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Abstract

In this paper, we address a particular case of Calderón’s (or conductivity) inverse problem in
dimension two, namely the case of a homogeneous background containing a finite number of cavities
(i.e. heterogeneities of infinitely high conductivities). We aim to recover the location and the shape
of the cavities from the knowledge of the Dirichlet-to-Neumann (DtN) map of the problem. The
proposed reconstruction method is non iterative and uses two main ingredients. First, we show
how to compute so-called generalized Pólia-Szegö tensors (GPST) of the cavities from the DtN
of the cavities. Secondly, we show that the obtained shape from GPST inverse problem can be
transformed into a shape from moments problem, for some particular configurations. However,
numerical results suggest that the reconstruction method is efficient for arbitrary geometries.

Keywords. Inverse conductivity problem; shape reconstruction; Laplace equation; integral equations;
moments problem

1 Introduction

Let be given a simply connected open bounded set Ω in R2 with Lipschitz boundary Γ. Let σ be a
positive function in L∞(Ω) and consider the elliptic boundary value problem:

−∇ · (σ∇uf ) = 0 in Ω (1.1a)
uf = f on Γ. (1.1b)

Calderón’s inverse conductivity problem [12] is to recover the conductivity σ knowing the Dirichlet-
to-Neumann (DtN) map f 7−→ ∂nu

f
|Γ of the problem.

In a recent work [46], the authors investigated this problem in the particular case of piecewise
conductivity with infinitely high contrast (see for instance Friedman and Vogelius [21] who considered
this problem in the case of small inclusions). Combining an integral formulation of the problem with
tools from complex analysis, they proposed an explicit reconstruction formula for the geometry of the
unknown cavity. However, due to the crucial use of the Riemann mapping theorem, the proposed
approach was limited to the case of a single cavity. The aim of this paper is to investigate the case of
a multiply connected cavity. More precisely, we suppose that Ω contains a multiply connected domain
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Figure 1: The multiply connected cavity.

ω = ∪Nk=1ωk, where the open sets ωk, for k = 1, . . . , N are non intersecting simply connected domains
with C1,1 boundaries γk and ω ⊂ Ω (see Figure 1). We denote by γ = ∪Nk=1γk and by n the unit
normal to Γ ∪ γ directed towards the exterior of Ω \ ω.

For every f in H
1
2 (Γ), let (uf , cf ) ∈ H1(Ω \ ω)×RN , with cf := (cf1 , . . . , c

f
N )T, be the solution of

the Dirichlet problem:

−∆uf = 0 in Ω \ ω (1.2a)
uf = f on Γ (1.2b)

uf = cfk on γk, k = 1, . . . , N, (1.2c)

with the additional circulation free conditions:∫
γk

∂nu
f dσ = 0, k = 1, . . . , N. (1.2d)

By following the proof given in the Appendix of [46] for the case of a single cavity (N = 1), it can
be easily shown that this elliptic transmission problem is well-posed and that its solution can be seen
as the limit solution obtained by considering problem (1.1) for a piecewise constant conductivity and
letting the constant conductivity inside the cavities tend to infinity (at the same speed).

The inverse problem investigated in this paper can be formally stated as follows (the exact func-
tional framework will be made precise later on): knowing the Dirichlet-to-Neumann (DtN) map
Λγ : f 7−→ ∂nu

f , how to reconstruct the multiply connected cavity ω ?
Roughly speaking, one can distinguish in the literature two classes of approaches for shape identifi-
cation: iterative and non iterative methods (see for instance the survey paper by Potthast [48]). In
the first class of methods, one computes a sequence of approximating shapes, generally by solving at
each step the direct problem and using minimal data. Among these approaches, we can mention those
based on optimization [6, 13], on the reciprocity gap principle [42, 36, 11], on the quasi-reversibility
[7, 8] or on conformal mapping [1, 40, 26, 27, 28, 41, 29]. The second class of methods covers non
iterative methods, generally based on the construction of an indicator function of the inclusion(s).
These sampling/probe methods do not need to solve the forward problem, but require the knowledge
of the full DtN map. With no claim as to completeness, let us mention the enclosure and probe
method of Ikehata [32, 34, 33, 35, 20], the linear sampling method [14, 15, 10], Kirsch’s Factorization
method [9, 30, 38] and Generalized Polya-Szegö Tensors [3, 4, 5, 2, 37].
The reconstruction method proposed in this paper is non iterative and can be decomposed into two
main steps. First, we show that the knowledge of DtN map gives access to the so-called Generalized
Pólya-Szegö Tensors (GPST) of the cavity. This is done (see §. 3.1) by adapting to the multiply
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connected case the boundary integral approach proposed in [46] for a simply connected cavity. The
second step is to transform this shape from GPST problem into a (non standard) shape from moments
problems (see §. 3.2). Reconstructing the geometry of the cavities amounts then to reconstructing the
support of a density from the knowledge of its harmonic moments. Our reconstruction algorithm is
then obtained by seeking a finite atomic representation of the unknown measure. Let us emphasize
that we have been able to justify the connection between the shape from GPST problem and the
shape from moments problem only in some particular cases (for a single cavity, for two disks and for
small cavities). However, the reconstruction method turns out to be numerically efficient for arbitrary
cavities.
The paper is organized as follows. We collect some technical material from potential theory in Section
2. The reconstruction method is described in 3. Section 4 is devoted to the proof of Theorem 3.6.
Finally, examples of numerical reconstructions are given in Section 5.

2 Background on potential theory

This section aims to revisit the results from potential theory given in [46, Section 2.1.] in the context
of a multiply connected cavity. For the proofs, we refer the reader to [46] and to the books of McLean
[43], Steinbach [50] or Hsiao and Wendland [31] for more classical material.

G(x) = − 1
2π log |x|

the fundamental solution of the operator −∆ in R2. We pay careful attention to state the results in
a form that includes multiply connected boundaries.

2.1 Single layer potential

We define the function spaces

H
1
2 (γ) := H

1
2 (γ1)×H

1
2 (γ2)× · · · ×H

1
2 (γN ),

H−
1
2 (γ) := H−

1
2 (γ1)×H−

1
2 (γ2)× · · · ×H−

1
2 (γN ),

which are Hilbert spaces when respectively endowed with the norms

‖q‖ 1
2 ,γ

=
(
‖q1‖21

2 ,γ1
+ · · ·+ ‖qN‖21

2 ,γN

) 1
2
, ∀ q = (q1, . . . , qN ) ∈ H

1
2 (γ),

‖q̂‖− 1
2 ,γ

=
(
‖q̂1‖2− 1

2 ,γ1
+ · · ·+ ‖q̂N‖2− 1

2 ,γN

) 1
2
, ∀ q̂ = (q̂1, . . . , q̂N ) ∈ H−

1
2 (γ).

Definition 2.1. For every q̂ = (q̂1, . . . , q̂N ) ∈ H−
1
2 (γ), we denote by Sγ q̂ the single layer potential

associated with the density q̂.

Given q̂ = (q̂1, . . . , q̂N ) ∈ H−
1
2 (γ), it is well-known that the single layer potential Sγ q̂ defines a

harmonic function in R2 \ γ. Furthermore, if q̂k ∈ L2(γk) for all k ∈ {1, . . . , N}, we can write:

Sγ q̂(x) =
∫
γ
G(x− y)q̂(y) dσy =

N∑
k=1

Sγk
q̂k(x), ∀x ∈ R2 \ γ.
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The single layer potential defines a bounded linear operator from H−
1
2 (γ) into H1

`oc(R2), and the
asymptotic behavior of Sγ q̂ reads as follows (see for instance [43, p. 261])

Sγ q̂(x) = − 1
2π 〈q̂, 1〉− 1

2 ,
1
2 ,γ

log |x|+O(|x|−1), (2.1)

where we have set for every q̂ ∈ H−
1
2 (γ) and p ∈ H

1
2 (γ):

〈q̂, p〉− 1
2 ,

1
2 ,γ

:=
N∑
k=1
〈q̂k, pk〉− 1

2 ,
1
2 ,γk

,

in which 〈·, ·〉− 1
2 ,

1
2 ,γk

stands for the duality brackets between H−
1
2 (γk) and H

1
2 (γk). This shows in

particular that Sγ q̂ has finite Dirichlet energy (i.e. ∇(Sγ q̂) ∈ (L2(R2)2) for all q̂ = (q̂1, . . . , q̂N ) in
the function space

Ĥ(γ) := Ĥ(γ1)× Ĥ(γ2)× . . .× Ĥ(γN ),

where for every k ∈ {1, . . . , N}:

Ĥ(γk) := {q̂k ∈ H−
1
2 (γk) : 〈q̂k, 1〉− 1

2 ,
1
2 ,γk

= 0}.

