)

It is invertible : one may define ΥN,(−p1,...,−pm) from Mm,N
∞ to Mm,N−p1−...−pm

∞ for N ≥
p1 + . . . + pm by Υn,(−p1,...,−pm)(z,V) = (x,U) where x is the N − p1 − . . . − pm first

coordinates of z, and u
(j)
k is v(j−pk)

k if j ≥ pk and one of the remaining components of z if
0 ≤ j ≤ pk − 1, so that Υn,(p1,...,pm) ◦Υn,(−p1,...,−pm) = Id.

I.3.2 Vector fields and differential forms

The “tangent bundle” to the infinite dimensional manifold Mm,n
∞ is, since Mm,n

∞ is a vector
space, Mm,n

∞ ×Mm,n
∞ , which is a (trivial) vector bundle over Mm,n

∞ . A smooth vector field
is a smooth (as a mapping from Mm,n

∞ to Mm,n
∞ ×Mm,n

∞ , considered as M2m,2n
∞ ) section of

this bundle. It is of the form

F = f
∂

∂x
+

∞∑
0

αj
∂

∂u(j)
(I.16)

where f is a smooth function from Mm,n
∞ to IRn and the αj ’s are smooth functions from

Mm,n
∞ to IRm, where f ∂

∂x stands for
∑
i fi

∂
∂xi

and αj ∂
∂u(j) for

∑
i αj,i

∂

∂u
(j)
i

, and the ∂
∂xi

’s and
∂

∂u
(j)
i

’s are the canonical sections corresponding to the “coordinate vector fields” associated

with the canonical coordinates. Vector fields obviously define smooth differential operators
on smooth functions : in coordinates, LFh is an infinite sum with finitely many nonzero
terms.

Smooth differential forms are smooth sections of the cotangent bundle, which is simply
Mm,n

∞ × (Mm,n
∞ )∗ where (Mm,n

∞ )∗ is the topological dual ofMm,n
∞ , i.e. the space of infinite

sequences with only a finite number of nonzero entries; they can be written :

ω = gdx +
∑

finite
βjdu(j) . (I.17)
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This defines the C∞(Mm,n
∞ ) module Λ1(Mm,n

∞ ) of smooth differential forms on Mm,n
∞ . One

may also define differential forms of all degree.
Of course, one may apply a differential form to a vector field according to 〈ω, F 〉 =

fg +
∑
αjβj (compare (I.16)-(I.17)), where the sum is finite because finitely many βj ’s are

nonzero. One may also define the Lie derivative of a smooth function h, of a differential
form ω,... along a vector field F , which we denote by LFh or LFω. The Lie bracket of two
vector fields may also be defined. All this may be defined exactly as in the finite-dimensional
case because, on a computational point of view, all the sums to be computed are finite.

Finally, note that a diffeomorphism carries differential forms, vector fields, functions
from a manifold to another, exactly as in the finite dimensional case; for example, if ϕ is a
diffeomorphism from Mm,n

∞ to Mm̃,ñ
∞ , F is given by (I.16) and z, v, v̇, v̈, . . . are the canonical

coordinates on Mm̃,ñ
∞ , the vector field ϕ∗F on Mm̃,ñ

∞ is given by
∑
i f̃i

∂
∂xi

+
∑
j,k α̃j,k

∂

∂u
(j)
k

with f̃i = (LF (zi ◦ ϕ)) ◦ ϕ−1 and α̃j,k = (LF (v(j)
k ◦ ϕ)) ◦ ϕ−1.

I.3.3 Systems

A system is a vector field F on Mm,n
∞ –with n ≥ 0 and m ≥ 1 some integers– of the form

F (X ) = f(x, u)
∂

∂x
+

+∞∑
j=0

u(j+1) ∂

∂u(j)
, (I.18)

i.e. the x-component of F is a function of x and u only, and its u(j)-component is u(j+1).
This may be rewritten, in a more condensed form,

F = f + C (I.19)

where C is the canonical vector field on Mm,n
∞ , given by

C =
∞∑
0

u(j+1) ∂

∂u(j)
, (I.20)

and the vector field f is such that

〈du(j)
i , f〉 = 0 i = 1, . . . ,m , j ≥ 0

[ ∂

∂u
(j)
i

, f ] = 0 i = 1, . . . ,m , j ≥ 1 . (I.21)

m will be called the number of inputs of the system, and n its state dimension. Note
that in the (explicit) non-classical case [13, 10] (i.e. the case when some derivatives of u
would appear in the right-hand side of (I.1), there would be no restriction on f , besides
being smooth, i.e. the second relation in (I.21) would no longer be there (note however that
any smooth vector field has zero Lie Bracket with ∂

∂u(j) for j large enough, or in other words
f depending on infinitely many time-derivatives of u in (I.1) is ruled out).

In the special case where n = 0, there is only one system (with “no state”) on Mm,0
∞ . We

call this system the canonical linear system with m inputs; it is simply represented by
the canonical vector field C given by (I.20).
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In section I.2, a system was an embedding of IR ×Mm,n
∞ as a sub-bundle of J∞; this

defines canonically the vector field F on Mm,n
∞ as, more or less, the pull back of the Cartan

vector field (annihilating the contact forms) in J∞(π).
F is the vector field defining the “total derivation along the system”, i.e. the derivative

of a smooth function (depending on x, u, u̇, . . . , u(j)) knowing that ẋ = f(x, u) is exactly its
Lie derivative along this vector field. In [23], B. Jakubczyk attaches a differential algebra to
the smooth system (I.1) which is exactly C∞(Mm,n

∞ ) endowed with the Lie derivative along
the vector field F . Of course, this is very much related to the differential algebraic approach
introduced in control theory by M. Fliess [13], based on differential Galois theory, and where
a system is represented by a certain differential field. In the analytic case, as explained in [8],
this differential field may be realized as the field of fractions of the integral domain Cω(Mm,n

∞ ).
The present framework is more or less dual to these differential algebra representations since
it describes the set of “points” on which the objects manipulated in differential algebra are
“functions”.

The following proposition gives an intrinsic definition of the number of inputs, which will
be useful to prove that it is invariant under dynamic equivalence :

Proposition I.2 The number of inputs m is the largest integer q such that there exists q
smooth functions h1, . . . , hq from Mm,n

∞ to IR such that all the functions

LjFhk 1 ≤ k ≤ q , j ≥ 0

are independent (the Jacobian of a finite collection of them has maximum rank).

Proof : On one hand, hk(x,U) = uk provides m functions enjoying this property. On the
other hand, consider m + 1 smooth functions h1, . . . , hm+1, let ρ ≥ 0 be such that they are
functions only of x, u, u̇, . . . , u(ρ), and consider the (m+ 1)(n+mρ+ 1) functions functions

LjFhk 1 ≤ k ≤ m+ 1 , 0 ≤ j ≤ n+mρ ;

from the form of F (see (I.19) and (I.20)), they depend only on x, u, u̇, . . . , u(ρ+n+mρ), i.e. on
n+m(ρ+n+mρ+1) coordinates; since this integer is strictly smaller than (m+1)(n+mρ+1),
the considered functions cannot be independent.

I.3.4 Differential calculus; an inverse function theorem

All the identities from differential calculus involving functions, vector fields, differential forms
apply on the “infinite-dimensional manifold” Mm,n

∞ exactly as if it were finite-dimensional :
if it is an equality between functions or forms, it involves only a finite number of variables
(i.e. both sides are constant along the vector fields ∂

∂u
(j)
k

for j larger than a certain J > 0)

so that all the vector fields appearing in the formula may be truncated (replaced by a vector
fields with a zero component on ∂

∂u
(j)
k

for j > J), and everything may then be projected

by a certain πK (K possibly larger than J), yielding an equivalent formula on the finite-
dimensional manifold Mm,n

K ; if it is an equality between vector fields, it may be checked
component by component, yielding equalities between functions, and the preceding remark
applies.
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Of course, theorems from differential calculus yielding existence of an object do not follow
so easily, and often do not hold in infinite dimension. For instance, locally around a point
where it is nonzero, a vector field on a manifold of dimension n has n− 1 independent first
integrals (functions whose Lie derivative along this vector field is zero) whereas this is false
on Mm,n

∞ in general: for the vector field C on Mm,0
∞ given by (I.20), any function h such that

LCh = 0 is a constant function.
One fundamental theorem in differential calculus is the inverse function theorem stating

that a smooth function from a manifold to another one whose tangent map at a certain point
is an isomorphism admits locally a smooth inverse. In infinite dimension, the situation is to
more intricate, see for instance [21] for a very complete discussion of this subject and general
inverse function theorems on Fréchet spaces, which are not exactly the kind of theorem we will
need since more general smooth functions are considered there. Here, for a mapping ϕ from
Mm,n

∞ (coordinates: x, u, u̇, . . .) to Mm̃,ñ
∞ (coordinates: z, v, v̇, . . .), the function assigning

to each point the tangent map to F at this point may be represented by the collection of
differential forms d(zi ◦ ϕ), d(v(j)

k ◦ ϕ), and a way of saying that, at all point, the linear
mapping is invertible with a continuous inverse, and that it depends smoothly on the point,
is to say that these forms are a basis of the module Λ1(Mm,n

∞ ); equivalently, this tangent map
might be represented by an infinite matrix whose lines are finite (each line represents one of
the above differential forms), and which is invertible for matrix multiplication with an inverse
having also finite lines. It is clear that for a diffeomorphism this linear invertibility holds;
the additional assumption we add to get a converse is that the mapping under consideration
carries a control system (as defined by (I.19)) on Mm,n

∞ to a control system on Mm̃,ñ
∞ ; note

also that we require that the tangent map be invertible in a neighborhood of the point under
consideration whereas the finite-dimensional theorem just asks for invertibility at the point.

