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Non-local Conservation Law from Stochastic Particle Systems

Marielle Simon*, Christian Oliveraf

Abstract

We consider an interacting particle system in R¢ modelled as a system of N stochas-
tic differential equations. The limiting behaviour as the size N grows to infinity is
achieved as a law of large numbers for the empirical density process associated with
the interacting particle system.

Key words and phrases: Stochastic differential equations; Fractal conservation law,
Lévy process; Particle systems; Semi-group approach.

MSC2010 subject classification: 60H20, 60H10, 60F99.

1 Introduction

1.1 Context

There is a vast and growing interest in modeling systems of large (though still finite)
population of individuals subject to mutual interaction and random dispersal (due to, for
instance, the environment). We refer the reader to [6] for a recent textbook on the subject.
More precisely, the behavior of such systems is often described as the limit of the number
of individuals tends to infinity. While at the microscopic scale, the population is well
modeled by stochastic differential equations (SDEs), the macroscopic description of the
population densities is provided by partial differential equations (PDEs), which can be of
different types, for instance linear PDEs for Black-Scholes models, or non-linear PDEs for
density-dependent diffusions. All these systems may characterize the collective behavior
of individuals in biology models, but also agents in economics and finance. The range of
application of this area is huge.

In the present paper the limit processes that we want to obtain belong to the family of
non-local PDEs, which in our case are related to anomalous diffusions. For that purpose, we
study the asymptotic behaviour of a system of particles which interact moderately, i.e. an
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intermediate situation between weak and strong interaction, and which are submitted to
random scattering. It is well-known that in the case where the particles interact with
only few others (which is often the most realistic case), the results can be qualitatively
different, but also mathematically more challenging. Nowadays, there are few rigorous
results at disposal, starting from the seminal paper [26].

The Lagrangian description of our dynamics of the moderately-interacting particles is
given via a system of stochastic differential equations. Suppose that for each ¢ € N, the
process XZ’N satisfies the system of coupled stochastic differential equations in R¢

N
. . 1 . .
dx;N = F(X,f’N, = S vV (XY - vaN)> dt + dLi, (1)
k=1

where {Li};cy are independent R%valued symmetric a-stable Lévy processes on a filtered
probability space (0, F, F;,P), and the functions VY : R? - R, and F : R x R, — R?
are continuous and will be specified in the next paragraph.

Thus we are assuming that the system of N particles is subject to random dispersal,
modelled as a-stable Lévy processes. In this model randomness may be due to external
sources, for instance unpredictable irregularities of the environment (like obstacles, change-
able soils, varying visibility). The moderate interaction is represented by the form of V¥
which writes as

VN (z) = NPV(NTz),

for some function V : R — R, and 8 € (0,1). The case 3 = 0 would correspond to the
long range interaction, and the case = 1 to the nearest neighbor interaction. Further
hypotheses on V' and 8 are given in Assumption 1 below.

We are interested in the bulk behaviour of the whole population of the particles, and
therefore a natural object for mathematical investigation is the probability measure-valued
empirical process, defined as follows: let

1 N

be the empirical process associated to {XZ ’N}izl,..., ~, where d, is the delta Dirac measure
concentrated at a. The drift term which appears in (1) describes the interaction of the
i-th particle located at XZ’N with the random field SV generated by the whole system of
particles at time ¢.The usual procedure includes the following steps:

e show the convergence of the process S™ to a deterministic measure process S>;

e and then, identify S°° as the weak solution to some suitable PDE.



In our case the dynamics of the empirical measure is fully determined by Ito6’s formula:
when we apply it to gb(Xz’N), for any test function ¢ € C’(C)’O(Rd) which is smooth and
compactly supported, we obtain that the empirical measure ng satisfies

<sgv,¢>=<sév,¢>+/0 <5§V,F(-, VST AS) v¢> ds
1[N sth LN Ly i\N i (dsds
vy f) e g3 [0 OO+ - o00) Nasis),
(2)

where £ is the non-local operator corresponding to a symmetric a-stable Lévy process,
defined as

Lo(z) = /]Rd—{o} (o + 2) — ¢(x) — 1y<1y V() - 2) dv(2), (3)

and (v,N) are characteristics coming from the Lévy-I1t6 decomposition Theorem, which
satisfy some conditions related to « € (1,2), see Section 2.1 below for more details. As a
example which satisfies the conditions of our main result, let us give the fractional Laplacian
—(=A)?z, for some a € (1,2), which corresponds to (3) with

K, dz
dv(z) = ‘Z"xm
Our interest lies in the investigation of the behaviour of the dynamics of the processes
t — S in the limit N — oo. This kind of problems was considered by Oelschliger [21],
Jourdain and Méléard [16], Méléard and Roelly-Coppoletta [20], when the sytem of SDE
is driven by standard Brownian motions (see also the introduction in [11]). Up to our
knowledge, the case of Lévy processes driven dynamics has not been fully investigated in
the literature. Let us now state the main result of this paper.

1.2 Assumptions and main result

In the following we denote by || - [|» the usual LP-norm on R and by || - ||Lr—s1e the usual
operator norm. Moreover, for any € € R, we denote by H® = He(Rd) the usual Bessel space
of all functions u € L?(R?) such that

2

< o0
L2

lulle += || 77 [+ X2 2R ]|

where F denotes the Fourier transform of w.