Remark 2.2. It is worth noticing that condition q̂ ∈ Ĥ(γ) is only a sufficient condition ensuring
∇(Sγ q̂) ∈ (L2(R2))2, since a necessary and sufficient condition is: 〈q̂, 1〉− 1

2 ,
1
2 ,γ

= 0. However, con-
sidering conditions (1.2d), Ĥ(γ) is clearly the appropriate function space to tackle the cavity problem
(1.2).

We also recall that the single layer potential satisfies the following classical jump conditions

[Sγ q̂ ]γk
= 0, [∂n(Sγ q̂)]γk

= −q̂k, ∀ q̂ = (q̂1, . . . , q̂N ) ∈ H−
1
2 (γ). (2.2)

In the above relations, we have used the notation [u]γk
= ui|γk

− ue|γk
and [∂nu]γk

= (∂nui)|γk
−

(∂nue)|γk
, where ui and ue denote respectively the restrictions of a given function u to the interior and

exterior of γk. Let us emphasize that these classical formulae (and other trace formulae detailed below)
may be impacted by different conventions concerning the definition of the fundamental solution, the
unit normal or the jumps.
Let us focus now on the trace of the single layer potential.

Definition 2.3. For every q̂ = (q̂1, . . . , q̂N ) ∈ H−
1
2 (γ), we denote by q = Sγ q̂ ∈ H

1
2 (γ) the trace on γ

of the single layer Sγ q̂:

q = (q1, . . . , qN ), qi =
N∑
j=1

Sij q̂j ,

where
Sij q̂j = Trγi(Sγj q̂j), ∀ i, j ∈ {1, . . . , N}.

Note that Sγ = (Sij)16i,j6N : H−
1
2 (γ) → H

1
2 (γ) defines a bounded linear operator with weakly

singular kernel. Hence, if q̂ = (q̂1, . . . , q̂N ) ∈ H−
1
2 (γ) is such that q̂k ∈ L∞(γ) for all k ∈ {1, . . . , N},

then
Sγ q̂(x) =

∫
γ
G(x− y)q̂(y) dσy, ∀x ∈ γ.
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Using Green’s formula and the asymptotics (2.1), we can easily prove the identity

〈q̂,Sγ q̂〉− 1
2 ,

1
2 ,γ

=
∫
R2
|∇(Sγ q̂)|2 dx < +∞, ∀ q̂ ∈ Ĥ(γ). (2.3)

According to [43, Theorem 8.12], Sγ : H−
1
2 (γ) → H

1
2 (γ) defines a strictly positive-definite operator

on Ĥ (since Ĥ ⊂ {q̂ ∈ H−
1
2 (γ) : 〈q̂, 1〉− 1

2 ,
1
2 ,γ

= 0}). It is also known (see [43, Theorem 8.16]) that Sγ
is boundedly invertible if and only if the logarithmic capacity of γ (see [43, p. 264] for the definition)
satisfies Cap(γ) 6= 1. From now on, and without loss of generality, let us assume that the diameter
of Ω is less than 1 (otherwise, it suffices to rescale the problem), which implies in particular that
Cap(Γ) < 1 and Cap(γ) < 1 (see [50, p. 143] and references therein).

In order to characterize the image of Ĥ(γ) by Sγ , we need to introduce the following densities.

Definition 2.4. For every k ∈ {1, . . . , N}, we define the unique density:

êk := (êk1, . . . , êkN ) ∈ H−
1
2 (γ)

such that Sγ êk is constant on γ` for every ` ∈ {1, . . . , N} and satisfying the circulation conditions:

〈êk` , 1〉− 1
2 ,

1
2 ,γ`

= δk,`, ` = 1, . . . , N

where δk,` denotes Kronecker’s symbol.

The existence and uniqueness of such functions êk is ensured by Lemma A.1 of the Appendix
(simply take f = 0 and b as the k−th element of the canonical basis of RN ). Furthermore, the
family {êk, k = 1, . . . , N} is obviously linearly independent in H−

1
2 (γ) and thus, so is the family

{ek := Sêk, k = 1, . . . , N} in H
1
2 (γ).

Proposition 2.5. The operator Sγ defines an isomorphism from Ĥ(γ) onto

H(γ) := {q ∈ H
1
2 (γ) : 〈êk, q〉− 1

2 ,
1
2 ,γ

= 0, k = 1, . . . , N}.

Proof. We only need to prove that H(γ) = Sγ(Ĥ(γ)). Let q̂ ∈ H−
1
2 (γ) and set q := Sγ q̂. We note that

for all i ∈ {1, . . . , N}:

〈êi, q〉− 1
2 ,

1
2 ,γ

= 〈q̂, ei〉− 1
2 ,

1
2 ,γ

=
N∑
j=1
〈q̂j , eij〉− 1

2 ,
1
2 ,γj

=
N∑
j=1

eij 〈q̂j , 1〉− 1
2 ,

1
2 ,γj

,

where the last equality follows from the fact that eij is constant on each boundary γj . The matrix
(eij)16i,j6N being invertible, we have q̂ ∈ Ĥ(γ) if and only if q ∈ H(γ).

The above result allows us to use the linear operator:

Sγ : q̂ ∈ Ĥ(γ) 7−→ q ∈ H(γ),

to identify any density q̂ ∈ Ĥ(γ) with the trace

q := Sγ q̂ ∈ H(γ).

Throughout the paper, we will systematically use this identification, using the notation with (respec-
tively without) a hat on single layer densities of Ĥ(γ) (respectively traces of single layer densities).

5



Definition 2.6. For all p̂, q̂ ∈ Ĥ(γ), we set:
〈p̂, q̂〉− 1

2 ,γ
= 〈p, q〉 1

2 ,γ
= 〈p̂, q〉− 1

2 ,
1
2 ,γ
.

Obviously, using these inner products, the isomorphism Sγ turns out to be an isometry between
the spaces Ĥ(γ) and H(γ):

‖q̂‖2− 1
2 ,γ

= ‖q‖21
2 ,γ

=
∫
R2
|∇(Sγ q̂)|2 dx, ∀ q̂ ∈ Ĥ(γ).

The following orthogonal projections will be needed in the next sequel.
Definition 2.7. Let Πγ and Π̂γ denote respectively the orthogonal projections from H

1
2 (γ) into H(γ)

and from H−
1
2 (γ) into Ĥ(γ).

It can be easily checked that:

∀ q̂ ∈ H−
1
2 (γ) : Π̂γ q̂ = q̂ −

N∑
k=1
〈q̂k, 1〉− 1

2 ,
1
2 ,γk

êk

∀ q ∈ H
1
2 (γ) : (Πγq)k = qk − 〈êk, q〉− 1

2 ,
1
2 ,γ

1|γk
, k = 1, . . . , N.