Besides its intrinsic interest, the following result will be required to prove theorem I.5
which characterizes “linearizing outputs” in terms of their differentials.

Proposition I.3 (local inverse function Theorem) Let m,n, m̃, ñ be nonnegative inte-
gers with m and m̃ nonzero. Let z1, . . . , zñ, v1, . . . , vm̃, v̇1, . . . , v̇m̃, . . . . . . be the canonical co-
ordinates on Mm̃,ñ

∞ , and X = (x̄, ū, ˙̄u, ¨̄u, . . .) be a point in Mm,n
∞ . Let ϕ be a smooth mapping

from a neighborhood of X in Mm,n
∞ to a neighborhood of ϕ(X ) in Mm̃,ñ

∞ such that

1. on a neighborhood of X , the following set of 1-forms on Mm,n
∞ :

{d(zi ◦ ϕ) }1≤i≤ñ ∪ {d(v(j)
k ◦ ϕ) }1≤k≤m̃, j≥0 , (I.22)

form a basis of the C∞(Mm,n
∞ )-module Λ1(Mm,n

∞ ),

2. there exists two control systems F on Mm,n
∞ and F̃ on Mm̃,ñ

∞ such that, for all function
h̃ ∈ C∞(Mm̃,ñ

∞ ), defined on a neighborhood of ϕ(X ),(
L
F̃
h̃
)
◦ ϕ = LF

(
h̃ ◦ ϕ

)
. (I.23)

Then ϕ is a local diffeomorphism at X , i.e. there exists a neighborhood U of X in Mm,n
∞ , a

neighborhood V of ϕ(X ) in Mm̃,ñ
∞ and a smooth mapping (a diffeomorphism) ψ from V to U

such that ψ ◦ ϕ = IdU and ϕ ◦ ψ = IdV .
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Note that (I.22) is a way of expressing that the tangent map to ϕ is invertible with a
continuous inverse, and (I.23) is a way of expressing that ϕ transforms the control system F
into the control system F̃ , in a dual manner since writing F̃ = ϕ∗F would presuppose that
ϕ is a diffeomorphism.
Proof : Let x1, . . . , xn, u1, . . . , um, u̇1, . . . , u̇m, . . . . . . be the canonical coordinates on Mm,n

∞ .
The first condition implies that there exist some smooth functions aki , b

k,j
i , cki , d

k,j
i such that

dxi =
∑ñ
k=1 a

k
i d(zk ◦ ϕ) +

∑L
j=0

∑m̃
i=1 b

k,j
i d(v(j)

k ◦ ϕ) i = 1, . . . , n
dui =

∑ñ
k=1 c

k
i d(zk ◦ ϕ) +

∑L
j=0

∑m̃
i=1 d

k,j
i d(v(j)

k ◦ ϕ) i = 1, . . . ,m .
(I.24)

Let K be the integer such that the functions z1 ◦ ϕ, . . . , zñ ◦ ϕ, v1 ◦ ϕ, . . . , vm̃ ◦ ϕ, . . . , v
(L)
1 ◦

ϕ, . . . , v
(L)

m̃
◦ ϕ, and the functions aki , b

k,j
i , cki , d

k,j
i all depend on x, u, u̇, . . ., u(K) only.

Then z1 ◦ ϕ, . . . , zñ ◦ ϕ, v1 ◦ ϕ, . . . , vm̃ ◦ ϕ are ñ+ m̃ functions of the n+ (K + 1)m variables
x1, . . . , xn, u1, . . . , um, . . . , u

(K)
1 , . . . , u

(K)
m which, from condition 1 in the proposition are inde-

pendent because the fact the forms in (I.24) form a basis of the module of all forms implies in
particular that a finite number of them has full rank at all point as vectors in the cotangent
vector space. Hence, from the finite dimensional inverse function theorem, one may locally
replace, in x1, . . . , xn, u1, . . . , um, . . . , u

(K)
1 , . . . , u

(K)
m , ñ + m̃ coordinates with the functions

z1 ◦ ϕ, . . . , zñ ◦ ϕ, v1 ◦ ϕ, . . . , vm̃ ◦ ϕ. In particular, there exists n + m functions ξi and ζ0
i

defined on a neighborhood of (z̄, v̄, ˙̄v, . . . , v̄(L)) —with ϕ(X ) = (z̄, v̄, ˙̄v, ¨̄v, . . . , v̄(L))— and such
that

xi = ξi(z ◦ ϕ, v ◦ ϕ, . . . , v(L) ◦ ϕ,Y) i = 1, . . . , n
ui = ζ0

i (z ◦ ϕ, v ◦ ϕ, . . . , v(L) ◦ ϕ,Y) i = 1, . . . ,m
(I.25)

where Y represents some of the n+(K+1)m variables x, u, u̇, . . . , u(K) (all minus ñ+(L+1)m̃
of them). dxi and dui may be computed by differentiating (I.25); the expression involves the
partial derivatives of the functions ξi and ζi and comparing with the expressions in (I.24),
one may conclude that

∂ξi
∂Y

= 0 ,
∂ζ0

i

∂Y
= 0 , (I.26)

and we may write, instead of (I.25),

xi = ξi(z ◦ ϕ, v ◦ ϕ, . . . , v(L) ◦ ϕ) i = 1, . . . , n
ui = ζ0

i (z ◦ ϕ, v ◦ ϕ, . . . , v(L) ◦ ϕ) i = 1, . . . ,m
(I.27)

We then define the functions ζji for j > 0 by

ζji = L
F̃
ζ0
i (I.28)

(note that this makes ζji a smooth function of z, v, . . . , v(l+j)) and we define ψ by

ψ(z, v, v̇, v̈, . . . ) = (x, u, u̇, ü, . . . )
with xi = ξi(z, v, . . . , v(L))

ui = ζ0
i (z, v, . . . , v

(L))
u̇i = ζ1

i (z, v, . . . , v
(L+1))

...

(I.29)

Its is straightforward to check that (I.23), (I.28), (I.29) and the fact that LjFu is u(j) imply
that ϕ ◦ ψ = Id and ψ ◦ ϕ = Id.
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I.4 Dynamic equivalence

The objective of the previous sections is the following definition. As announced in the
introduction, it mimics the notion of equivalence, or equivalence by endogenous dynamic
feedback given in [26] for analytic systems (analyticity plays no role at all in the definition
of local equivalence), which coincides with the one given in [16, 17] when the transformations
are algebraic. The present definition is more concise than in [26] and allows some simple
geometric considerations, but the concept of equivalence is the same one. It also coincides
with “dynamic equivalence” as defined in [23, 24], see below. It is proved in [26] that if two
systems are equivalent in this sense then there exists a dynamic feedback in the sense of (I.2)
which is endogenous and nonsingular and transforms one system into a “prolongation” of the
other.

Definition I.1 (Equivalence) Two systems F on Mm,n
∞ and F̃ on Mm̃,ñ

∞ are equivalent at
points X ∈Mm,n

∞ and Y ∈Mm̃,ñ
∞ if and only if there exists a neighborhood U of X in Mm,n

∞ ,
a neighborhood V of Y in Mm̃,ñ

∞ , and a diffeomorphism ϕ from U to V such that ϕ(X ) = Y
and, on U ,

F̃ = ϕ∗F . (I.30)

They are globally equivalent if there exists a diffeomorphism ϕ from Mm,n
∞ to Mm̃,ñ

∞ such that
(I.30) holds everywhere.

Note that in the definition of local equivalence, the diffeomorphism is only defined locally.
This might be worrying : it is not very practical to know that something may be constructed
in a region which imposes infinitely many constraints on infinitely many derivatives of the
input u. This actually does not occur because a neighborhood U of a point X contains an
open set of the form π−1

K (UK) with UK open in Mm,n
K , so that being in U imposes some

constraints on x, u, u̇, ü, . . . , u(K) but none on u(K+1), u(K+2), . . ..
Some notions of dynamic equivalence (“dynamic equivalence” and “dynamic feedback

equivalence”) are also given in [23, 24]. To describe them, let us come back to the framework
of section I.2, where Mm,n

∞ is a sub-bundle of J∞(π) and Mm̃,ñ
∞ is a sub-bundle of J∞(π̃); the

transformations considered in [23, 24] have to be defined from J∞(π) to J∞(π̃) whereas our
diffeomorphism ϕ is only defined on Mm,n

∞ (and maps it onto Mm̃,ñ
∞ ); actually, Lie-Bäcklund

transformations are usually defined, like in [23, 24], all over J∞(π); this is referred to as
outer transformations, or outer symmetries if it maps a system into itself, whereas inner
transformations are these, like our ϕ, defined only “on the solutions”, i.e. on Mm,n

∞ . Since
the transformations in [24] are required to be invertible on the solutions only, it is proved
there that a transformation like our ϕ may be extended (at least locally) to J∞(π) and
therefore that local equivalence in the sense of Definition I.1 is the same as the local version
of the one called “dynamic equivalence” (and not “dynamic feedback equivalence”) in [24].

