Calderón cavities inverse problem as a shape-from-moments problem

Abstract : In this paper, we address a particular case of Calderón's (or conductivity) inverse problem in dimension two, namely the case of a homogeneous background containing a finite number of cavities (i.e. heterogeneities of infinitely high conductivities). We aim to recover the location and the shape of the cavities from the knowledge of the Dirichlet-to-Neumann (DtN) map of the problem. The proposed reconstruction method is non iterative and uses two main ingredients. First, we show how to compute so-called generalized Pólia-Szegö tensors (GPST) of the cavities from the DtN of the cavities. Secondly, we show that the obtained shape from GPST inverse problem can be transformed into a shape from moments problem, for some particular configurations. However, numerical results suggest that the reconstruction method is efficient for arbitrary geometries.
Type de document :
Article dans une revue
Quarterly of Applied Mathematics, American Mathematical Society, In press
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01503425
Contributeur : Karim Ramdani <>
Soumis le : vendredi 7 avril 2017 - 10:04:24
Dernière modification le : samedi 10 mars 2018 - 01:20:12
Document(s) archivé(s) le : samedi 8 juillet 2017 - 12:40:17

Fichier

particles_reconstruction_SOUMI...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01503425, version 1

Collections

Citation

Alexandre Munnier, Karim Ramdani. Calderón cavities inverse problem as a shape-from-moments problem. Quarterly of Applied Mathematics, American Mathematical Society, In press. 〈hal-01503425〉

Partager

Métriques

Consultations de la notice

305

Téléchargements de fichiers

147