Definition 2.8. We denote by Trγ the classical trace operator (valued into H
1
2 (γ)), and by Tr0

γ when
it is left-composed with the orthogonal projection onto H(γ): Tr0

γ := ΠγTrγ.
Let us recall a useful characterization of the norm chosen on H(γ) (the proofs of the assertions

stated below are given in [46, Section 2.1.] for the case of a simply connected cavity, but they can be
easily extended to the multiply connected case). We define the quotient weighted Sobolev space:

W 1
0 (R2) = {u ∈ D′(R2) : ρu ∈ L2(R2), ∇u ∈ (L2(R2))2}/R,

where the weight is given by

ρ(x) :=
(√

1 + |x|2 log(2 + |x|2)
)−1

, x ∈ R2,

and where the quotient means that functions of W 1
0 (R2) are defined up to an additive constant. This

space is a Hilbert space once equipped with the inner product:

〈u, v〉W 1
0 (R2) :=

∫
R2
∇u · ∇v dx.

For q ∈ H(γ), and according to (2.3), we have Sγ q̂ ∈W 1
0 (R2) and

‖q̂‖− 1
2 ,γ

= ‖q‖ 1
2 ,γ

= ‖Sγ q̂‖W 1
0 (R2), ∀ q ∈ H(γ).

To conclude this subsection, let us recall that the normal derivative of the single layer potential is not
continuous across γ, as (with obvious matrix notation, and where the signs + and − refer respectively
to the trace taken from the exterior and the interior of γ):

(∂n(Sγ q̂))|γ± =
(
±1

2 + L∗γ
)
q̂,

where
L∗γ =

(
L∗ij
)

16i,j6N
: H−

1
2 (γ)→ H−

1
2 (γ) (2.4)

where for smooth densities

(L∗ij q̂j)(x) =
∫
γj

∂nxG(x− y)qj(y) dσy, x ∈ γi. (2.5)
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2.2 Double layer potential

For more details about the results recalled in this section, we refer the interested reader to the mono-
graphs by Hackbusch [25, Chapter 7], Kress [39, Chapter 7] or Wen [51, Chapter 4].

Definition 2.9. For every q = (q1, . . . , qN ) ∈ H
1
2 (γ), we denote by Dγq the double layer potential

associated with the trace q.

Given q = (q1, . . . , qN ) ∈ H
1
2 (γ), it is well-known that the double layer potential

Dγq(x) =
∫
γ
∂nyG(x− y)q(y) dσy =

N∑
k=1

Dγk
qk(x), ∀x ∈ R2 \ γ

defines a harmonic function in R2 \ γ whose normal derivative across γ is continuous, but whose trace
is not continuous. More precisely, we have

Trγ±(Dγq) =
(
∓1

2 + Lγ
)
q,

where Lγ = (Lij)16i,j6N : H
1
2 (γ)→ H

1
2 (γ), the adjoint of the operator defined in (2.4)-(2.5), is given

by
(Lijqj)(x) =

∫
γj

∂nyG(x− y)qj(y) dσy, x ∈ γi.

One has in particular
[Dγq ]γk

= q. (2.6)

Later (see the proof of Theorem 4.6), we will need to compute the inner product of two densities
p, q ∈ H using double layer potentials. This is provided by the two next lemmas, which deal respectively
with the cases of real and complex valued densities.

Lemma 2.10. Given p, q ∈ H(γ), let u := Sγ p̂ and v := Sγ q̂ denote the single layers respectively
associated with p̂, q̂ ∈ Ĥ(γ). Let ũ be the function defined in R2 \ γ by

ũ =

ũ
− in ω

ũ+ in ωc := R2 \ ω.

where ũ− (respectively ũ+) denotes a harmonic conjugate of u in ω (respectively in ωc). Similarly, we
define the function ṽ associated to v. Then, the functions u and v admit double layer representation
formulae associated to two densities p̌, q̌ ∈ H(γ):

ũ := Dγ p̌, ṽ := Dγ q̌.

Moreover, we have
〈p, q〉 1

2 ,γ
= −〈∂nũ, q̌〉− 1

2 ,
1
2 ,γ
. (2.7)

Proof. The harmonic conjugate ũ− of u in ω (i.e. the harmonic function such that u + iũ− is holo-
morphic in ω) exists and is uniquely defined up to a constant (and this does not affect (2.7)). The
existence of the harmonic conjugate ũ+ of u in ωc is ensured by the fact that u = Sγ p̂ is circulation
free on γ (since p ∈ Ĥ(γ)). Moreover, thanks to Cauchy-Riemann’s equations we have

∇u = (∇ũ)⊥ in ω ∪ ωc. (2.8)
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Since u admits by assumption a single layer representation, it is continuous across γ, and hence, the
same holds for its tangential derivative. According to (2.8), this yields the continuity of ∂nũ across γ
(note that trace of ũ is not continuous across γ). From classical integral representation formula for
harmonic functions, this implies that ũ admits a double layer representation: ũ := Dγ p̌, with p̌ = [ũ]γ .
Defining similarly ṽ := Dγ q̌, we obtain using (2.8) that

〈p, q〉 1
2 ,γ

=
∫
R2
∇u · ∇v =

∫
ω
∇ũ · ∇ṽ +

∫
ωc
∇ũ · ∇ṽ = −〈∂nũ, [ṽ]〉− 1

2 ,
1
2 ,γ
,

where the last equality follows from Green’s formula. Equation (2.7) can then be deduced from the
fact that [ṽ] = [Dγ q̌] = q̌.

In the rest of the paper, we still denote by 〈·, ·〉 1
2 ,γ

the hermitian inner product on H
1
2 (γ) seen as

a complex Hilbert space. For instance, for p = p1 + ip2 and q = q1 + iq2 we will have

〈p, q〉 1
2 ,γ

= 〈p1, q1〉 1
2 ,γ

+ 〈p2, q2〉 1
2 ,γ

+ i
(
〈p2, q1〉 1

2 ,γ
− 〈p1, q2〉 1

2 ,γ

)
. (2.9)

Lemma 2.10 admits then the following counterpart for complex-valued densities.

Lemma 2.11. Given p = p1 + ip2 and q = q1 + iq2 with pj , qj ∈ H (j = 1, 2), let us set

u := Sγ p̂ = u1 + iu2, v := Sγ q̂ = v1 + iv2

where uj = Sγ p̂j and vj := Sγ q̂j. Define on R2 \ γ the complex-valued functions ũ = ũ1 + iũ2 and
ṽ = ṽ1 + iṽ2 where ũj and ṽj (j = 1, 2) are respectively the harmonic conjugates of uj and vj (as
defined in Lemma 2.10). Then, the functions u and v admit double layer representation formulae
associated to two complex-valued densities p̌, q̌ ∈ H(γ):

ũ := Dγ p̌, ṽ := Dγ q̌.

Moreover, we have
〈p, q〉 1

2 ,γ
= −〈∂nũ, q̌〉− 1

2 ,
1
2 ,γ
, (2.10)

where ∂nũ = ∂nũ
1 + i∂nũ

2.

Proof. From (2.7) and (2.9), we immediately get that

〈p, q〉 1
2 ,γ

= −〈∂nũ1, q̌1〉− 1
2 ,

1
2 ,γ
− 〈∂nũ2, q̌2〉− 1

2 ,
1
2 ,γ
− i

(
〈∂nũ2, q̌1〉− 1

2 ,
1
2 ,γ
− 〈∂nũ1, q̌2〉− 1

2 ,
1
2 ,γ

)
which is the claimed result.

Let us conclude by recalling the relation (in dimension two) between the double layer potential
and the (complex) Cauchy transform. In the sequel, we identify a point x = (x1, x2) of the plane with
the complex number z = x1 + ix2. The Cauchy transform of a density q defined on γ is given by:

Cγq(z) := 1
2iπ

∫
γ

q(ζ)
ζ − z

dζ, z ∈ C \ γ.

Remark 2.12. It is worth noticing that the Cauchy transform can be easily computed in the following
particular cases using Cauchy integral formula and Cauchy integral theorem.
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1. If q is the trace of a holomorphic function F on ω, then

Cγq(z) =

F (z) z ∈ ω,

0 z ∈ ωc := C \ ω.