It is clear that equivalence is an equivalence relation on systems, i.e. on vector fields
of the form (I.19) because the composition of two diffeomorphisms is a diffeomorphism.
There is not however a natural group acting on systems since a given diffeomorphism might
transform a system F into a system G and transform another system F ′ into a vector
field on Mm,n′

∞ which is not a system. For instance, for p1, . . . , pm nonnegative, the dif-
feomorphism Υn,(p1,...,pm) defined in (I.15) transforms any system on Mm,n

∞ into a system
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on Mm,n+p1+...+pm
∞ whereas the diffeomorphism Υn+p1+...+pm,(−p1,...,−pm) –its inverse– trans-

forms most systems on Mm,n+p1+...+pm
∞ into a vector field on Mm,n

∞ which is not a “system”
because it does not have the required structure on the coordinates which are called “inputs”
on Mm,n

∞ . Two important questions arise : what is exactly the class of diffeomorphisms
which transform at least one system into another system and what is the class of vector fields
equivalent to a system by such a diffeomorphism. An element of answer to the latter question
is that “non-classical” systems [13, 10], i.e. these where the right-hand side of (I.1) depends
also on some time-derivatives of u, or vector fields on which the second constraint in (I.21)
does not hold, are in this class of vector fields because they are transformed by Υn,(K,...,K),
where K is the number of derivatives of the input appearing in the system, into a (classical)
system, this illustrates that generalized state-space representations [13, 10] are “natural”;
however, it is clear that the class of vector fields which may be conjugated to a “system” is
much larger: the only system (classical or not) on Mm,0

∞ is C and very few systems on Mm,n
∞

are transformed into C by Υn,(−n,0,...,0) for example. A partial answer to the former question
is given by :

Theorem I.1 The number of inputs m is invariant under equivalence.

Proof : For any function h, L
F̃

(
h ◦ ϕ−1

)
= (LFh) ◦ ϕ−1. The integer m from Proposition

I.2 is therefore preserved by a diffeomorphism ϕ.
Further remarks on the class of diffeomorphisms which transform at least one system

into another system may be done. One may restrict its attention to systems of the same
dimension, i.e. to diffeomorphisms fromMm,n

∞ to itself because if ϕ goes fromMm,n
∞ toMm,N

∞
with N > n and transforms a system into a system, Υn,(N−n,0,...,0) ◦ ϕ is a diffeomorphism
of Mm,N

∞ that transforms a system into a system. In the single-input case (m = 1), as
stated in section I.6, ϕ must be static, which is a complete answer to the question because
a static diffeomorphism transforms any system into a system. In the case of at least two
inputs (m > 1), the literature ([25, Theorem 4.4.5] or [1, Theorem 3.1], but these have
to be adapted since they are stated in an “outer” context) tells us that either ϕ is static
or it does not preserve the fibers of πk : Mm,n

∞ → Mm,n
k for any k, i.e., if ϕ is given by

ϕ(x, u, u̇, ü, . . .) = (z, v, v̇, v̈, . . .), there is no k such that (z, v, v̇, . . . , v(k)) is a function of
(x, u, u̇, . . . , u(k)) only. This is related to the statement [7] that, when dynamic feedback is
viewed as adding some integrators plus performing a static feedback, it is inefficient to add
the same number of integrators on each input.

I.5 Static equivalence

Definition I.2 (Static equivalence) Two systems F on Mm,n
∞ and F̃ on Mm̃,ñ

∞ are (lo-
cally/globally) static equivalent if and only if they are (locally/globally) feedback equivalent
with the diffeomorphism ϕ in (I.30) being a static diffeomorphism.

From Proposition I.1, we know that a static diffeomorphism really defines an invertible
static feedback transformation in the usual sense, this is summed up in the following :

Theorem I.2 Both the number of inputs m and the dimension n of the state are invariant
under static equivalence. Moreover, π−1 ◦ ϕ provides a local diffeomorphism in the classical
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state-space IRn and the u component of π0 ◦ϕ provides a nonsingular feedback transformation
which together provide an invertible static feedback transformation in the usual sense.

I.6 The single-input case

It was proved in [7, 6] that a single-input system which is “dynamic feedback linearizable”
is “static feedback linearizable”. The meaning of dynamic feedback linearizable was weaker
that being equivalent to a linear system as meant here : “exogenous” feedbacks (see [26])
were allowed in [7] as well as singular (feedbacks which may change the number of inputs
for example). The following Theorem I.3 may be viewed as a generalization of this result to
non-linearizable systems, but with a more restrictive dynamic equivalence.

It is known that the only transformations on an infinite jet bundle with only one “de-
pendent variable” which preserves the contact structure (Lie-Bäcklund transformation in [1],
C-transformation in [25]) are infinite prolongations of transformations on first jets (Lie trans-
formation according to [25]), see for instance [25, Theorems 6.3.7 and 4.4.5]. The following
result is similar in spirit. We give the full proof, a little long but elementary : it basically
consists in counting the dimensions carefully, it is complicated by the fact that we do not
make any a priori regularity assumption (for instance, the functions χi and ψi defining the
diffeomorphism are not assumed to depend on a locally constant number of derivatives of u).

Theorem I.3 Let F and F̃ be two systems on M1,n
∞ (i.e. two single input systems with the

same number of states). Any (local/global) diffeomorphism ϕ such that F̃ = ϕ∗F is static.
Hence they are (locally/globally) equivalent if and only if they are (locally/globally) static
equivalent.

Proof : The second statement is a straightforward consequence of the first one. Let us
consider a diffeomorphism ϕ such that F̃ = ϕ∗F and prove that ϕ is static. Suppose that,
in coordinates, ϕ and ϕ−1 are given by ϕ(x,U) = (z,V) and ϕ−1(z,V) = (x,U) with :

z = χ−1(x,U)
v = χ0(x,U)

...
v(j) = χj(x,U)

...

x = ψ−1(z,V)
u = ψ0(z,V)

...
u(j) = ψj(z,V)

...

(I.31)

Since F̃ = ϕ∗F , we have

LFχ−1(x,U) = f̃(χ−1(x,U) , χ0(x,U) )
LFχj(x,U) = χj+1(x,U) for j ≥ 0 .

(I.32)

Let X be an arbitrary point of the domain where ϕ is defined. From the definition of a
diffeomorphism, there is an integer J ≥ −1 and a neighborhood U of X (J is δ(π0 ◦ϕ)(X ) if
U is small enough) such that χ−1 and χ0 depend only on x, u, u̇, . . . , u(J) on U and ∂χ−1

∂u(J) and
∂χ0

∂u(J) are not both identically zero on U (one might take all the open set where ϕ is defined
–Mm,1

∞ in the global case– instead of U , but this might cause J to be infinite).
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If J was −1, χ−1 and χ0 would both depend only on x, but the dimension of x is n and
the dimension of (χ−1, χ0) is n + 1 : there would be a function such that h(χ−1, χ0) would
be zero on U and this would prevent ϕ from being a diffeomorphism; hence J ≥ 0.

The first equation in (I.32), and the second one for j = 0, imply :

∂χ−1

∂x
f(x, u) +

∂χ−1

∂u
u̇ + · · ·+ ∂χ−1

∂u(J)
u(J+1) = f̃(χ−1(x . . . u(J)) , χ0(x . . . u(J)) ) ,

∂χ0

∂x
f(x, u) +

∂χ0

∂u
u̇ + · · ·+ ∂χ0

∂u(J)
u(J+1) = χ1(x,U) .