For every e € R, the Sobolev spaces W&2(R%) are well defined, see [25] for the material
needed here. For positive ¢ the restriction of f € W&2(R?) to a ball B(0, R) C R? is in
We2(B(0, R)). The Sobolev spaces H® and W2(R?) have equivalent norms. Let us list
below our assumptions which we use to derive the macroscopic limit:



Assumption 1 Take o € (1,2). We assume that there exists a continuous probability
density V : R? — Ry such that

e V is compactly supported and symmetric,
o VN(z) = NBV(N%x) for some 5 >0,
o V c HTH(RY), for some e,6 > 0,

There are further conditions on (S,e,d). For a technical reason that we will appear later
(more precisely in Lemma 13), we need to assume that e satisfies

d (1-p)d «
5<c<—35 —(1-3) @
and that 0 satisfies (
a 1—-p8)d

This is our main technical assumption. The inequality which appears in (4) gives an extra
condition on B which reads as

0<B< —5—-
2+

Let us note that the sequence {VN}y is a family of mollifiers which will allow us to intro-
duce a mollified version of the empirical density (see below). Moreover we assume:

o F c L®(RY x R) NLip(R? x R).

e The sequence of measures {S }n converges weakly to ug(-)dx in probability, as N —
o0, where ug € L(RY).

e The sequence of mollified initial measures {VN x SéV}N is uniformly bounded in the
Sobolev space HE, namely:

sup HVN * Sév|
NeN

e < 0.

Let us introduce the mollified empirical measure (the theoretical analogue of the nu-
merical method of kernel smoothing) g defined as

@)= (VNeSY) @), aeRre
We are now ready to state our main result:

Theorem 2 We assume Assumption 1. Then, for every n € (g,a), the sequence of pro-
cesses {(gl" )telo,T)} N converges in probability with respect to the
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e weak star topology of L> ([0,7] ; L*(R%)),
e weak topology of L% ([0, 7] ; H*(R%))

e strong topology of L? ([0,7] ; H} (R%))

loc

as N — o0, to the unique weak solution of the non-local PDE
Opu(t, x) + div(F(z,u)u) — Lu(t,z) =0, Ult=0 = o, (6)

where L has been defined in (3) and is the operator of a symmetric a-stable Lévy process.
Namely, for all ¢ € C3°(RY) it holds

t

(u(t.¢) = (w0 + [ (w Plwe) s+ 5 [ (ucopds @

The literature concerning the type of equations mentioned above is immense. We will
only give a partial and incomplete survey of some parts that we feel more relevant for this
paper. For a more complete discussion and many more references, we refer the reader to
the nice works [1, 2, 3, 9, 27]. A large variety of phenomena in physics and finance are
modelled by linear anomalous diffusion equations, see [27]. Fractional conservation laws
are generalizations of convection-diffusion equations and appear in some physical models
for over-driven detonation in gases [7] and semiconductor growth [29], and in areas like
dislocation dynamics, hydrodynamics, and molecular biology.

About the propagation of chaos phenomena, let us also mention that it has recently
been studied in the context well beyond that of the Brownian motion, namely, in the
situation where the driving Brownian motions have been replaced by Lévy processes and
anomalous diffusions. We mention the works [5, 14, 15]. In [14] the authors consider a
singular fractal conservation and they construct a McKean-style non-linear process and
then use it to develop an interacting particle system whose empirical measure strongly
converges to the solution. In [5] a weak result of this type has been obtained. In [15]
the authors deal with an interacting particle system whose empirical measure strongly
converges to the solution of a one-dimensional fractional non-local conservation law via the
non-linear martingale problem associated to the PDE.

The main result of this paper is to generalize the propagation of chaos Theorem given
by Oelschléger [21] for systems of stochastic differential equations driven by Lévy noise,
which include non-linear terms as

/Ot <5§V,F(- L (VN 58 V¢>ds

where ¢ is a smooth test function. Since S}¥ converges only weakly, it is required that
Vi * SN converges uniformly, in the space variable, in order to pass to the limit. Maybe in



special cases one can perform special tricks but the question of uniform convergence is a
natural one in this problem and it is also of independent interest, hence we investigate when
it holds true. Notice that the moderate interaction assumption in [21] reads as 5 € (0, #2)
whereas here we obtain 8 € (0, ﬁﬂrzd)v where « is one of the main characteristics of our
Lévy process. The case = 1 is much more challenging, and up to our knowledge, not
solved for the time being.

Finally, we mention that our source of inspiration was the paper [11] where the authors
use a semi-group approach in order to study the propagation of chaos for a system of
Brownian particles with proliferation, and there they obtain the condition 8 € (0, %),
which already improved the one of [21]. The differences mainly rely on martingale estimates
which, in the present case, are of Lévy type, and therefore contain jumps. We keep the semi-
group approach exposed in [11], but all our main technical lemmas involve new analytic

tools.

Here follows an outline of the paper: in Section 2 below we gather some well-known
results that we use in the paper (with precise references for all the proofs) concerning stable
Lévy processes, semi-group properties and criteria of convergence. In Section 3 we prove
Theorem 2, by following three main steps: first, obtain uniform bounds for the mollified
empirical measure; second, find compact embeddings to extract convergent subsequences;
and third, pass to the limit and use a uniqueness result for the solution to (6).