2. If q(z) = (z − a)−1, with a /∈ ω, then

Cγq(z) =

(z − a)−1 z ∈ ω,

0 z ∈ ωc := C \ ω.

3. If q(z) = (z − a)−1, with a ∈ ω, then

Cγq(z) =

0 z ∈ ω,

−(z − a)−1 z ∈ ωc := C \ ω.

It turns out (see for instance [25, p. 254] or [39, p. 100]) that for real-valued traces q, the double
layer potential coincides with the real part of the Cauchy integral. Therefore, for complex-valued
densities q, the Cauchy transform and the double layer potential are related via following formulae:

Dγ(Re q) = 1
2Re (Cγ(q + q̄)) (2.11a)

Dγ(Im q) = 1
2Im (Cγ(q − q̄)) . (2.11b)

The above relations can be summarized in the identity:

Dγq = 1
2Cγq + 1

2Cγ q̄, (2.11c)

or equivalently:
Dγ q̄ = 1

2Cγq + 1
2Cγ q̄. (2.11d)

3 The reconstruction method

3.1 From DtN measurements to GPST

The first step of the proposed reconstruction method is to to recover the GPST of the cavities from
the DtN measurements.

Definition 3.1. Let KγΓ and KΓ
γ be the operators:

KγΓ : q ∈ H(Γ) 7−→ Tr0
γ(SΓq̂) ∈ H(γ), KΓ

γ : p ∈ H(γ) 7−→ Tr0
Γ(Sγ p̂) ∈ H(Γ),

where Tr0
γ and Tr0

Γ are given in Definition 2.8. We define the boundary interaction operator between
Γ and γ as the operator K := KΓ

γKγΓ.
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One of the main results of [46] (see Theorem 3.1) is to provide a relation between the measurements
and the boundary interaction operator K := KΓ

γKγΓ in the case of a single cavity. The preliminary results
of Section 2 immediately lead to a generalization of this relation to the case of multiple cavities (see
Theorem 3.3). For the proofs, we refer the interested reader to [46, Section 2.2.].

Proposition 3.2. The boundary interaction operators KγΓ and KΓ
γ enjoy the following properties:

1. If p ∈ H(γ), then q := TrΓ(Sγ p̂) belongs to H(Γ).

2. Operators KγΓ and KΓ
γ are compact, one-to-one and dense-range operators. Moreover, for every

functions q ∈ H(Γ) and p ∈ H(γ), we have:

〈KγΓq, p〉 1
2 ,γ

= 〈q,KΓ
γp〉 1

2 ,Γ
. (3.1)

3. The norms of the operators KγΓ and KΓ
γ are strictly less that 1.

Note that the first assertion in Proposition 3.2 shows that Tr0
Γ can be replaced by TrΓ in the

definition of KΓ
γ .

Going back to the DtN operator Λγ of problem (1.2), and according to (1.2d), we have by Green’s
formula

〈∂nuf , 1〉− 1
2 ,

1
2 ,Γ

= −〈∂nuf , 1〉− 1
2 ,

1
2 ,γ

= 0,

which shows that Λγ is valued in Ĥ(Γ). Considering data f ∈ H(Γ), we can thus define the DtN
operator Λγ as follows:

Λγ : f ∈ H(Γ) 7−→ ∂nu
f ∈ Ĥ(Γ). (3.2)

Let us denote by Λ0 the DtN map Λγ in the case where ω = ∅ (the cavity free problem).

Theorem 3.3. The two following bounded linear operators in H(Γ):

R := SΓ(Λγ − Λ0) and K := KΓ
γKγΓ,

satisfy the following equivalent identities:

R = (Id− K)−1K, K = (Id + R)−1R. (3.3)

The above result shows that the knowledge of the DtN maps Λγ and Λ0 respectively corresponding
to the cases with and without the cavities, entirely determines the boundary interaction operator K.
Using (3.1), it is worth reformulating the second identity in (3.3) in a variational form:

〈KγΓf,K
γ
Γg〉 1

2 ,γ
= 〈(Id + R)−1Rf, g〉 1

2 ,Γ
, ∀ f, g ∈ H(Γ). (3.4)

This identity can be used to compute the entries of the so-called polarization tensors of the multiply
connected cavity. To make this statement precise, let us introduce the following definition.

Definition 3.4. Identifying x = (x1, x2) in R2 with the complex number z = x1 + ix2, we define for
every m > 1, the harmonic polynomials of degree m:

Pm1 (x) = Re (zm) and Pm2 (x) = Im (zm) .

10



We define as well
Qm1,Γ := Tr0

Γ(Pm1 ) and Qm2,Γ := Tr0
Γ(Pm2 ) (3.5)

where the projected trace operator Tr0
Γ is defined in Definition 2.8 (recall that this projector simply

amounts to adding a suitable constant to the considered function).
Finally, we set

QmΓ := Qm1,Γ + iQm2,Γ. (3.6)

The crucial point about these polynomials Qm`,Γ, ` = 1, 2, lies in the fact that since they are traces
of harmonic functions, we have

KγΓ(Qm`,Γ) = Qm`,γ ,

and hence, applying formula (3.4) with Qm`,Γ, we obtain that for all m,m′ > 1 and all `, `′ = 1, 2:

〈KγΓQ
m
`,Γ,K

γ
ΓQ

m′
`′,Γ〉 1

2 ,γ
= 〈Qm`,γ , Qm

′
`′,γ〉 1

2 ,γ
.

These quantities are strongly connected with the so-called Generalized Pólya-Szegö Tensors (GPST)
used in [46] to reconstruct a single cavity. Unfortunately, the reconstruction method proposed there
rests on the Riemann mapping theorem, which does not apply in the multiply connected case con-
sidered in this paper. We propose in the next section a new reconstruction method to recover the
geometry of the cavities from the available data, namely the quantities 〈Qm`,γ , Qm

′
`′,γ〉 1

2 ,γ
. Hence we can

access to the complex quantities 〈Qmγ , Qm
′

γ 〉 1
2 ,γ

(see (2.9)). In fact, as already pointed out in [46], the
terms 〈Qmγ , Q1

γ〉 1
2 ,γ

contain enough information to recover the unknown geometry.

3.2 Towards a harmonic moments problem

The second step of the reconstruction is to recast the shape-from-GPST problem (namely reconstruct-
ing γ from the quantities 〈Qmγ , Q1

γ〉 1
2 ,γ

) as a moments problem. Let us recall that the classical moments
problem consists in recovering an unknown measure with support in K ⊂ C from its moments. The
literature on this problem is very rich and covers a wide range of questions (solvability, uniqueness
and reconstruction) and settings (dimension one or higher dimensions, arbitrary measures or measures
absolutely continuous with respect to the Lebesgue measure, full or partial (harmonic or truncated)
set of moments,...). Proposing a complete review is thus clearly beyond the scope of this paper. Let us
simply make a few comments and quote some references. As far as we know, there is no framework to
tackle this problem in full generality and most contributions address particular issues. The solvability
of the moment problem in the cases K = [0,+∞[, K = {|z| = 1}, K = R and K = [0, 1] has been
answered by the classical theorems of Stieltjes, Toeplitz, Hamburger and Hausdorff (see for instance
Curto and Fialkow [16] and references therein). In dimension two, Davis studied the reconstruction
of a triangle from four moments [17], Milanfar et al. [45] investigated the reconstruction of arbitrary
polygons and Putinar [49] provided solvability conditions for the moments problem in the complex
plane and pointed out some nice connections with quadrature domains (two-dimensional domains
which are uniquely determined by finitely many of their moments, see [19]). Finally, two-dimensional
shape reconstruction algorithms have been also proposed [22, 23, 44, 24].
For the problem studied in this paper, the connection between the shape-from-GPST problem and the
shape-from-moments problem is based on the existence of a Borel measure ν supported in the cavity
ω such that (z denotes the variable in the complex plane)

1
m
〈Qmγ , Q1

γ〉 1
2 ,γ

=
∫
ω
zm−1 dν, ∀m > 1. (3.7)
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We have been able to prove this formula only in two special cases: for a simply connected cavity and
in the case of two disks. Still, the numerical results (see Section 5) obtained for arbitrary cavities
using the reconstruction method based on this formula (see subsection 3.3) are conclusive.