By taking the derivative with respect to u(J+1) of the first equation and with respect to u(j)

for j ≥ J + 2 of the second equation,

∂χ−1

∂u(J)
= 0 and 0 =

∂χ1

∂u(j)
for j ≥ J + 2 . (I.33)

This implies that that χ−1 is a function of x, u, . . . , u(J−1) (x if J = 0) only, χ0 is a function
of x, u, . . . , u(J−1), u(J) only (by definition of J), and χ1 of x, u, . . ., u(J−1), u(J), u(J+1) only.
It is then easy to deduce by induction from the second relation in (I.32) that for all j ≥ 0,
χj is a function of x, u, . . . , u(J+j+1) on this neighborhood with

∂χj
∂u(J+j)

=
∂χ0

∂u(J)
, j ≥ 0 . (I.34)

From the first relation in (I.33) and the definition of J , ∂χ0

∂u(J) is not identically zero on U .
Hence, there is a point X = (x, u, u̇, . . .) ∈ U such that ∂χ0

∂u(J) (X ) = ∂χ0

∂u(J) (x, u, . . . , u(J)) 6= 0.
Let K be δ(π0 ◦ ϕ−1)(X ) —note that it might be smaller than δ(π0 ◦ ϕ−1)(X )— i.e. ψ−1

and ψ0 locally depend only on z, v, . . . , v(K), and ∂ψ−1

∂v(K) and ∂ψ0

∂v(K) are not both identically
zero on any neighborhood of X . This implies, since ∂χ0

∂u(J) is nonzero at X , that there is a
neighborhood U of X such that, on U , ∂χ0

∂u(J) does not vanish, ψ−1 and ψ0 depend only on
z, v, . . . , v(K) and ∂ψ−1

∂v(K) and ∂ψ0

∂v(K) are not both identically zero. We have, on U ,

x = ψ−1(χ−1(x, u, . . . , u(J−1)) , χ0(x, u, . . . , u(J)) , . . . , χK(x, u, . . . , u(J+K)) )
u = ψ0(χ−1(x, u, . . . , u(J−1)) , χ0(x, u, . . . , u(J)) , . . . , χK(x, u, . . . , u(J+K)) ) .

(I.35)

K cannot, for the same dimensional reasons as J , be equal to −1, hence K ≥ 0. Now,
suppose that J ≥ 1. Then J +K ≥ 1, and taking the derivative of both identities in (I.35)
with respect to u(J+K) therefore yields

∂ψ−1

∂v(K)

∂χK
∂u(J+K)

=
∂ψ0

∂v(K)

∂χK
∂u(J+K)

= 0 (I.36)

identically on U . This is impossible because on one hand ∂χK

∂u(J+K) does not vanish because
of (I.34) and on the other hand K has been defined so that ∂ψ−1

∂v(K) and ∂ψ0

∂v(K) are not both
identically zero on U . Hence J ≥ 1 is impossible.

We have proved that J = 0. Hence χj depends only on x, u . . . u(j) (x for j = −1) for
all j ≥ −1 (see above) and ∂χj

∂u(j) is, for all j, nonsingular at all points (consequence of the
smooth invertibility of ϕ). This is the definition of a static diffeomorphism.
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I.7 Dynamic linearization

A controllable linear system is a system of the form (I.19) where the function f is linear,
i.e. f(x, u) = Ax + Bu with A and B constant matrices, and (Kalman rank condition) the
rank of the columns of B, AB, A2B is n.

There is a canonical form under static feedback, known as Brunovský canonical form
[5] for these systems : they may be transformed via a static diffeomorphism (from Mm,n

∞
to itself) to a linear system where A and B have the form of some “chains of integrators”
of “length” r1, . . . , rm; the diffeomorphism Υn,(−r1,...,−rm) from Mm,n

∞ to Mm,0
∞ (see (I.15))

which “cuts off” all these integrators then transforms this system into C (see (I.20)) :

Proposition I.4 ([5]) A controllable linear system with m inputs is globally equivalent to
the canonical system C on Mm,0

∞ .

We wish to call dynamic linearizable a system which is equivalent to a controllable linear
system. From the above proposition, this may equivalently be stated as :

Definition I.3 A system is (locally/globally) dynamic linearizable if and only if it is (lo-
cally/globally) equivalent to the canonical linear system C on M0,m

∞ .

Of course this concept is the same as in [26, “analytic approach”] since the equivalence
is the same. In [16, 17, 26], the notion of linearizing outputs or flat outputs is used to define
flat control systems as these which admit such outputs. It is proved that flatness coincides
with equivalence by endogenous feedback to a controllable linear system. In [23, 24] a system
is called free if the differential algebra (C∞(Mm,n

∞ ), LF ) is free; the linearizing outputs we
define below are free generators of this differential algebra. The following theorem in a sense
re-states the result “flat ⇔ linearizable by endogenous feedback”.

Theorem I.4 (linearizing outputs) A system F on Mm,n
∞ is locally dynamic linearizable

at a point X if and only if there exist m smooth functions h1, . . . , hm from a neighborhood
of X in Mm,n

∞ to IR such that (LjFhk)1≤k≤m,0≤j is a system local of coordinates at X . It
is globally dynamic linearizable and only if there exist m smooth functions h1, . . . , hm from
Mm,n

∞ to IR such that (LjFhk)1≤k≤m,0≤j is a global system of coordinates. These functions
are called linearizing outputs.

Proof : If F is dynamic linearizable, there exists a (local/global) diffeomorphism ϕ from
Mm,n

∞ to Mm,0
∞ such that C = ϕ∗F . Define hk by hk = v

(j)
k ◦ ϕ with v

(j)
k the canonical

coordinates on M0,m
∞ . Since v(j)

k = LjCvk (the jth Lie derivative of vk along C) and C = ϕ∗F ,
we have

LjFhk = LjF (vk ◦ ϕ) =
(
Ljϕ∗F vk

)
◦ ϕ = v

(j)
k ◦ ϕ ,

so that, since ϕ is a diffeomorphism and (v(j)
k )1≤k≤m,0≤j is a system of coordinates on Mm,0

∞ ,
(v(j)
k ◦ϕ)1≤k≤m,0≤j is a system of coordinates on Mm,n

∞ . Conversely, if there exist m functions
h1, . . . , hm enjoying this property, then one may define the diffeomorphism ϕ mapping a point
(x,U) of Mm,n

∞ to the point of M0,m
∞ whose coordinate v(j)

k is LjFhk(x,U). It is clear that
ϕ∗F = C.
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Of course, this is far from being a solution to dynamic feedback linearization since one
has to determine if linearizing outputs exist, which is not an easy task; see Chapter II for
bibliography and a discussion of this topic. Let us give a rather convenient way of tackling this
problem by transforming it into its “infinitesimal” version. Recall that a Pfaffian system is a
family of differential forms of degree 1 with constant rank; any family of forms generating the
same module (or co-distribution) defines the same Pfaffian system. The infinitesimal version
of linearizing outputs is and object already defined n[2, 33] :

Definition I.4 A Pfaffian system (ω1, . . . , ωm) is called a linearizing Pfaffian system at
point X if and only if, for a certain neighborhood U of X , the restriction to U of the forms
LjFωk, j ≥ 0, 1 ≤ k ≤ m form a basis of the C∞(U)-module Λ1(U) of all differential forms
on U .

We have three comments on this definition. Firstly, this is a property of the Pfaffian system
(ω1, . . . , ωm) rather than the m-uple of 1-forms since it is not changed when changing the
collection of forms ω1, . . . , ωm into another collection which span the same module. Secondly,
one may prove than the rank of such a Pfaffian system must bem (see the proof of Proposition
I.2). Finally, one should not be mislead by the terminology : existence of a linearizing
Pfaffian system does not imply linearizability :

Theorem I.5 A system F on Mm,n
∞ is locally dynamic linearizable at point X if and only

if there exists, on a neighborhood of X , a linearizing Pfaffian system (ω1, . . . , ωm) which is
locally completely integrable.

By locally completely integrable, we mean the classical Frobenius condition dωk ∧ ω1 ∧
. . .∧ωm = 0; note that the condition that (LjFωk)1≤k≤m,0≤j be a basis of Λ1(U) implies that
the rank at all point of (ω1, . . . , ωm) is m, and is therefore constant.
Proof : The condition is obviously necessary from Theorem I.4 by taking ωk = dhk.
Conversely, one may apply the finite dimensional Frobenius theorem to (ω1, . . . , ωm) because
they depend on a finite number of variables, and, as noticed above, they have constant rank
m : there exists m functions h1 . . . hm (of the same number of variables than these appearing
in ω1 . . . ωm) such that dh1, . . . ,dhm span the same co-distribution than ω1, . . . , ωm; this
implies that (LjFdhk)1≤k≤m,0≤j is also a basis of Λ1(U). Define the map ϕ : U →Mm,0

∞ as
assigning to a point (x,U) of Mm,n

∞ to the point of M0,m
∞ whose coordinate v(j)

k is LjFhk(x,U).
It is clear that for all function h̃ ∈ C∞(M0,m

∞ ),
(
LC h̃

)
◦ ϕ = Lϕ

(
h̃ ◦ ϕ

)
, so that theorem

I.3 implies that ϕ is a local diffeomorphism.
This result is more interesting in the light of the fact that a controllable system admits a

linearizing Pfaffian system at “almost all” points. Next chapter develops further this point
of view, see also [2] for a more algebraic approach.
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Chapter II

Infinitesimal Brunovský form for
nonlinear systems with applications
to dynamic linearization
Eduardo Aranda-Bricaire, Claude H. Moog and Jean-Baptiste Pomet

Abstract

We define, in an infinite-dimensional differential geometric framework, the “infinitesimal
Brunovský form” which we previously introduced in another framework and link it with
equivalence via diffeomorphism to a linear system, which is the same as linearizability by
“endogenous dynamic feedback”.