2 Preliminaries

2.1 Stable Lévy processes

We list a collection of definitions and classical results that can be found in any textbook or
monography on Lévy processes. We refer to Applebaum (2009) [4], Kunita (2004) [18] and
Sato (2013) [23] where all the results and definitions presented in this section are treated.

Definition 3 (Lévy process) A process L = (L;);>0 with values in R? defined on a
probability space (Q, F,P) is a Lévy process if the following conditions are fulfilled:

1. L starts at 0 P—a.s., i.e. P(Ly =0) = 1;
2. L has independent increments, i.e. for k € N and 0 <ty < --- < ty,

Ly, — Ly, ..., Ly, — Ly, are independent ;

3. L has stationary increments, i.e., for 0 < s < t, Ly — Ly is equal in distribution to
Lt—s ;

4. L is stochastically continuous, i.e. for allt >0 and e > 0

lim P(|L, — Ly| > €) = 0.
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The reader can find the proof of the following result in [4, Theorem 2.1.8]:
Proposition 4 Fvery Lévy process has a cad-lag modification that is itself a Lévy process.

Due to this fact, we assume moreover that every Lévy process has almost surely cad-lag
paths. Following [4, Section 2.4] and [23, Chapter 4] we state the Lévy-Ité decomposition
theorem which characterizes the paths of a Lévy process in the following way.

Theorem 5 (Lévy-Ité decomposition Theorem) Consider b € R?, ¢ a positive defi-
nite matriz of R¥¢ and v a measure defined on the Borelians of R? satisfying v({0}) = 0
and [pa(1 A |2[*)v(dz) < occ.

Then there ezists a probability space (2, F,P) on which four independent Lévy processes
exist, L', L? L® and L* with the following properties:

o L} =bt, for allt >0 is called a constant drift ;

e L2 is a Brownian motion with covariance \/o ;

o L3 is a compound Poisson process ;

e L* is a square integrable (pure jump) martingale with an a.s. countable number of
jumps of magnitude less than 1 on every finite time interval.

Hence, for L = L' 4+ L? + L? + L* there exists a probability space on which (Lt)t>0 is a
Lévy process such that E[e'<¢11>] = exp(—ty(£)) where the characteristic exponent (&)
s given by

v = ifh.€) ~ 50068 + [ (€67 —1 il D gen)ulds), € R

Conversely, given a Lévy process defined on a probability space, there exists b € R%, a
Wiener process (Bi)i>0, a covariance matriz /o € R and an independent Poisson
random measure N defined on R* x (R? — {0}) with intensity measure v such that, for all
t>0,

t _ t
Ly =bt++oB; + / / z N(dsdz) + / / z N(dsdz). ()
0 Jo<|z|<1 0 J|z|>1

More precisely, the Poisson random measure N is defined by
N0, xU)y= > 1y(Ls—Ls_) for any U € BR? —{0}), t >0,
s€(0,t]

and the compensated Poisson random measure is given by

N((0,t] x U) = N((0,t] x U) — tv(U).



Throughout this paper we consider furthermore that (L;);>0 is a symmetric a-stable
process for some o € (1,2). We recall some facts about symmetric a-stable processes.
These can be completely defined via their characteristic function, which is given by (see

[23] for instance)
E [ei<§,Lt>] — e—tw(§)7

where

0O = [ (1= il 1) (o) 0

and the Lévy measure v with v({0}) = 0 is given by

& 1U 7’9
U _/;d 1/ TCH'd (9)7

where j is some symmetric finite measure concentrated on the unit sphere S4~1, called
spectral measure of the stable process L;.
Moreover, we assume the following additional property: for some constant C,, > 0,

D(E) > Culé|*, for any ¢ € RY. (10)

We remark that the above condition is equivalent to the fact that the support of the spectral
measure £ is not contained in the proper linear subspace of RY, see [22]. Finally, note that
the Lévy-Ito decomposition now reads as

t t
Ly :/ / z N(dsdz) +/ / 2 N (dsdz), (11)
0 Jz[>1 0 Jo<|z|<1

which corresponds to (8) with b = 0 and 0 = 0. Now, we recall the following well-known
properties about the symmetric a-stable processes (see for instance [23, Proposition 2.5]
and [22, Section 3]).

Proposition 6 Let u; be the law of the symmetric a-stable process L. Then

1. (Scaling property). For any A > 0, L; and )\_iLM have the same finite dimensional
law. In particular, for any t >0 and A € B(R?), p(A) = ul(t_iA).

2. (Existence of smooth density). For anyt > 0, u; has a smooth density p; with respect
to the Lebesgue measure, which is given by

1 —i(x —
o) = / e~il@8) o~tH(E) g,

Moreover pi(z) = pi(—x) and for any k € N, VFp, € LY(R?).

3. (Moments). For any t > 0, if 8 < «, then E[[Lt\ﬁ] < oo, and if B > «a then
E[|L:|?] =



2.2 Semi-group and Sobolev spaces

From now on, we denote P = LP(R%) and H® = Hf(R?). The family of operators, for
t >0,

e _ o
(5) @) = [ mly =) () dy

defines a Markov semi-group in each space HE ; with little abuse of notation, we write e‘*

for each value of ¢.