This is why we state the following conjecture.

Conjecture 3.5. Let ω = ∪Nk=1ωk be a multiply connected set, where the sets ωk, for k = 1, . . . , N
are non intersecting simply connected open domains with C1,1 boundaries γk and ω ⊂ Ω. We set
γ = ∪Nk=1γk. Then, there exists a Borel measure ν supported in ω such that:

〈f,Q1
γ〉 1

2 ,γ
=
∫
ω
F ′dν,

for every trace f ∈ H
1
2 (γ) of a holomorphic function F in ω.

As mentioned above, we have obtained the following result, whose proof is given in Section 4. In
particular, the expression of the measure ν is given therein.

Theorem 3.6. Conjecture 3.5 is true for N = 1 (single cavity) and when ω is constituted of two non
intersecting disks.

The main interest of identity (3.7) lies in the fact that it bridges two classical inverse problems,
namely the Calderòn’s conductivity inverse problem and the historical moments problem. However,
our moment problem has two features that makes it difficult to solve. First, we only have at our
disposal the harmonic moments (i.e. the sequence

∫
ω z

m dν, and not the doubly indexed sequence∫
ω z

mz̄n dν). Second, the involved measure is generally not of the form dν = 1ω dx which is the most
studied in the literature.

In order to have some insight on what this measure might represent, let us consider the particular
case where the cavity is constituted of a collection of small inclusions. There is a wide literature
dealing with this case and we refer the interested reader to the book by Ammari and Kang [3]. For
small disks of centers zi and radii ερi, i = 1, . . . , N (ε > 0 being a small parameter), and for the
boundary conditions considered in this work, the DtN admits the following asymptotic expansion
(apply for instance [46, Theorem 2.1], in the case of non moving disks):

Λε = Λ0 + ε2Λ2 +O(ε3),

where

〈Λ2fΓ, gΓ〉− 1
2 ,

1
2 ,Γ

= 2π
N∑
i=1

ρ2
i F
′(zi)G′(zi). (3.8)

In the above formula, fΓ, gΓ ∈ H
1
2 (Γ) denote respectively the traces on Γ of holomorphic functions

F,G defined in the cavity ωε. With the notation of Theorem 3.3, this expansion shows that Rε =
SΓ(Λε − Λ0) = ε2SΓΛ2 +O(ε3) and thus

Kε = (Id + Rε)−1Rε = ε2SΓΛ2 + O(ε3).

Hence, we have
〈fγε , Q

1
γε
〉 1

2 ,γε
= 〈KεfΓ, Q

1
Γ〉 1

2 ,Γ
= ε2〈Λ2fΓ, Q

1
Γ〉− 1

2 ,
1
2 ,Γ

+O(ε3)

Thanks to (3.8), the above formula reads

〈fγε , Q
1
γε
〉 1

2 ,γε
= 2πε2

N∑
i=1

ρ2
i F
′(zi) +O(ε3) =

∫
ω
F ′dν +O(ε3),
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provided we set

ν =
n∑
i=1

ciδzi , with ci = 2π(ερi)2.

This formula suggests that the measure ν can be approximated by an atomic measure, involving the
centers and the radii of the unknown disks.

3.3 The reconstruction algorithm

Going back to the general case of an arbitrary cavity, it is thus natural to seek an approximation
of the measure ν appearing in Conjecture 3.5 in the form ν∗ =

∑n
i=1 ciδzi for some integer n, where

the weights ci are positive and the points zi are distinct. To do so, we equalize the first 2n complex
moments:

τm =
n∑
i=1

ciz
m
i , ∀m = 0, · · · , 2n− 1 (3.9)

where
τm :=

∫
ω
zm dν, ∀m = 0, · · · , 2n− 1.

The non linear system (3.9) with 2n unknowns is usually referred to as Prony’s system. To solve it,
we follow the method proposed by Golub et al. [22]. For all integer 0 6 m 6 2n− 1, let:

V =


1 1 · · · 1
z1 z2 · · · zn
...

...
. . .

...

zn−1
1 zn−1

2 · · · zn−1
n

 , H0 =


τ0 τ1 · · · τn−1

τ1 τ2 · · · τn
...

...
. . .

...

τn−1 τn · · · τ2n−2

 , H1 =


τ1 τ2 · · · τn

τ2 τ3 · · · τn+1
...

...
. . .

...

τn τn+1 · · · τ2n−1

 .

Setting c = (ci)16i6n and z = (zi)16i6n, we easily see that if the pair (z, c) solves System (3.9), then
the points zi, 1 6 i 6 n, are the eigenvalues of the generalized eigenvalue problem

H1x = λH0x. (3.10)

Once the (zi)16i6n have been determined, the weights (ci)16i6n can be easily computed (by solving
the linear system (3.9) or computing the diagonal elements of the matrix V −1H0V

−T ).
Considering the particular case of small disks described in subsection 3.2, the cavity will be recon-

structed by drawing the disks of centers (zi)16i6n and radii (ρi)16i6n, with ρi =
√
|ci|/2π (see Section

5 for some examples).

4 Proof of Theorem 3.6

4.1 Connected obstacle of arbitrary shape

If the cavity has only one connected component, then according to the Riemann mapping theorem,
its boundary γ can be parametrized as follows t ∈]− π, π] 7→ φ(eit), where

φ : z 7→ a1z + a0 +
∑
m6−1

amz
m,
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maps the exterior of the unit disk D onto the exterior of ω (see the book of Pommerenke [47, p. 5]).
Let us emphasize that |a1| is the logarithmic capacity of γ and can be chosen such that a1 > 0, while
a0 is the conformal center of ω. According to [46, Lemma 3.5] (see formula (3.11a)), we have

〈Qmγ , Q1
γ〉 1

2 ,γ
= 2a1

∫ π

−π
e−itφm(eit) dt, m > 1.

This formula can be easily generalized for every trace f ∈ H
1
2 (γ) of a holomorphic function F in ω as

follows:
〈f,Q1

γ〉 1
2 ,γ

= 2a1

∫ π

−π
e−itF (φ(eit)) dt. (4.1)

Theorem 4.1. Assume that ω is a simply connected domain with C1,1 boundary γ. Then, there exists
a C∞ diffeomorphism η that maps ω onto the unit disk D such that:

〈f,Q1
γ〉 1

2 ,γ
= 4a2

1

∫
ω
F ′(ξ)|Dη| |dξ|.

In particular, Conjecture 3.5 is true for N = 1 with dν = 4a2
1|Dη| |dξ|.

Remark 4.2. Note that the diffeomorphism η is not a conformal mapping (not even a harmonic
function) and satisfies η(ξ) = φ−1(ξ) on γ = ∂ω.

Proof of Theorem 4.1. Integrating by parts in (4.1), we get that:

〈f,Q1
γ〉 1

2 ,γ
= 2a1

∫ π

−π
φ′(eit)F ′(φ(eit)) dt = 2a1

∫ π

−π

φ′(eit)
|φ′(eit)|F

′(φ(eit)) |φ′(eit)|dt.