Keywords : Nonlinear control systems, Dynamic feedback linearization, endogenous dy-
namic feedback, Brunovský Canonical form, Pfaffian systems, flat systems, linearized control
system.

II.1 Introduction and Problem Statement

The purpose of this note is to present a “geometric” version of the constructions made in
[2, 33]. The framework from Chapter I will be used ; it is briefly summed up in section II.2.

The contribution of [2, 33] was to construct a so-called “infinitesimal Brunovský form”
(“non-exact Brunovský form” in [33]) for controllable nonlinear systems and to relate it
to dynamic linearization; they use the linear algebraic framework introduced in [11]. The
point of view on the feedback linearization problem was the one of looking for “linearizing
outputs”, following the idea of [16, 17, 26]. It is therefore, following the terms of [16, 17, 26],
linearization via endogenous dynamic feedback. In [33], we relied explicitly upon the notion
of differential flatness [16, 17, 26], whereas [2] re-defines the notion of linearizing outputs in
terms of dynamic decoupling and structure at infinity.

Here, in the framework of Chapter I, dynamic linearization is equivalence to a linear
system via diffeomorphism on the extended state space manifold; linearizing outputs are

21
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functions such that these and all their “time-derivatives” are a set of local coordinates on
the generalized state-space manifold. The main interest of this approach over the algebraic
ones is that it is possible to give local notions, and therefore singularities are not ignored.

In section II.3, we define the infinitesimal Brunovský form and relate it to some work on
time-varying linear systems and linearized systems of nonlinear systems [14, 15]. In section
II.4, we relate this construction to existence of linearizing outputs, and explain why it provides
a good framework for searching linearizing outputs.

II.2 Summary of Chapter I

2.1. The “infinite dimensional manifold” Mm,n
∞ is, for short, IRn × (IRm)IN . A global

system of coordinates is x1, . . . , xn, u1, . . . , um, u̇1, . . . , u̇m, ü1, . . .. It is endowed with the
product topology : an open set may be described by some restrictions on a finite number
of coordinates, i.e. there is a k̃ such that, considered as an open set of IRn × (IRm)IN =
IRn × (IRm)k̃ × (IRm)IN , it can be written Õ × (IRm)IN with Õ an open set of IRn × (IRm)k̃.

2.2. A smooth function on Mm,n
∞ is one which depends only on a finite number of coor-

dinates and is smooth as a function of these coordinates. C∞(U) stands for the algebra of
smooth functions defined on an open subset U of Mm,n

∞ . A smooth mapping from Mm,n
∞

to Mm̃,ñ
∞ is a mapping whose composition with any smooth function is a smooth function.

A diffeomorphism from Mm,n
∞ to Mm̃,ñ

∞ is a bijective smooth mapping whose inverse is a
smooth mapping.

2.3. A vector field is a possibly infinite linear combination
∑
vi

∂
∂wi

where the vi’s are
smooth functions and the wi’s are some of the coordinates x1, . . . , xn, u1, . . . , um, u̇1, . . . ,
u̇m, . . .. A differential form of degree 1 (or 1-form) is, with the same conventions, a finite
linear combination

∑
vidwi. Λ1(U) stands for the C∞(U)-module of 1-forms defined on U .

2.4. All the “formulas” from finite dimensional differential calculus involving objects like Lie
brackets and Lie derivatives are valid. For instance, the Lie derivative of a form ω =

∑
vidwi

along a vector field F may be computed, in coordinates, according to LFω =
∑
LF vidwi +

vid(LFwi). Also, a diffeomorphism carries vector fields or differential forms from one manifold
to another, we use the usual notation ϕ∗F or ϕ∗ω.

2.5. A smooth control system (I.1) :

ẋ = f(x, u) (II.1)

with state x ∈ IRn and input u ∈ IRm is represented by a single vector field

F = f(x, u)
∂

∂x
+ u̇

∂

∂u
+ ü

∂

∂u̇
+ . . . (II.2)

on Mm,n
∞ . We often refer to “system F”, confusing system (II.1) with vector field F .

2.6. The Lie derivative along F defined by (II.2) is simply the “time-derivative” according
to (II.1) : we often write ϕ̇ or ω̇ instead of LFϕ or LFω for a function ϕ or a 1-form ω.
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2.7. A diffeomorphism from Mm,n
∞ to Mm̃,ñ

∞ given by (x, u, u̇, ü, . . .) 7→ (z, v, v̇, v̈, . . .) is said
to be a static diffeomorphism if and only if z depends only on x, v depends only on x
and u, v̇ depends only on x, u and u̇ ... A static diffeomorphism is nothing more than a
nonsingular static transformation in the usual sense : if F is a system on Mm,n

∞ and F̃ is a
system on Mm̃,ñ

∞ , existence of a static diffeomorphism ϕ such that F̃ = ϕ∗F is equivalent to
n = ñ, m = m̃ and static equivalence of the control systems associated with F and F̃ .

2.8. Of course, n = 0 is not ruled out in the above definitions, coordinates on Mm,0
∞ are

simply {u, u̇, ü, . . .}, and the only system is the canonical linear system with m inputs
(I.20) :

C =
∞∑
0

u(j+1) ∂

∂u(j)
. (II.3)

It has “no state”, but one should not worry about this since n = 0 is obtained after “cutting
all the integrators” in a canonical linear system [5] and arbitrarily renaming some states
“inputs”. Dynamic linearizability is conjugation via a diffeomorphism to system C :

Definition II.1 (rephrasing of Definition I.3)A system F is locally dynamic linear-
izable at point X ∈ Mm,n

∞ if and only if there exists a neighborhood U of X in Mm,n
∞ , an

open subset V of Mm,0
∞ , and a diffeomorphism ϕ from U to V such that,

on U , ϕ∗F = C .

2.9. Consider a C∞(U)-module of vector fields D (resp. of forms H), defined on an open set
U . The annihilator of D is the module of the forms which vanish on all the vector fields of
D, and vice-versa :

H⊥ = { X , ∀ω ∈ H, 〈ω,X〉 = 0 } ; D⊥ = { ω , ∀X ∈ D, 〈ω,X〉 = 0 } .

D(X ) (resp. H(X )) denotes the subspace of the tangent (resp. cotangent) space to Mm,n
∞ at

point X ∈ U made of all the X(X ) for X ∈ D (resp. ω(X ) for ω ∈ H). We call the dimension
of D(X ) (resp. H(X )) the pointwise rank of D (resp. H) at point X . D or H is said to be
nonsingular at point X if and only its the pointwise rank is constant in a neighborhood
of X ; it is then equal to the rank of the module over C∞(U).

II.3 The Infinitesimal Brunovský Form

Let us define the following sequence of C∞(Mm,n
∞ )-modules of vector fields :

D−j = Span { ∂
∂u(j+1) ,

∂
∂u(j+2) , . . . } j ≥ 0

...
D0 = Span { ∂

∂u̇ ,
∂
∂ü ,

∂
∂u(3) , . . . }

D1 = Span { ∂
∂u ,

∂
∂u̇ ,

∂
∂ü ,

∂
∂u(3) , . . . }

...
Dk+1 = Dk + [F , Dk ]

...
D∞ =

∑
k

Dk

(II.4)
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and, since these are “infinite-dimensional”, we define for each Dk (k ≥ 1) its “ ∂
∂x part” :

D̂k = Dk ∩ Span { ∂

∂x
} , k ∈ [1,∞] (II.5)

(Span{ ∂
∂x} stands for the C∞(Mm,n

∞ )-module generated by ∂
∂x1

, . . . , ∂
∂xn

), which makes D̂k(X )
(see paragraph 2.9) finite-dimensional for all X ∈Mm,n

∞ ), and yields

Dk = D̂k ⊕ D1 , k ∈ [1,∞] . (II.6)

Note that (II.5) and (II.6) are both valid for k = ∞ and that D̂∞ might as well have been
defined by D̂∞ =

∑
k

D̂k . We define also a sequence of C∞(Mm,n
∞ )-modules of forms :

H−j = Span {dx , du , . . . , du(j) } j ≥ 0
...

H0 = Span {dx , du }
H1 = Span {dx }

...
Hk+1 = { ω ∈ Hk , ω̇ = LFω ∈ Hk }

...
H∞ =

⋂
k

Hk .

(II.7)

See paragraphs 2.4 and 2.6 for a definition of ω̇ or LFω. We have the following relation
between the Dk’s and the Hk’s :

Proposition II.1 All the modules Dk and Hk are invariant by static feedback, i.e. by static
diffeomorphism of Mm,n

∞ (see paragraph 2.7), and, for all k,

H∞ ⊂ Hk+1 ⊂ Hk , Dk ⊂ Dk+1 ⊂ D∞ , Hk = D⊥k , Dk ⊂ H⊥k , (II.8)

with H⊥k = Dk at points where D̂k is nonsingular (see paragraph 2.9).