We consider the operator A : D(A) C L2 — L2 defined as Af = Af. For ¢ > 0, the
fractional powers (I — A)® are well defined for every e € R and ||(I — A)*/2f||.2 is equivalent
to the norm of H®. We recall also

Proposition 7 For everye > 0 and o € (1,2), and given T > 0, there is a constant Ce o 1
such that, for any t € (0,71,

Cs,a,T

H(I o A)E etﬁH]LQ—HL2 = {2/a’

(12)

Proof. We only sketch the proof, which is standard.

STEP 1: Using the scaling property p;(z) = t_gpl(t_éx), we arrive at

k

[e3

t
‘V’”mpt*f‘(x)g 1 /R ‘me H ko)t~ az—t= ax‘dz

[e3

Thus X
V5 o5 £l < 72|V [V o1l

It follows that

|[VFe'“] < Cta.

Herk —SHm —

STEP 2: The sub-Markovian of e* (see [4]) implies that

e fllzz < 1 £llee-

STEP 3: Finally, by a standard interpolation inequality we conclude the proposition for
any €. ®

2.3 Positive operator

Lemma 8 We assume that f € L'NL2 and f > 0. Then for anyt > 0, (I—A)/2 e!£ f > 0.



Proof. We observe that g := (I — A)E/2 et f € L', In fact,
lglles =] (T = A2l < [ fll (1= AT ], < oo

In order to prove that the function g := (I — A)E/ 2 gtl f is non-negative, by Bochner’s
Theorem it is sufficient to prove that its Fourier transform ¢ is definite positive, namely
Re [zzjzl’g\()\i - Aj)gigj] >0 foreveryn € N, \; e RYand & € C, i =1,...,n. We have
~ 2 _ ~
GO = (L+IAP) 2 F

where 1 has been defined in (9). Thus we have to prove that, given n € N, \; € R? and
& eC,i=1,...,n, one has

n

Re[Z (14 [N = ) Pem i) F(y, jm@} >0

ij=1

namely

zae WO F(0) £
+ Z (14 A — )\j|2)6/2€—t¢()\i—)\j) (Re [F (O — Aj) &i€;] + Re [F (N — Ai)éjEiD > 0.
i<j

We observe
Y Re[e 0T 068 = g0 Re 7] = 6 [ o) >0

Since f is non-negative, for i # j we obtain
Re [f (A = A)&&;] +Re [\ = M) §&] 20

Using these two facts above we get the result. m

2.4 Maximal function

Let f be a locally integrable function on R?. The Hardy-Littlewood mazimal function is
defined by

Mf(z) = sup {ﬁ ; flx+y) dy},

0<r<oco

where B, = {z € R? : |z| < r}. The following results can be found in [24].

10



Lemma 9 For all f € WHL(RY) there ewists a constant Cq > 0 and a Lebesque zero set
E C R? such that

7@~ F)] < Cale— ol (MIV|(@) +MIVSI())  for any .y € RAE,
Moreover, for all p > 1 there ewists a constant Cq, > 0 such that for all f € LP(RY)

IMfllLr < Cap [I.fl|Lr-

2.5 Criterion of convergence in probability

Lemma 10 (Gyongy-Krylov [12]) Let {X,}nen be a sequence of random elements in
a Polish space U equipped with the Borel o-algebra. Then X, converges in probability to
a V-valued random element if, and only if, for each pair {Xy, X, } of subsequences, there
exists a subsequence {vy},

vk = (Xokys Xmk))s

converging weakly to a random element v supported on the diagonal set

{(z,y) e U x U :z =y}

3 Proof of Theorem 2

The strategy is as follows:

1. Recall that we already defined

@)= Vs = [ V@ isy ). (13)

Using a mild (semi-group) formulation of the identity satisfied by g/ (Section 3.1),
we prove uniform bounds in Section 3.2 (Lemma 11, Lemma 13 and Lemma 14).

2. Then we apply compactness arguments and Sobolev embeddings to have subsequences
which converge so as to pass to the limit (Sections 3.3 and 3.4).

3. Finally, we use previous works to obtain that the weak solution to (6) is unique in
our class of convergence (Section 3.5).

11



3.1 The equation for ¢ in mild form
We want to deduce an identity for g;¥ (z) from (2). For h > 0, let us consider the regularized
function VY. For every given € R? let us take, in identity (2), the test function
¢z (y) = (e"VY) (z — y). We get
t
(0} ) = (g @)+ [ (S5 FCL )TV (=) ds
1 t
—1-5/ £( hﬁgév)( )ds

T Z / /. o V) o ) (V) (o X)),
Let us write, in the sequel,
<SéV,F(' , géV)V(ehEVN) (x — )> =: (V(ehEVN) * (F( , géV)Sév)) (z).

and similarly for similar expressions. Following a standard procedure, used for instance by
[8], we may rewrite this equation in mild form:

t
Mgl = et (M gd) +/ elt=s)L (VehEVN « (F(-, géV)Sév)) ds
0
N
1 ) ) -~
- (t—s)L hLy N _ yiuN _ (,hLy N _ yiuN )
+N;/0 e /Rd—{o}{(e V¥ (2 — X0 4 2) — ("VY) (2 — XY )}d./\f (dsdz).