Denoting ψ = φ−1 that conformally maps the exterior of ω onto the exterior of the unit disk D, we
obtain:

〈f,Q1
γ〉 1

2 ,γ
= 2a1

∫
γ

|ψ′(ξ)|
ψ′(ξ) F

′(ξ)d|ξ| = 2a1

∫
γ
ψ(ξ)F ′(ξ)ψ(ξ) |ψ

′(ξ)|
ψ′(ξ) d|ξ|,

where we have used the fact that |ψ(ξ)| = 1. In the right hand side, we recognize:

ψ(ξ) |ψ
′(ξ)|

ψ′(ξ) = n1(ξ) + in2(ξ),

where n = (n1, n2) is the unit normal to γ. We deduce that:

Re
(
F ′(ξ)ψ(ξ) |ψ

′(ξ)|
ψ′(ξ)

)
= ∂nRe (F (ξ))

Im
(
F ′(ξ)ψ(ξ) |ψ

′(ξ)|
ψ′(ξ)

)
= ∂nIm (F (ξ)).

Hence

1
2a1
〈f,Q1

γ〉 1
2 ,γ

=
∫
γ

Re (ψ(ξ))∂nRe (F (ξ)) + Im (ψ(ξ))∂nIm (F (ξ))d|ξ|

+ i

∫
γ

Re (ψ(ξ))∂nIm (F (ξ))− Im (ψ(ξ))∂nRe (F (ξ))d|ξ|.
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At this point, we would like to integrate by parts but ψ is not defined inside ω. We introduce the
harmonic (but non holomorphic) diffeomorphism:

δ(z, z̄) = a1z + a0 + a−1z̄ + a−2z̄
2 + . . .

defined from D onto ω and such that

δ(z, z̄) = φ(z) for z ∈ ∂D.

We define as well its inverse η = δ−1 (which in not even harmonic but only C∞) and we have:

η(ξ, ξ̄) = ψ(ξ) for ξ ∈ γ.

Tolerating a slight abuse of notation, we shall write η(x, y) = η1(x, y)+iη2(x, y) = η(ξ, ξ̄), for ξ = x+iy.
We can now integrate by parts to get:

1
2a1
〈f,Q1

γ〉 1
2 ,γ

=
∫
ω
∇η1(x, y) · ∇Re (F (ξ)) +∇η2(x, y) · ∇Im (F (ξ))|dξ|

+ i

∫
ω
∇η1(x, y) · ∇Im (F (ξ))−∇η2(x, y) · ∇Re (F (ξ))|dξ|.

Recall that ∇Re (F (ξ)) = (Re (F ′(ξ)),−Im (F ′(ξ))) and ∇Im (F (ξ)) = (Im (F ′(ξ)),Re (F ′(ξ))). We
deduce that:

1
2a1
〈f,Q1

γ〉 1
2 ,γ

=
∫
ω

Re (F ′(ξ))
(
∂η1
∂x

+ ∂η2
∂y

)
+ Im (F ′(ξ))

(
−∂η1
∂y

+ ∂η2
∂x

)
|dξ|

+ i

∫
ω

Re (F ′(ξ))
(
∂η1
∂y
− ∂η2
∂x

)
+ Im (F ′(ξ))

(
∂η1
∂x

+ ∂η2
∂y

)
|dξ|,

which can be simply rewritten as:

1
2a1
〈f,Q1

γ〉 1
2 ,γ

=
∫
ω
F ′(ξ)

[(
∂η1
∂x

+ ∂η2
∂y

)
+ i

(
∂η1
∂y
− ∂η2
∂x

)]
|dξ|.

On the one hand, we have:

∂η

∂x
= ∂η1

∂x
+ i

∂η2
∂x

∂η

∂y
= ∂η1

∂y
+ i

∂η2
∂y

.

Hence, we deduce that (see [18, p. 3])

∂η1
∂x

+ ∂η2
∂y

= Re
((

∂

∂x
− i ∂

∂y

)
η

)
= 2Re

(
∂η

∂ξ

)
∂η1
∂y
− ∂η2
∂x

= Re
((

∂

∂y
+ i

∂

∂x

)
η

)
= −Im

((
∂

∂x
− i ∂

∂y

)
η

)
= −2Im

(
∂η

∂ξ

)
,

and therefore:
1

4a1
〈f,Q1

γ〉 1
2 ,γ

=
∫
ω
F ′(ξ)

(
∂η

∂ξ

)
|dξ|. (4.2)
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On the other hand, using the chain rule formulae (see [18, p. 5]), we have:

∂

∂z
(η ◦ δ) = ∂η

∂ξ

∂δ

∂z
+ ∂η

∂ξ̄

∂δ

∂z̄
= 1

∂

∂z̄
(η ◦ δ) = ∂η

∂ξ

∂δ

∂z̄
+ ∂η

∂ξ̄

∂δ

∂z
= 0.

Eliminating ∂η

∂ξ̄
from the above relations, we get that

(∣∣∣∣∂δ∂z
∣∣∣∣2 − ∣∣∣∣∂δ∂z̄

∣∣∣∣2
)
∂η

∂ξ
= ∂δ

∂z
. (4.3)

But, on the one hand, a direct calculation shows that ∂δ
∂z

= a1, while on the other hand, we know (see
[18, p. 5]) that for a harmonic diffeomorphism, we have:∣∣∣∣∂δ∂z

∣∣∣∣2 − ∣∣∣∣∂δ∂z̄
∣∣∣∣2 = |Dδ| = |Dη|−1.

Substituting these relations in (4.3), we obtain that

∂η

∂ξ
= a1|Dη|.

The conclusion follows then from (4.2).

4.2 The case of two disks

We assume here that ω = ω1 ∪ ω2, where ω1 and ω2 are two disks centered at z1 and z2 respectively
and with radii ρ1 and ρ2. We set ρ := |z1 − z2| and we denote by ωcj = C \ ωj (j = 1, 2).

Proposition 4.3. There exists two sequences of points (z1,n)n>0 and (z2,n)n>0 and four sequences of
complex numbers (κ1,n)n>1, (κ2,n)n>1, (α1,n)n>0 and (α2,n)n>0 such that the following properties hold
true:

1. z1,n ∈ ω1 and z2,n ∈ ω2 for all n > 0.

2. The densities defined by
qj,0(z) = 2(z − zj),

and for all n > 1:

q1,n(z) = κ1,n
z − z2,n−1

+ α1,n, q2,n(z) = κ2,n
z − z1,n−1

+ α2,n,

are such that for j = 1, 2 the series
∑
n>0 qj,2n + qj,2n+1 converges in H

1
2 (γj) to some limit qj.

3. The limits q1 ∈ H
1
2 (γ1) and q2 ∈ H

1
2 (γ2) are such that

Dγ1q1(ξ) + Dγ2q2(ξ) =

ξ − z1 in ω1

ξ − z2 in ω2.
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The proof of this result is constructive: the sequences (zj,n)n>0, (κj,n)n>1 and (αj,n)n>0 (j = 1, 2)
are respectively given by formulae (4.4), (4.5) and (4.9). In order to prove the above Proposition, let
us introduce some further notation and prove two lemmas. Setting:

Λj =
(
ρj
ρ

)2
j = 1, 2

let us define the two real sequences (λ1,n)n>0 and (λ2,n)n>0 by:

λ1,0 = λ2,0 = 1,

and for n > 1
λ1,n = 1− Λ2

λ2,n−1
λ2,n = 1− Λ1

λ1,n−1
,

It is worth noticing that
λ1,n = 1− Λ2

1− Λ1
λ1,n−2

.

Lemma 4.4. The real sequences (λ1,n)n>0 and (λ2,n)n>0 are convergent. More precisely, we have:

lim
n→+∞

λ1,n = 1
2
[
1 + Λ1 − Λ2 +

√
Λ
]

and lim
n→+∞

λ2,n = 1
2
[
1 + Λ2 − Λ1 +

√
Λ
]
,

where Λ := |Λ1 − Λ2|2 + 1− 2(Λ1 + Λ2) > 0. Moreover, for every n > 0:

1−
√

Λ2 <
1
2
[
1 + Λ1 − Λ2 +

√
Λ
]
< λ1,n 6 1,

1−
√

Λ1 <
1
2
[
1 + Λ2 − Λ1 +

√
Λ
]
< λ2,n 6 1.