Proof : From (II.4) and Proposition I.1, a static diffeomorphism ϕ does not change Dk for
k ≤ 1; since the recursive definition of Dk for larger k only uses Lie brackets, it is then clear
that the modules built according to (II.4) from ϕ∗F are exactly ϕ∗Dk. The two first relations
in (II.8) are obvious from (II.4) and (II.7) and the fourth one is a consequence of the third

one because Dk ⊂
(
D⊥k

)⊥
, with an equality at nonsingular points. Let us prove the first one

by induction. It is obvious for k ≤ 1. Let us suppose that it is true for k ≥ 1. From the fact
that if 〈ω,X〉 = 0 then 〈LFω,X〉 = −〈ω, [F,X]〉, we have :

ω ∈ Hk+1 ⇔ ω ∈ Hk and Lϕω ∈ Hk

⇔ ∀X ∈ Dk , 〈ω,X〉 = 〈LFω,X〉 = 0
⇔ ∀X ∈ Dk , 〈ω,X〉 = 〈ω, [F,X]〉 = 0 ⇔ ω ∈ D⊥k+1 .

We shall now relate this construction to accessibility. The following Lie algebra is defined
in [38], and often called the strong accessibility Lie algebra : this Lie algebra of vector
fields on IRn is the Lie ideal generated by all the vector fields f(u, .)− f(v, .) for all possible
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values of u and v in the Lie algebra generated by the vector fields f(u, .) for all possible
values of u. The main result on strong accessibility in [38] (see the definition there) is that
it is equivalent to the strong accessibility Lie algebra having rank n. In [9], the strong jet
accessibility Lie algebra is defined; it differs from the strong accessibility Lie algebra in
that the differences f(u, .) − f(v, .) are replaced by derivatives of all orders with respect to
all the components of u. It is easy to see (this is actually its definition in [9]) that it is the
Lie algebra generated by all the vector fields

adjf(.,u)g
K
u , j ∈ IN, K = (k1, . . . , km) ∈ INm, gKu =

∂k1+...+kmf

∂uk11 . . . ∂ukm
m

. (II.9)

It a priori depends on u. In the analytic case, it does not depend on u and is equal, for all
value of u, to the strong accessibility Lie algebra. Of course, in the general (smooth) case,
full rank for this Lie algebra is sufficient, but not necessary, for strong accessibility. A vector
field on IRn depending on u, like these defined in (II.9) and all their iterated Lie brackets,
clearly defines a vector field on Mm,n

∞ (which belongs to Span{ ∂
∂x} and commutes with all

the ∂

∂u
(j)
k

for j ≥ 1 but not a priori with the ∂
∂uk

’s). Here, we call L̂ the Lie algebra composed

of the vector fields on Mm,n
∞ associated to these in the strong jet accessibility Lie algebra as

defined by (II.9) (or in [9]), and we define L by

L = L̂ ⊕ D1 = L̂ ⊕ Span { ∂

∂u
,
∂

∂u̇
,
∂

∂ü
,

∂

∂u(3)
, . . . } . (II.10)

L is obviously a Lie algebra because [ ∂
∂uk

, L̂] ⊂ L̂ and [ ∂

∂u
(j)
k

, L̂] = {0} for j ≥ 1. The phrase

“strong jet accessibility Lie algebra” will further refer to L rather than to a Lie algebra of
vector fields on IRn, and L̂ is its ∂

∂x -component. We have :

Theorem II.1 For any open subset U of Mm,n
∞ ,

1. L|U (restriction to U of the strong jet accessibility Lie Algebra) is the Lie Algebra
generated by (i.e. the involutive closure of) D∞|U (the restriction of D∞ to U).

2. If the C∞-module D̂∞
∣∣∣
U

is finitely generated, then it is a Lie algebra, and so is D∞|U ,
and hence :

D∞|U = L|U i.e. D̂∞
∣∣∣
U

= L̂
∣∣∣
U
. (II.11)

Proof : Point 1 is straightforward from (II.9) and (II.4). We only have to prove that if U
is such that D̂∞

∣∣∣
U

is finitely generated, then D∞|U is a Lie algebra ; for this, we shall prove
that the module of vector fields

M = {X ∈ D∞|U , [X, D∞|U ] ⊂ D∞|U}

is equal to D∞|U . By assumption, D∞|U is generated by the vector fields ∂

∂u
(j)
k

, 1 ≤ k ≤ m,

j ≥ 0, plus a finite number of vector fields of Span{dx} whose expressions involve only a
finite number, say J , of time-derivatives of u; D∞|U is therefore invariant by Lie bracket
by the vector fields ∂

∂u
(j)
k

for j ≥ J , which span D−(J−1). M therefore contains D−(J−1) ;
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furthermore, it is a submodule of D∞|U , invariant by F from Jacobi identity. Since it is clear
that, for all k, and in particular k = −(J − 1), D∞|U is the smallest module of vector fields
which contains Dk and is invariant by Lie brackets by F , M = D∞|U .

For further considerations, we will avoid “singular” points in the sense of the following
definition where Hk + Ḣk stands for the module over smooth functions spanned by all the
forms ω and ω̇ with ω ∈ Hk. “Nonsingular” was defined in paragraph 2.9.

Definition II.2 A point X ∈Mm,n
∞ is called a Brunovský-regular point for system F if

and only if one of the two following (equivalent) conditions is satisfied :
(i) All the modules D̂k (k ≥ 2) are nonsingular at X .
(ii) All the modules Hk + Ḣk (k ≥ 2) are nonsingular at X .

These properties are true for all k ≥ 0 if and only if they are true for k = 2, . . . , n+ 1. We
call ρk the locally constant rank of Hk. Around a Brunovský-regular point, there exists an
integer k∗ such that, for all k ≤ k∗, ρk+1 ≤ ρk − 1 and Hk = Hk+1 = H∞ for k > k∗.

Proof of i⇔ii : Suppose that all the D̂k’s, and thus all the Hk’s, are nonsingular at X .
For a certain k, let {η1, . . . , ηp+q} be a basis of Hk with {η1, . . . , ηp} a basis of Hk+1. The
forms η1, . . . , ηp+q, η̇p+1, . . . , η̇p+q span Hk + Ḣk. On the other hand, if a linear combination∑p+q
i=1 µiηi +

∑q
i=1 λiη̇p+i vanishes at X then, for all vector field X ∈ Dk, 〈

∑q
i=1 λiη̇p+i, X〉,

which is equal to 〈
∑q
i=1 λiηp+i, [F,X]〉, vanishes at X , hence 〈

∑q
i=1 λiηp+i, Y 〉(X ) = 0 for

all Y ∈ Dk+1; since {η1(X ), . . . , ηp(X )} is a basis of the annihilator of Dk+1(X ) and
{η1(X ), . . . , ηp+q(X )} are independent, all the λi’s vanish at X ; hence

∑p+q
i=1 µiηi vanishes

at X , hence all the µi’s also vanish at X . Hence {η1(X ), . . . , ηp+q(X ), η̇p+1(X ), . . . , η̇p+q(X )}
is a basis of Hk(X ) + Ḣk(X ) and Hk + Ḣk is nonsingular at X .

Conversely suppose that all the modules Hk + Ḣk are nonsingular at X . Let Ck =
{X ∈ Dk, [F,X] ∈ Dk} and Ĉk = Ck ∩ Span{ ∂

∂x ,
∂
∂u}. Clearly, Ck = Ĉk ⊕ D0. Arguments

similar to these of the end of the proof of Proposition II.1 show that (Hk + Ḣk)⊥ = Ck
(equality between modules). All the Ĉk’s are therefore nonsingular at X . Let us prove
by induction that all the modules D̂k are nonsingular too. This is true for k = 1 (D̂1 =
{0}). Suppose that it is true for k ≥ 1, and let {. . . , ∂∂ü ,

∂
∂u̇ , X1, . . . , Xp+q} be a basis of Dk

with {. . . , ∂∂ü ,
∂
∂u̇ , X1, . . . , Xp} a basis of Ck. Then the same arguments as in the first part

of this proof show that {X1(X ), . . . , Xp+q(X ), [F,Xp+1](X ), . . . , [F,Xp+q](X )} is a basis of
Span{ ∂

∂u} ⊕ Dk+1(X ) and D̂k+1 is nonsingular at X .

Theorem II.2 (Infinitesimal Brunovský form) Around a Brunovský-regular point there
exists ρ∞ functions of x only χ1, . . . , χρ∞, and m 1-forms ω1, . . . , ωm, and m non-negative
integers r1 . . . , rm such that

{dχ1, . . . ,dχρ∞} is a basis of H∞ = Hl, for l ≥ k∗ + 1 (II.12)

{dχ1, . . . ,dχρ∞} ∪ {ω(j)
k , rk ≥ l , 0 ≤ j ≤ rk − l } is a basis of Hl, for all l ≤ k∗.(II.13)

Furthermore all the ωk’s are in H1 = Span{dx} —i.e. rk ≥ 1 for all k— if and only if, at
the point (x, u) under consideration,

rankIR {
∂f

∂u1
(x, u), . . . ,

∂f

∂um
(x, u) } = m . (II.14)
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At a Brunovský-regular point, D∞ is equal to Dn+1 and is hence nonsingular and hence
locally finitely generated. Hence strong accessibility implies, from Theorem II.1, that ρ∞ = 0.
In that case and if (II.14) is met, (II.13) implies

{ω(j)
k , 0 ≤ k ≤ m, 0 ≤ j ≤ rk − 1 } is a basis of H1 = Span{dx}

{ω(j)
k , 0 ≤ k ≤ m, 0 ≤ j ≤ rk } is a basis of H0 = Span{dx,du} .