By inspection of the convolution explicit formula for e*=9)£ we see that e("9LVf =
Velt=9)L f, and we can also use the semi-group property, hence we may also write

ehﬁgN (t+h£ N /ve(t+h s)L (VN ( ( 795)55))(18

4+ — t S+h)£VN _X;,N_i_
Z/ JRC ) (o — X 1 2)

- (e(t_erh)EVN) (z — X;N) }d./\~fi(dsdz). (14)
This is the identity which we use below. We can also pass to the limit as A — 0 and deduce

t
gt — et[,gN +/ Ve(t_s)£ (VN * (F( ) ggv)sév)) ds

t s,CvN —X;’N—F
NZ/ /]Rd {0} )@ S t)

— (e(t_s)EVN) (z — x2N) }dJ\N/i(dsdz). (15)

12



In what follows we denote by M} the martingale

N
Nv._ L Z (t=s+h) LY NY (o yisN
e N= /0 /Rd—{o} {(6 V= X 2)

- (e(t_‘H'h)EVN) (z— XLN) }dJ\N/i(dsdz). (16)

3.2 Uniform L? bounds
3.2.1 First estimate on ¢V

Lemma 11 For anyt € [0,T] and N € N, it holds

E{H (I - A)am 91{VHL2] < Ce.

Proof. STEP 1. Let us use the L?-norm H'Hp(ngd) in the product space  x R? with
respect to the product measure. From (14) we obtain

| (1 - Ay ehﬁgivHLZ(Qde)

< H (I o A)e/2 e(t—l—h)ﬁg(J]VHLQ(QXRd) (17)
t

+/ (1 - A2 yeltth—s)L (VN s« (F(-, gM)SN)) meRd)ds (18)
0

| (- A2 My (19)

H]LZ(QX]Rd)

where MY has been defined in (16).
STEP 2. The first term (17) can be estimated by

(1= 72026 gy < T = 47265 sy < €

QxR%)

where from now on we denote generically by C > 0 any constant independent of N. The
boundedness of ||(I — A)*/?g{ ”LQ(QXRd) is assumed in Assumption 1.

STEP 3. Let us come to the second term (18) above:

t
/0 | (1= A2 Ve =E (VN (P, g)SY)) [l ameyds

t
<0 [0 A [ AP (VY (B gS) e
We have o
H (I B A)1/2 e(t_S)EHJLQ—)ILZ S (t _ S)l/oc’

13



from Proposition 7. On the other hand, for any = € R¢,
| (VY5 (F( 2)8Y)) (@) | S N Fllog [V 587 (2) [ = [1F o 192 () ]-
Then by Lemma 8 we have

H(I_A)a/z ohE [VN* (F(- 7 géV)Sév)] < O(F) H ([_A)a/z ehlgN

L2(QxRd) — s le(QXRd)'

To summarize, we have
t
[0 AT (Y (P 2052)) s

t
C /2 hL N
§/0 m” (I = A% || L2 rmayds-

STEP 4. The estimate of the third term (19) is quite tricky and we postpone it to Lemma 13
below, where we prove that (I — A)5/? M} is uniformly bounded in L2(Q x R%). Collecting
the three bounds together, we have

t
C
< C I _ E/2 hﬁ N d
L2(QxRd) — +/0 (t . S)l/a H ( HIL2 (OxR4)
We may apply a generalized version of Gronwall lemma and conclude

| (1 - Ay ehﬁgivHM(Qde) <C.

H(I — A)? g

We may now take the limit as h — 0. The proof is complete. m

Remark 12 Taking ¢ = 0 we get that g} is also uniformly bounded: for any t € [0,T]
and N € N,

E[llgf [l2] < C. (20)
3.2.2 Martingale estimate
Lemma 13 For any N € N it holds

| (I — A MY < C.

H]LZ(QX]Rd)

Proof. STEP 1. We decompose M}¥ according to the sum of two integrals, over |z| < 1
and |z| > 1, as follows:

MN =1L +1,

Z/ / s TMLYN) (= XEN 4 2) — (eltstMLY N (7 — X;'fv)}d/\N/'i(dsdz)

N 12]>1

L Z/ / =S TMEYNY (g XN 4oy — (e(t=stmEyNY (5 — X;'fv)}d/\N/'i(dsdz).
|z]<1

14



When |z| > 1 we can use the fact that f‘z‘>1 dv(z) < co. When |z| < 1 this is not true,

but we know that f‘z‘ <1 |2[?dv(z) < oco. Therefore, for this second case, we use the tool of
the maximal function introduced in Section 2.4. For the sake of clarity, along this proof
we denote

FN(s,2,2) = VN (z = X2V 4+ 2) = VN (2 — X2, (21)
STEP 2. Let us start with I;. We have

H(I A 6/211H]L2 QxRd)

2
A2 U=stMLRN (¢ 0 VAN (dsdz)| |da
N2 /Rd [Z/ /|>1 ( ) ( )
2
[ A c/2 (t s+h)CFN s,xz,z)| dv(z)ds| dx
N2 Z/}Rd / /|>1 ( )‘ ( )

[ Lk

2
(I o A)E/2 e(t_5+h)£FN(s, z, Z)‘ dr < 2/
R4

:—E

2
(I — A2 elt=stLpN (g o z)‘ dx dz/(z)ds] .