Proof. The convergence of the two sequences (λj,n)n>0 (j = 1, 2) depends on the sign of Λ. Noticing
that Λ2/Λ1 = (ρ2/ρ1)2 and rewriting Λ as:

Λ = Λ2
2

(
ρ2

1
ρ2

2
− 1

)2

− 2Λ2

(
ρ2

1
ρ2

2
+ 1

)
+ 1,

we deduce that:
Λ =

(
1− (ρ1 − ρ2)2

ρ2

)(
1− (ρ1 + ρ2)2

ρ2

)
,

and therefore that Λ > 0.
Since (1− Λ1 + Λ2) > 0 and Λ = (1− Λ1 + Λ2)2 − 4Λ2, we have:

√
Λ− (1− Λ1 + Λ2) < 0.

It follows that:

(1− Λ1 + Λ2)2 − 4Λ2 + Λ− 2(1− Λ1 + Λ2)
√

Λ = 2
√

Λ(
√

Λ− (1− Λ1 + Λ2)) < 0.

We deduce first that:

4Λ2 > (1− Λ1 + Λ2)2 + Λ− 2(1− Λ1 + Λ2)
√

Λ = (1− Λ1 + Λ2 −
√

Λ)2,
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and hence that
1−

√
Λ2 <

1
2
[
1 + Λ1 − Λ2 +

√
Λ
]
.

Let us define the two complex sequences:

z1,n = (1− λ2,n)z2 + λ2,nz1, z2,n = (1− λ1,n)z1 + λ1,nz2. (4.4)

We also introduce the complex sequences (κ1,n)n>1 defined by:

κ1,1 = 2ρ2
2 κ1,2 = − 2(ρ1ρ2)2

(z2 − z1)2 , κ1,n+2 = Λ1Λ2
(λ2,nλ1,n−1)2κ1,n, n > 1. (4.5)

Note that we have the following relations for all n > 1:

κ1,n+2 = (1− λ1,n+1)(1− λ2,n)
λ1,n−1λ2,n

κ1,n = Λ1Λ2

(λ1,n−1 − Λ1)2κ1,n. (4.6)

We define similarly a sequence (κ2,n)n by exchanging the role of the boundary indices. The sequences
(κ1,n)n and (κ2,n)n can be deduced from each other according to the following identities:

κ1,n+1 = − ρ2
2

(z2 − z1)2λ2
2,n−1

κ2,n = −(z2 − z1)2

|z2 − z1|2
(1− λ1,n)
λ2,n−1

κ2,n (4.7)

κ2,n+1 = − ρ2
1

(z1 − z2)2λ2
1,n−1

κ1,n = −(z1 − z2)2

|z2 − z1|2
(1− λ2,n)
λ1,n−1

κ1,n. (4.8)

Lemma 4.5. There exists a constant C > 0 and a constant 0 < δ < 1 such that:

|κ1,n|+ |κ2,n| 6 Cδn ∀n > 1.

Proof. According to Lemma 4.4 and to relation (4.6), it suffices to prove that:

0 < 4Λ1Λ2(
1− Λ1 − Λ2 +

√
Λ
)2 < 1.

Direct computations lead to:

(1− Λ1 − Λ2 +
√

Λ)2 − 4Λ1Λ2 = 2
√

Λ
[√

Λ + (1− Λ1 − Λ2)
]
,

and the quantity in the right hand side is clearly positive. The conclusion follows.

We are now in position to prove the claims detailed in Proposition 4.3.

Proof of Proposition 4.3.
1. According to the estimate of Lemma 4.4, we have:

|z2,n − z2| = ρ(1− λ1,n) < ρ
√

Λ2 = ρ2,
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and therefore, the point z2,n ∈ ω2 for every n > 0. Of course, similar arguments show that z1,n ∈ ω1.
2. Let the densities q1,n be defined as in Proposition 4.3, with

α1,n = −1
2

κ1,n
λ1,n−1(z1 − z2) . (4.9)

According to lemmas 4.4 and 4.5, the series of functions:

∑
n>0

{
κ1,2n

z − z2,2n−1
+ α1,2n

}
+
{
κ1,2n+1
z − z2,2n

+ α1,2n+1

}
,

converges in H1(ω1) and hence its trace on γ1 converges in H
1
2 (γ1) to some limit q1. The same

reasoning holds for j = 2.
3. According to Remark 2.12, the densities qj,0 and q̄j,0 (j = 1, 2) admit the following Cauchy
transforms:

Cγjqj,0(ξ) =

2(ξ − zj) in ωj

0 in ωcj
and Cγj q̄j,0(ξ) =


0 in ωj

−
2ρ2

j

ξ − zj
in ωcj ,

where, for the last equation, we have used the relation:

ξ − zj =
ρ2
j

ξ − zj
on γj .

Based on formulae (2.11), we deduce that:

Dγjqj,0(ξ) =


ξ − zj in ωj

−
ρ2
j

ξ − zj
in ωcj .

In particular, we have

Dγ1q1,0(ξ) + Dγ2q2,0(ξ) =


(ξ − z1)− ρ2

2
ξ − z2

in ω1

(ξ − z2)− ρ2
1

ξ − z1
in ω2.

Similarly, and using once again Remark 2.12, we have for every n > 1:

Cγ1q1,n(ξ) =


κ1,n

ξ − z2,n−1
+ α1,n in ω1

0 in ωc1.
(4.10)

In order to compute Cγ1 q̄1,n(ξ), we note that for every ξ ∈ γ1, we have:

1
ξ − z2,n−1

= 1
ρ2

1
ξ−z1

+ z1 − z2,n−1
(4.11)

= 1
z1 − z2,n−1

1−
(

ρ2
1

z1 − z2,n−1

)
1

ξ −
(
z1 −

ρ2
1

z1−z2,n−1

)
 . (4.12)
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But notice now that, on the one hand:

z1 − z2,n−1 = λ1,n−1(z1 − z2),

and on the other hand:

z1 −
ρ2

1
z1 − z2,n−1

= z1 −
ρ2

1
λ1,n−1(z1 − z2)

= z1 −
ρ2

1
ρ2λ1,n−1

(z1 − z2)

=
(

1− Λ1
λ1,n−1

)
z1 + Λ1

λ1,n−1
z2

= λ2,nz1 + (1− λ2,n)z2

= z1,n.

Plugging the last two relations in (4.12) and using the identity
ρ2

1
(λ1,n−1)2(z1 − z2)2κ1,n = −κ2,n+1,

we obtain that for ξ ∈ γ1:
κ1,n

ξ − z2,n−1
= −2α1,n + κ2,n+1

ξ − z1,n
.

Hence
q̄1,n(ξ) = κ2,n+1

ξ − z1,n
− α1,n.

We deduce first that:

Cγ1q1,n(ξ) =


−α1,n in ω1

− κ2,n+1
ξ − z1,n

in ωc1,

and next, using (4.10), that:

Dγ1q1,n(ξ) = 1
2Cγ1q1,n(ξ) + 1

2Cγ1q1,n(ξ) =


1
2

κ1,n
ξ − z2,n−1

in ω1

−1
2
κ2,n+1

ξ − z1,n
in ωc1.

After similar computations for Dγ1q2,n, we finally obtain that

Dγ1q1,n(ξ) + Dγ2q2,n(ξ) =


1
2

κ1,n
ξ − z2,n−1

− 1
2
κ1,n+1

ξ − z2,n
in ω1

1
2

κ2,n
ξ − z1,n−1

− 1
2
κ2,n+1

ξ − z1,n
in ω2.

It is then easy to verify that:

n∑
k=0

∑
j=1,2

Dγjqj,2k(ξ) + Dγjqj,2k+1(ξ) =


(ξ − z1)− 1

2
κ1,2n+2

ξ − z2,2n+1
in ω1

(ξ − z2)− 1
2

κ2,2n+2
ξ − z1,2n+1

in ω2.