(II.15)

Hence, with ωk,j = ω
(j)
k , and with the ai,j ’s and bi,j ’s some functions such that the matrix

[bi,j ]i,j is invertible at X ,

χ̇1 = γ1(χ1, . . . , χρ∞)
...

χ̇ρ∞ = γρ∞(χ1, . . . , χρ∞)
ω̇i,1 = ωi,2
ω̇i,2 = ωi,3

...
ω̇i,ri−1 = ωi,r1
ω̇i,r1 =

∑n
j=1 ai,jdxj +

∑m
j=1 bi,jduj


1 ≤ i ≤ m .

(II.16)

We call this “infinitesimal Brunovský form” because it looks like the canonical Brunovský
form [5] for linear system; it is not a “canonical form” for any equivalence relation : the data
of the forms ω1, . . . , ωm and of (II.16) does not give a unique system.
Proof : The proof goes along the lines of [2] or [33]. Since we are at a Brunovský-regular
point, H∞ is nonsingular and locally spanned by exactly ρ∞ forms. These forms depend on a
finite number of variables x, u, . . . , u(K). One may then project these forms, and hence H∞,
on the finite dimensional manifold Mm,n

K (see Section I.3.2) and use the finite dimensional
Frobenius theorem : from Theorem II.1, H∞ is completely integrable and therefore is spanned
by ρ∞ exact forms dχ1 . . .dχρ∞ with χ1 . . . χρ∞ some functions, which depend only on x
because dχi ∈ D∞ ⊂ D1. Then the forms ωk may be constructed recursively such that
(II.13) holds :
- it holds for l ≥ k∗ + 1 provided all the rk’s are no larger than k∗ (it will be the case).
- chose ω1, . . . , ωρk∗ so that {dχ1, . . . ,dχρ∞ , ω1, . . . , ωρk∗} is a basis of Hk∗ , and set r1 = . . . =
rρk∗ = k∗, (II.13) is then satisfied for l ≥ k∗ provided all the remaining rk’s are no larger
than k∗ − 1 (it will be the case).
- Induction on `, downward from ` = k∗ to ` = 0 : for 0 ≤ ` ≤ k∗ − 1, let us suppose that
(II.13) is true for l ≥ `+ 1 (assuming that all the rk’s corresponding to ωk’s which have not
yet been built are no larger than `), and build some ωk’s with rk = ` so that (II.13) is true for
l ≥ `. It is not difficult to prove (see [2, proof of Th. 3.5], really similar because by assumption
H`+1 + Ḣ`+1 is nonsingular here) that {dχ1, . . . ,dχρ∞} ∪ {ω

(j)
k , rk ≥ `+ 1, 0 ≤ j ≤ rk − `} is

a set of linearly independent elements of H`, actually a basis of H`+1 + Ḣ`+1 ⊂ H`. Add, if
they do not form a basis of H`, some new ωk’s with the corresponding rk’s equal to `.

After l = 0, no new ωk’s are needed because if there is a certain number of ωk’s such
that (II.13) holds for l = 0 (we have not yet proved there are exactly m of them), then
du1, . . . ,dum are linear combinations of the dχi’s and the ω(j)

k ’s for rk ≥ 0 and 0 ≤ j ≤ rk,
which immediately implies that, for q > 0, du(q)

1 , . . . ,du(q)
m are linear combinations of the
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dχi’s and the ω(j)
k ’s for rk ≥ 0 and 0 ≤ j ≤ rk + q, i.e. (II.13) is met for l = −q < 0 without

any additional ωk’s; this ends the construction of the ωk’s and proves rk ≥ 0 for all k. There
are exactly m ωk’s because an obvious consequence of (II.13) is that ρl− ρl+1 is equal to the
number of rk’s larger or equal to l; in particular, since ρl − ρl+1 = m for l ≤ 0 (see (II.7)),
the total number of ωk’s is m. To prove the very last part of the theorem, one therefore has
to prove that ρ1 − ρ2 = m if and only if (II.14) holds, which is obvious because, from (II.4),
D2 = D1 ⊕ Span{ ∂f∂u1

, . . . , ∂f
∂um

} and because of Brunovský-regularity.

The reason for defining this “Brunovský form” in [2, 33] was to suggest a way to look for
“linearizing outputs” (see theorem II.3 below for definition and comments).

Definition I.4 introduces, as in [2, 33], the notion of a linearizing Pfaffian system. Recall
that one should not be mislead by the terminology : a linearizing Pfaffian system, contrary to
a linearizing output, does not linearize anything unless it has more properties (integrability,
see Theorem II.3). An an immediate consequence of Theorems II.1 and II.2 is :

Corrolary II.2 If a system F is locally strongly accessible around a point X , which is
Brunovský-regular for F , then F , admits, locally around X , a linearizing Pfaffian system
(ω1, . . . , ωm). A possible choice is the forms ω1, . . . , ωm constructed in Theorem II.2. If
(II.14) holds, ω1, . . . , ωm are in H1 = Span{dx}.

Comments on this “Brunovský form”

Let us indicate the similarity between the content of this section and the algebraic framework
for “time-varying” linear systems developed in [13, 14] for example.

For U an open subset of Mm,n
∞ , let C∞(U)[LF ] be the algebra of differential operators

which are polynomials in the Lie derivative with respect to F with coefficients in C∞(U).
This is a non-commutative algebra since (aLF )(bLF ) = abL2

F +a(LF b)LF . It plays the same
role as the non-commutative ring k[ d

dt ] (k is a differential field) introduced in [13] to define
linear time-varying systems : a linear system is a module over this ring and it is controllable
if and only if it is a free k[ d

dt ]-module (which is also a k vector space).
In the nonlinear case, in [13, 15] a system is represented by a differential field k and, via

Kähler differentials, one may define the linearized system as a k[ d
dt ]-module, whose equivalent

here is the C∞(U)[LF ]-module Λ1(U).
Relying upon results from [37, 9] which state that a nonlinear system satisfying the strong

accessibility condition has a controllable linear approximation along “almost any” trajectory,
a nonlinear system is said to be controllable in [15] if and only if the k[ d

dt ]-module associated
to the differential field k is free.

Note that the assertion “(ω1, . . . , ωm) is a linearizing Pfaffian system” (or (II.13) with
ρ∞ = 0) is equivalent to “(ω1, . . . , ωm) is a basis of the C∞(U)[LF ]-module Λ1(U)”; hence
Corollary II.2 constructs a basis of this module, and hence establishes that it is free. We have
proved (theorem II.1), that, at a Brunovský-regular point (and even at a point where D̂∞ is
locally finitely generated), the strong accessibility rank condition implies that the module is
free, or that the linearized system is controllable in the sense of [13, 15]. This is not exactly
a consequence of [37, 9]. Technically, the result is contained in the fact that D∞ is (around a
regular point) closed under Lie bracket, which may be interpreted as : the torsion submodule
of the C∞(U)[LF ]-module Λ1(U) is “integrable”.
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An algebraic construction of the “canonical Brunovský form” (or of a basis of the module)
for controllable time-varying linear systems, based on some filtrations, is proposed in [14].
The sequence of theHk’s is a filtration of Λ1(U). It does not coincide with these introduced in
[15], but might certainly be interpreted in the same terms. The “well-formedness” assumption
in [15] corresponds to (II.14) at the end of Theorem II.2.

II.4 Dynamic linearization as an integrability problem

Dynamic linearizability from Definition II.1 is actually linearizability by endogenous
dynamic feedback as defined in [26, 16, 17]. It is proved there that this is equivalent to
flatness, i.e. to existence of linearizing outputs or flat outputs. In the present framework,
these are defined below. They are given an interpretation in terms of dynamic decoupling
and structure at infinity in [2] and in [26], and they are defined as the free generators of the
differential algebra C∞(Mm,n

∞ ) in [23, 24].
The following is an immediate consequence of Theorems I.4 and I.5 :

Theorem II.3 Let X be a point of Mm,n
∞ . The following assertions are equivalent :

1. The system F is locally dynamic linearizable at point X .

2. There exist m smooth functions h1, . . . , hm from a neighborhood of X in Mm,n
∞ to IR

such that (LjFhk)1≤k≤m,0≤j is a local system of coordinates at X . Such m functions are
called linearizing outputs (or simply one linearizing output) [16, 17, 26].

3. F admits, on a neighborhood of X , a linearizing Pfaffian system (η1, . . . , ηm) which is
completely integrable, i.e. such that dηk ∧ η1 ∧ . . . ∧ ηm = 0, k = 1 . . .m.