We observe that

J.

This implies that

2
(I — A)/? e(t—s+h)£VN($)‘ da

=C|

2e8
CN’” |V

N

| (1 — A1,

HIL2 QxRd) = NH <C,

where in the last inequality we use Assumption 1.

STEP 3. In the same way we obtain

H(I A 6/2I2H1L2 (QxR9)

2 t B _
:m/RdE Z/O /||<1 (I_A)E/2e(t +h)£FN(S,$,Z)d./\/ (deZ)
=1 2=
N
2y
= E
NZZ; Rd

N t
2
= — E // [_A€/2e(t—s+h)£FN 5,2,2 2 duwdv(2)ds
sz; [0 |2|<1 Rd|( ) ( )| (2)

2
]dm

t
/ / |(I — A/ t=stMERN (g o Z)|2dV(Z)d8] dx
0 Jz|<1

15



where FN has been defined in (21). We observe that
(I — A)F/2et=sTMERN (5 4 2) < C2] M[V(I — A)F/2 ltmsthILy N (x — X2V + z)}
+ Ol M [V(I — A)/2 s TEY N (o X;;N)} .
From Lemma 9 we have

HM[V(I— A)e/ze<t_s+h)z;vzv”‘; < CHV([_ A2t HRILY N ;

This implies that

H([_A)a/2e(t—s+h)£FN(s7x7z)“i2 < C P2 HV(I_A)a/2e(t—s+h)CVN ;

Taking § € (1— 4, (155 M _ e| (which exists by Assumption 1) we have

t
H (I — A 2I2HLQ(Q><R‘1 %/ HV(I — A)€/2e(t_s+h)£VNHi2ds
0

C 2 t 1
~ - (e+6)/2y/N
< Sl -y, [ <

where we used that
2(€+5)5

[V [[fers < ONPFT0

and ||V |[ge+s < oo from Assumption 1. m

IVl

Hs+6 = C

3.2.3 Second estimate on ¢V

Lemma 14 For any v € (0, ) and N € N, 1t holds

T Hgt —Ys HH 2
/ / S s

Proof. In this proof we use the fact that L2(RY) ¢ W~22(R9) with continuous embedding,
and that the linear operator A is bounded from L2(R?) to W=22(R%).

STEP 1. We recall the formula
t
() @) = () @)+ [ (SV.FCL g )TV =) s
t
+%/ L(e"gN)(x)ds
0

<C.

iN ! hLy,N _ vi,N _ (,_hLy/N _ yvi,N ~
+NZ;/O/Rd_{O}{(e V) (2 — XY 4 2) = (" V) (2 Xsf)}d/\/’(dsdz).

16



Then we have
t
(aY) (@) ~ ("9¥) (a) = [ (SNFC L gV (VY o)) ar
1 t
+3 | L@ @ar
L N N _ (RLYNY (o i N ori

NZ/ /]Rd o Vv — XN 4 2) = (e"VY) (2 - X )}dN(drdz).

Thus by letting h — 0 we obtain, for s < ¢,

E[llg" o l-2]

<9 /t [vaN (. a5 s S50 [ a2 ]

+E[HN //]R » v = XV 4 2) — (VV) (o — X3N) VN (drd)

2
)
STEP 2. We observe that
[elv 0« sy [ Jar< [ 5] 0« e s Lo
< [~ e s

t
< [ 1 e < €l =),

where in last step we used Lemma 11 (see (20)).

2

dr
L2(QxR)

STEP 3. Moreover

H‘N Z/ / Loy VX ) = (V) (XA )

2
H2:|

i,NZ_N__i,N2 rdu (s
3/ /Rd o N 2 ) (X vt

= mg/ /|z|>1 IV (XN 4 2) = (V) (- =X0Y) e drdi(2)

f s [ IO ) (X o s,

17



STEP 4. We observe

S IO ) ) X s g
' N2 C [t nn2
< WZ/ /||>1 VN ||5-2 drdv(z) < N/ VN2, dr <Ot —s),
i=1vS I s

where in the last step we use the fact that |[VV|2, < NP||V[2,.

STEP 5. Let us write

w3 [ IO X ) () (N et

IN

3 [ IO 0 = (X arte
|z|<1

< NQZ/ / |22 ||M( VN H]HI*Z drdv(z)

<N/s V)2, dr <_/ VN2 dr < Ot —s).

STEP 6. Finally we claim that

I c [
5/5 E[Hﬁgi\f“%d}dr < 5/5 E[HngiQ]dr < C(t—s).

The first inequality above can be proved as follows:

1£gN ||55-2 = S | < LgN,f>|

1fllg2 <1

= sw [ <gVLf> 1< s {loN o 1675 )

I1fllg2 <1 [fllg2 <1
< c s gl (187 +1951,:) § (22)
S C Hg7]‘VHL27

where we used [28, Lemma 2.4] to obtain (22). m

3.3 Criterion of compactness

In this subsection we follow the arguments of [11, Section 6.1]. We start by constructing
one space on which the sequence of the laws of g~V will be tight.

