P. Sermanet and K. Kavukcuoglu, Soumith Chintala, and Yann Lecun. Pedestrian detection with unsupervised multi-stage feature learning, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

J. Hosang, M. Omran, R. Benenson, and B. Schiele, Taking a deeper look at pedestrians, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7299034

URL : http://arxiv.org/abs/1501.05790

H. Fukui, T. Yamashita, Y. Yamauchi, H. Fujiyoshi, and H. Murase, Pedestrian detection based on deep convolutional neural network with ensemble inference network, 2015 IEEE Intelligent Vehicles Symposium (IV), pp.223-228, 2015.
DOI : 10.1109/IVS.2015.7225690

A. Angelova, A. Krizhevsky, and V. Vanhoucke, Pedestrian detection with a Large-Field-Of-View deep network, 2015 IEEE International Conference on Robotics and Automation (ICRA), pp.704-711, 2015.
DOI : 10.1109/ICRA.2015.7139256

R. Benenson, M. O. Hosang, and B. Schiele, Ten Years of Pedestrian Detection, What Have We Learned?, pp.613-627, 2015.
DOI : 10.1007/978-3-319-16181-5_47

URL : http://arxiv.org/abs/1411.4304

P. Dollar, C. Wojek, B. Schiele, and P. Perona, Pedestrian Detection: An Evaluation of the State of the Art, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.4, pp.743-761, 2012.
DOI : 10.1109/TPAMI.2011.155

M. Enzweiler and D. M. Gavrila, A Multilevel Mixture-of-Experts Framework for Pedestrian Classification, IEEE Transactions on Image Processing, vol.20, issue.10, pp.2967-2979, 2011.
DOI : 10.1109/TIP.2011.2142006

R. Bunel, F. Davoine, and P. Xu, Detection of pedestrians at far distance, 2016 IEEE International Conference on Robotics and Automation (ICRA), pp.2326-2331, 2016.
DOI : 10.1109/ICRA.2016.7487382

URL : https://hal.archives-ouvertes.fr/hal-01297699

M. Eisenbach, D. Seichter, T. Wengefeld, and H. M. Gross, Cooperative multi-scale Convolutional Neural Networks for person detection, 2016 International Joint Conference on Neural Networks (IJCNN), pp.267-276, 2016.
DOI : 10.1109/IJCNN.2016.7727208

X. Chen, P. Wei, and W. Ke, Qixiang Ye, and Jianbin Jiao. Pedestrian Detection with Deep Convolutional Neural Network, pp.354-365, 2015.

J. Wagner, V. Fischer, M. Herman, and S. Behnke, Multispectral pedestrian detection using deep fusion convolutional neural networks, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), pp.509-514, 2016.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems 25, pp.1097-1105, 2012.

M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila, Multi-cue pedestrian classification with partial occlusion handling, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.990-997, 2010.
DOI : 10.1109/CVPR.2010.5540111

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=