We saw in the previous section that all strongly accessible systems admit, at Brunovský-
regular points, a linearizing Pfaffian system, which, of course, may not be integrable. We
therefore have to investigate what all linearizing Pfaffian systems are, and we may say that
a system is dynamic linearizable if and only if there exists one among all these which is
integrable.

For an open subset U of Mm,n
∞ , let A(U) be the algebra of m×m matrices with entries

in the algebra of differential operators C∞(U)[LF ] :

A(U) ∆= Mm×m (C∞(U)[LF ]) . (II.17)

A matrix in A(U) defines an operator on m-uples of 1-forms in a straightforward manner,
and we have :

Proposition II.3 Let (ω1, . . . , ωm) be a linearizing Pfaffian system and let η1, . . . , ηm be m
1-forms defined on an open set U of Mm,n

∞ . (η1, . . . , ηm) is a linearizing Pfaffian system if
and only if there exists P (LF ) in A(U) which is invertible in A(U) and is such that η1

...
ηm

 = P (LF )

 ω1
...
ωm

 (II.18)
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Proof : There always exists P (LF ) ∈ A(U) such that (II.18) holds because (ω1, . . . , ωm) is
a linearizing Pfaffian system. If (η1, . . . , ηm) is also a linearizing Pfaffian system, there exists
Q(LF ) ∈ A(U) such that  ω1

...
ωm

 = Q(LF )

 η1
...
ηm

 .

Hence Q(LF )P (LF ) and P (LF )Q(LF ) transform respectively (ω1, . . . , ωm) and (η1, . . . , ηm)
into themselves. Hence Q(LF )P (LF ) = P (LF )Q(LF ) = I because the forms ω(j)

k (resp. η(j)
k ),

1 ≤ k ≤ m, j ≥ 0, are linearly independent. Conversely, it is obvious that (II.18) with P (LF )
invertible implies that (η(j)

k )1≤k≤m,j≥0 is a basis of the C∞(U)-module Λ1(U).
A straightforward consequence of Theorem II.2 and Proposition II.3 is :

Theorem II.4 Let X ∈Mm,n
∞ be a Brunovský-regular point for system F , and let ω1, . . . , ωm

be the 1-forms constructed in Theorem II.2, defined on a certain neighborhood U of X . System
F is locally dynamic linearizable at point X if and only if there exists an invertible matrix
P (LF ) ∈ A(U) such that  ω1

...
ωm

 = P (LF )

 ω1
...
ωm

 (II.19)

is a locally completely integrable Pfaffian system, i.e. dωk∧ω1∧. . .∧ωm = 0 for k = 1, . . . ,m.

Of course, this is not per se a solution to the dynamic feedback linearization problem; it
is rather a convenient way to pose the problem of deciding whether or not linearizing outputs
exist. The main difficulty comes from the fact that the degree of P may be arbitrarily large
because the linearizing outputs may depend on an arbitrary number of time-derivatives of u.
Let us make this number artificially finite :

Definition II.4 System F is said to be (x, u, . . . , u(K))-linearizable (for K = −1, this
reads x-linearizable) at point X if and only if there exists some linearizing outputs function
of (x, u, . . . , u(K)) only (on x only for K = −1).

Of course, a system is dynamic feedback linearizable (in the sense of Definition II.1, i.e.
linearizable by endogenous dynamic feedback according to [16, 17, 26], or dynamic linearizable
according to [23, 24]) if and only if it is (x, u, . . . , u(K))-linearizable for a certain K. We have
the following theorem which precises Theorem II.4.

Theorem II.5 Let X ∈ Mm,n
∞ be a Brunovský-regular point for system F , and let ω1, . . . ,

ωm, and r1, . . . , rm be, respectively, the 1-forms and integers constructed in Theorem II.2.
System F is (x, u, . . . , u(K))-linearizable at point X if and only if there exists an invertible
matrix P (LF ) ∈ A(U) satisfying the conditions of Theorem II.4 and such that the degree of
the entries of the k-th column is at most K + rk.

Proof : The condition is necessary for (x, u, . . . , u(K))-linearizability because if h1, . . . , hm
are some linearizing outputs function of x, u, . . . , u(K) only, (II.19) holds with ωk = dϕk
and, from (II.13), the columns of P have to satisfy the degree inequalities. Conversely,
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suppose that (II.19) holds with the degree of the kth column of P being at most K + rk
and the system (ω1, . . . , ωm) completely integrable, then (ω1, . . . , ωm) is spanned by some
exact forms (dh1, . . . ,dhm); the functions hk are linearizing outputs; the degree inequalities
imply that all the ωk’s are in H−K = Span{dx,du, . . . ,du(K)}, and hence that the hk’s are
functions of x, u, . . . , u(u) only.

One of the reasons why our results provide a rather convenient framework is that, outside
some singular points, it is not difficult to describe invertible matrices of a prescribed degree.
As noticed in [14, 15, 22], the polynomial ring C∞(U)[LF ] enjoys many interesting properties.
Namely, it is possible to perform right and left Euclidean division by a polynomial whose
leading coefficient does not vanish. It is well known (see for example [41]) that, in the
constant coefficient case, all invertible polynomial matrices are finite products of “elementary
matrices”, i.e. either diagonal invertible matrices or permutation matrices or matrices whose
diagonal entries are all equal to 1 while only one of the non-diagonal entries is nonzero, and
it is an arbitrary polynomial. Since the tool to get such a decomposition is only Euclidean
division, this remains true in the case of coefficients in C∞(U) as long as one does not have
to perform Euclidean division by a polynomial whose leading coefficient vanishes. This does
not happen often, although it is not very easy in general to say which singularities the
original matrix should not have for this not to happen; in the meromorphic case ([2, 33]),
this never happens since the coefficient of the polynomials then belong to a field and are
therefore invertible, even if they “vanish” at a point, if they are not zero. Now, if one bounds
a priori the degree of the columns of P (say one wishes to decide whether (x, u, . . . , u(K))-
linearizability holds), then all invertible matrices satisfying these bounds may be sorted into
a finite number of types of finite products of elementary matrices, each type involving a finite
number of functions. In each case,

d ( P (LF )

 ω1
...
ωm

 ) = 0

(with d acting on each entry) is a set of partial differential equations in these functions. The
solubility of these PDE’s is equivalent to the existence of a system of linearizing outputs
depending only on a fixed finite number of time-derivatives of u.

II.5 Conclusion

We have developed a framework for looking for linearizing outputs which gives a convenient
way for writing down a system of equations whose solubility is equivalent to the existence
of a system of linearizing outputs. Some work has already been done in the direction of
characterizing the cases where linearizing outputs exist. These results give either sufficient
conditions or necessary and sufficient conditions for existence of linearizing outputs for some
particular cases. For example, (x, u, . . . , u(K))-linearizability (in most cases, K = −1) or a
prescribed “structure at infinity” (see [27, 28, 29]). A criterion for existence of a matrix P of
degree zero for general two-inputs systems is given in [33]. The “sufficiency” part of the result
contained in [29] is re-derived in [3] in a way that simplifies, to our opinion, the argument
partly due to E. Cartan. Finally, a characterization of (x, u)-linearizability for affine systems
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with 4 states and 2 inputs is given in [32]. These last results seem to demonstrate that
“infinitesimal Brunovský form” is a convenient way to tackle the problem of looking for
linearizing outputs.
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[19] (4) M. Fliess, J. Lévine, P. Martin, P. Rouchon, “Towards a new differential geomet-
ric setting in nonlinear control”. Presented at International Geometrical Colloquium,
Moscow, may 1993, and to appear in the proceedings.
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Sc. Paris, t. 302, série I, No15, pp. 547-550, 1986.

[35] D.J. Saunders, The Geometry of Jet Bundles London Math. Soc. Lect. Notes vol. 142,
Cambridge University Press, Cambridge, New-York, Melbourne, 1989.

[36] W.F. Shadwick : “Absolute Equivalence and Dynamic Feedback Linearization”. Syst.
Contr. Lett., 15 (1990), pp. 35–39.

[37] E.D. Sontag, “Finite-dimensional open-loop control generators for nonlinear systems”.
Int. J. of Control, 47 (1988), pp. 537-556.

[38] H. J. Sussmann, V. Jurdjevic, “Controllability of Nonlinear systems”. J. of Diff. Eq.,
12 (1972), pp.95-116.

[39] A.M. Vinogradov : “Local Symmetries and Conservation Laws”. Acta Appl. Math., vol.
2 (1984), pp. 21-78.

[40] J.C. Willems, “Paradigms and puzzles in the theory of dynamical systems”. IEEE Trans.
on Autom. Cont., vol. 36 (1991), pp. 259-294.

[41] W. A. Wolovich, Linear multivariable systems, Springer-Verlag, Applied mathematical
sciences, vol. 11, 1974.

5ESAIM: Control, Optim. & Calc. of Var., 2 (1997), pp. 151–230, http://www.edpsciences.com/cocv/.