18



A version of the Aubin-Lions Lemma, see [10, 19], states that when Ey C E C E
are three Banach spaces with continuous dense embeddings, with Ey, F; reflexive, and Ej
compactly embedded into E, given p,q € (1,00) and 7 € (0,1), the space LI([0,T] ; Ep) N
WYP([0,T] ; E1) is compactly embedded into L4([0,7] ; E).

We use this lemma with £ = W72(D), Ey = WS2(D) with %l <n<eg and By =
W—22(R%) where D is a regular bounded domain. We also choose 0 < v < % in order to
apply Lemma 14 (see below). The Aubin-Lions Lemma states that

L2([0,T] ; Wo2(D)) nW™([0,T] ; W—>2(R%))
is compactly embedded into ]Lz([O, T]; W”’z(D)). Now, consider the space
Yy == 1L>2([0, 7] ; L*(R%) nL2([0,7] ; W2(RY)) nW2([0,T] ; W->*(R?)).

Using the Fréchet topology on L*([0,T] ; W"’2(Rd)) defined as

loc

0o T )
d(f,g) = Z 27" <1 /\/ 1 f(t, ')HWn»2(B(0,n))dt>
n=1 0

one has that L2([0, 7] ; W=2(R%)) N"W2([0,T] ; W—22(R?)) is compactly embedded" into
L*([0,T] 5 Wigc(RY).
Let us denote respectively by L2, and L2 the spaces L and L? endowed respectively
with the weak star and weak topology. We have that Y is compactly embedded into
Y =L, ([0, 7] 5 L*(RY) L2, ((0,7] ; W*(RT)) NL2([0,7]; WP2(RY)).  (23)
Note that
L2([0,7] ; Wise(RY)) € L2([0,7]; C(D))

loc

for every regular bounded domain D C R

Let us now go back to the sequence of processes {gN }w, for which we have proved
several estimates. The Chebyshev inequality ensures that

E N2
B(lg" I3, > ) < 02

S— 5 for any R > 0.

Thus by Lemma 11 and Lemma 14 we obtain

C
P(lgVI}, > R) < 5. forany R>0,N € N.

'The proof is elementary, using the fact that if a set is compact in L*([0, 7] ; W-2(B(0, n))) for every
n then it is compact in L*([0, 77 ; WE'Q(Rd)) with this topology.

loc
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The process (g¥ )telo,) defines a probability Py on Y. Last inequality implies that there
exists a bounded set B, € Yj such that Py(B.) < 1 — ¢ for all N, and therefore there
exists a compact set K. € Y such that Py(K;) <1 —e¢.

Denote by {L¥}yen the laws of the processes {g"V}yen on Yy, we have proved that
{LN} yen is tight in Y, hence relatively compact, by Prohorov’s Theorem. From every
subsequence of {LV} yen it is possible to extract a further subsequence which converges to
a probability measure L on Y. Moreover by a Theorem of Skorokhod (see [13, Theorem
2.7]), we are allowed, eventually after choosing a suitable probability space where all our
random variables can be defined, to assume

" = u inY, a.s.

where the law of u is L.

3.4 Passing to the limit

In this paragraph we show that the limit u of g"V satisfies the weak formulation (7) of the
non-local conservation equation (6).
STEP 1. By It6’s formula we have, for any test function ¢, that

@)= [ wow et [ (s3FCL VN0 0)) ds
+ % /Ot/gév(x)ﬁqb(:n) dxds
Ly~ ! vy XN vy XiN) b AN (dsd
*N;/o J o L7 2O X ) () (- X0} A ),
Passing to the limit we obtain

/u(t,x)qS(x) dr = /uo(:n)qb(:n) dr + lim Ot <S§V,F(- . gV« 9) (1) >d8

N—oo

+ % /Ot/u(s,:n)ﬁqﬁ(x) dxds

A N, _ vi,N (VN _ vi,N \7i
+ lim —;/0 /Rd_{o}{(v $) (= XN 4 2) — (VN % ) Xsf)}d/\f(dsdz).

N—oo N

STEP 2. We claim that

lim Ot <S§V,F(- , gV VN %) (4) >d8 = /Ot/u(s,x)F(:E,u)qu(:E) dxds. (24)

N—oo
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In order to prove the claim, we first observe, using the symmetry of V', that

(SN PG )V ) () = (o F G gV 26) ()]

< sup [F(o, g @)V 5 9)(a) = ((F(-, g2 )VVY %6) () «VY) (@)

zeR4

We can control the last term, using the fact that

e V is a density (denoted below by ([V =1)),
e F is Lipschitz and bounded (denoted below by (F' € LipNL®™)),

e V' is compactly supported (denoted below by (V is c.s.)),
e and ¢ is compactly supported and smooth,

as follows:

F(z, g (@))V(VY 5 0) () = (F(-, g )V(VY % 9) (-)) # VN)(w)(

T [vw e o) [Pl @) - Fe- Lt (o~ L)
+ / V(y) [V 5 0)(@) = TV 5 0) (o - é)( |F (@, g (2))|dy

(FeLipnL™)

2 c/v<y> VY 5 ) (x)]

g () — gt (fc - %) (dy

C

+ = [V)luidy
Nid

Vises) g (2) — g (v)| .

< 7 Sup = /V(y)lyl’7 dy
NT ayek |z =yl

C
& / V()lyldy,
Nd

where K is a compact set and 7 = n— g, where 71 has been defined in Section 3.3. Therefore

we have obtained

C

E|[Fe, @ @)V 5 0)@) - (6 2T 10 ()@ < o

@

=
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Thus,

t
Jim (SNF(, o) V(Y 5 6) () )ds
t

= lim <gs B gMVIVY s 9) () >ds.

N—oo

= lim / /gs F(x,g™MV(VY % ¢) (z) dxds

N—oo

- / (5, 2)F (. u(s, 2))Vo(x) duds

where in the last equality we used that ¢ — u strongly in L2 ([0,T] ; C(D)).
STEP 3. We claim that

N—ooo N

- N, i, N P N, 1,N P(dsdz) =
lim Z//}Rd{o} V ) (= XN +2) = (VN xg) (- X5 )}d/\/(dd) 0. (25)

First we observe that

2
ngmooEHNZ/ /|>1 — X5V 4+ 2) — (VN*QS)(—XSifV)}d./\/’i(dsdz) }
N, i\N _ (N _ iy |?
A}gnoo N2 / /Z>1 V — XN +z2) = (VY xg)(— XY )‘ dv(z)ds
< Jim 5 =0 .

On other hand we have
|

= lim %ﬁ:/t/zq‘(VN*qb)(—Xﬁ’NJrz) —(VN*¢)(—X§’5V)‘2 dv(z)ds

N—oo

lim EH%E_V:/; /|Z|<1 {(VN x9)(— XN 4 2) — (VN x g)( _X;{V)}d/\?i(dsdz)

N—oo

1
< (C lim // szV ds<Chm—:0. 27
N—oo N 22 ||<1" oo N ( )

From (26) and (27) we conclude (25). Summarizing, we have proved (7).
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3.5 Uniqueness of PDE

In order to make the paper self-contained we present the uniqueness result for the PDE
(6). We also refer the reader to [1, 9, 17].

Theorem 15 . There is at most one weak solution of equation (6) in L*([0,T] ; H") with
d

Proof. Let u',u? be two weak solutions of the equation (6) with the same initial condition
ug. Let {p-(z)}c be a family of standard symmetric mollifiers. For any ¢ > 0 and = € R?
we can use p.(r — -) as test function in the equation (7). Set ul(t,z) = u'(t,-) * p-(-) ()
for i = 1,2. Then we have

ul(t, ) = (ug * pe)(z) +/0 Lul(s,x)ds + /0 (Vpe xu'F(-,u')) (s, z) ds.

Writing this identity in mild form we obtain (we write u’ (¢) for the function v’ (s,-) and
S(t) for etl)

ul(t) = S(t)(uo * ps) + /Ot St —s) (Vpe xu'F(-,u'))ds.
The function U = u' — u? satisfies
pe x U(t) = /Ot VS(t—s)(pe * [u'F(-,u') —u?F(-,u?)]) ds.
Thus we obtain

ds.
L2

|m*wwmsAwa—ﬁ@*hwumwm%mﬁm

Using the proposition 7 we have

t
Hm*U@MPS/

ES 'LLl ‘ul —'LL2 "LL2 S.
0 (t—s)2 pex [WF(,u) e, )]Huﬂd

Taking the limit as € — 0 we arrive

ds.

L2

Wk < [

[ulF(-, ut) —u?F(-, u2)]

By easy calculation we have

ok < [ ; —13)% |UFCa)|,o+ [ 2(FCut) = Foud))]), 0 ds.
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Notice that the function F' is globally Lipschitz and bounded. It follows

t

1

[UOle < | ——(CIUle + 142U z) ds.
0 (t—s)2

By hypothesis u? € L2([0,T] ; H") with n > g. Then by the Sobolev embeddings (see [25,
Section 2.8.1]), we have u? € L?([0,7] ; Cy(R?)). It follows that

t
1
|W@W§A(t)mwmmHmewmw&

— S§)2

By Gronwall’s Lemma we conclude U = 0. =

3.6 Convergence in probability

Corollary 16 The sequence {g" }nen converges in probability to u.

Proof. We denote the joint law of (g%, ¢™) by VM. Similarly to the proof of tightness
for g™ we have that the family {v"*™} is tight in Y x Y.

Let us take any subsequence vV#:Mk By Prohorov’s theorem, it is relatively weakly
compact hence it contains a weakly convergent subsequence. Without loss of generality
we may assume that the original sequence {vV*M} itself converges weakly to a measure
v. According to the Skorokhod immersion theorem, we infer the existence of a probability
space (Q,]:" , I?’) with a sequence of random variables (§V,g") converging almost surely in
Y x Y to random variable (@, ) and the laws of (g%, g™) and (@, %) under P coincide with
vNM and v, respectively.

Analogously, it can be applied to both g% and g™ in order to show that @ and @ are
two solutions of the PDE (7). By the uniqueness property of the solutions to (7) we have
@ = %. Therefore

v((z,y) eY XY :z=y)=Pla=u) =1.

Now, we have all in hands to apply Gyongy-Krylov’s characterization of convergence in
probability (Lemma 10). It implies that the original sequence is defined on the initial
probability space converges in probability in the topology of Y to a random variable . =
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