Letting n go to infinity and invoking again Lemma 4.5, we obtain the claimed result.
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We can now prove the main results of this section.

Theorem 4.6. There exists two sequences of complex weights (c1,n)n>0 and (c2,n)n>0 such that for
every f = (f1, f2) ∈ H

1
2 (γ1 ∪ γ2) with fj the trace of a holomorphic function Fj in ωj, there holds

〈f, z〉 1
2 ,γ

=
∑
j=1,2

∑
n>0

cj,nF
′
j(zj,n).

In other words, we have
〈f, z〉 1

2 ,γ
=
∫
ω
F ′dν,

where the measure ν is defined by:
ν =

∑
j=1,2

∑
n>0

cj,nδzj,n .

Proof. Let us first prove the following identity:

〈f, z〉 1
2 ,γ

=
∑
j=1,2

−i
∫
γj

qj(z)F ′j(z) dz. (4.13)

We use here the notation of Lemma 2.11. If Fj = F 1
j + iF 2

j , let F̃j = F̃ 1
j + iF̃ 2

j where F̃ `j (` = 1, 2) is
the harmonic conjugate of F `j . Obviously, since Fj is harmonic in ωj , we have F̃ 1

j = F 2
j and F̃ 2

j = −F 1
j

in ωj , and hence F̃j = −iFj in ωj . Similarly, we have z̃ − zj = −i(z − zj) = −iDγq = Dγ(−iq) in ωj .
Therefore, we have q̌ = −iq. Formula (2.10) shows that

〈f, z〉 1
2 ,γ

= −〈∂nF̃ , q̌〉− 1
2 ,

1
2 ,γ

= −〈∂nF, q〉− 1
2 ,

1
2 ,γ

= −
∑
j=1,2

∫
γj

qj(z)∂nFj(z) dsz.

Since ∂nFj(z) = ∂nF
1
j (z) + i∂nF

2
j (z) = F ′j(z)n(z) and dz = in(z)dsz, the above formula immediately

yields (4.13).
As qj =

∑
n>0 qj,2n + qj,2n+1, equation (4.13) implies that

〈f, z〉 1
2 ,γ

=
∑
j=1,2

∑
n>0
−i
∫
γj

qj,2n(z)F ′j(z)dz − i
∫
γj

qj,2n+1(z)F ′j(z)dz.

The density qj,2n+1 being the trace of a holomorphic function in ωj , the last terms in the right hand
side vanishes. Let us focus on the term:

−i
∫
γ1
q1,2n(z)F ′1(z)dz = −i

∫
γ1
κ1,2n

1
z − z2,2n−1

F ′1(z)dz.

But for z ∈ γ1, we have:

1
z − z2,2n−1

= 1
λ1,n−1(z1 − z2)

[
1− ρ2

1
λ1,2n−1(z1 − z2)

1
z − z1,2n

]
,

and therefore:

−i
∫
γ1
q1,2n(z)F ′1(z)dz = iρ2

1κ1,2n
λ2

1,2n−1(z1 − z2)2

∫
γ1

1
z − z1,2n

F ′1(z)dz

= − 2πρ2
1κ1,2n

λ2
1,2n−1(z1 − z2)2F

′
1(z1,2n)

= 2πκ2,2n+1F
′
1(z1,2n),
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where the last equality follows from (4.8). Adding the contribution corresponding to γ2, we finally
obtain that

〈f, z〉 1
2 ,γ

= 2π
∑
j=1,2

∑
n>0

{
κ2,2n+1F

′
1(z1,2n) + κ1,2n+1F

′
2(z2,2n)

}
,

and the proof is complete.

5 Numerical tests

We collect in this section some numerical experiments illustrating the feasibility of the proposed
reconstruction method. For the sake of clarity, we first sum up the different steps of the simple
reconstruction algorithm:

1. Compute a numerical approximation of the operator R = SΓ(Λγ − Λ0).

2. Fix an integer n > 1 and compute for 0 6 m 6 2n− 1:

τm :=
∫
ω
zm dν = 1

m+ 1〈Q
m+1
γ , Q1

γ〉 1
2 ,γ

= 1
m+ 1〈Q

m+1
Γ , (Id + R)−1RQ1

Γ〉 1
2 ,Γ
.

3. Following the method described in §. 3.3, solve Prony’s system:
n∑
i=1

ciz
m
i = τm, ∀m = 0, · · · , 2n− 1.

to determine the positive weights (ci)16i6n and (distinct) points (zi)16i6n.

4. Plot the disks of centers (zi)16i6n and radii (ρi)16i6n, with ρi =
√
|ci|/2π.

We refer the interested reader to [46, Section 4] for technical details about the implementation of steps
1 and 2 of the algorithm.

For practical reconstructions, a natural question is how to determine the number n of atoms (disks)
to be used. From our numerical experiments, there is no clear answer to this issue. However, increasing
n generally yields reconstructions of better quality. This fact is illustrated in Figures 2, 3 and 4 which
show respectively examples of reconstructions for a rectangular cavity, a clover shaped cavity and a
multiply connected cavity (with three connected components).

The following remarks are worth being mentioned:

• Increasing the number of atoms from n to n + 1 does not result in just adding an additional
disk. Indeed, this leads to a new Prony’s system and hence, to a completely new distribution of
disks.

• For a given value of n, we can obtain atoms with zero radii which seem to be randomly distributed
outside the cavity. See for instance Figure 2(d), where among the 22 atoms, only 13 have non
zero radii.

• Sometimes, spurious atoms can be observed (see Figure 5(a)), but they disappear when n in-
creases (see Figure 5(b)).
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A Appendix

The next lemma generalizes to the case of a multiply connected boundary the result given in [43,
Lemma 8.14] for a simply connected boundary. Our proof is slightly different from the one given
there, although it also uses the Fredholm alternative. The notation are those of Section 2 and we
recall that the assumption Cap(γ) 6= 1 is supposed to hold true.

Lemma A.1. Let f ∈ H
1
2 (γ) and b = (b1, . . . , bN )T ∈ RN . Then, there exists a unique density

q̂ = (q̂1,Ê . . . , q̂N ) ∈ H−
1
2 (γ) and a unique c = (c1, . . . , cN )T ∈ RN satisfying the system of equations

system of equations

Sγ q̂ + c = f, on γ (A.1a)
〈q̂k, 1〉− 1

2 ,
1
2 ,γk

= bk, k = 1, . . . , N. (A.1b)

Proof. Let us introduce the operator A defined on H−
1
2 (γ)× RN by

A =
(

Sγ IdRN

Jγ 0

)
,

in which

Jγ :=


〈·, 1〉− 1

2 ,
1
2 ,γ1

0
. . .

0 〈·, 1〉− 1
2 ,

1
2 ,γN

 .
Using this notation, system (A.1) simply reads

A
(
q̂

c

)
=
(
f

b

)
.

Clearly, A defines a bounded operator from H−
1
2 (γ) × RN onto H

1
2 (γ) × RN . Moreover, from the

decomposition
A = A0 + C,

with
A0 =

(
Sγ 0
0 IdRN

)
, C =

(
0 IdRN

Jγ −IdRN

)
,

it is clear that A is a Fredholm operator (C is a finite rank operator and Sγ is boundedly invertible).
Hence, (A.1) is uniquely solvable if and only if the corresponding homogeneous problem admits

only the null solution. Let then (q̂, c) ∈ H−
1
2 (γ)× RN satisfying A

(
q̂

c

)
= 0 and denote by u := Sγ q̂

the single layer potential corresponding corresponding to q̂. Then, according to the first equation in
(A.1) (with f = 0), u is constant on γ and thus constant in ω. On the other hand, the second equation
in (A.1) implies that q̂ ∈ Ĥ(γ) and hence u vanishes outside ω. Consequently, q̂k = − [∂nu]γk

= 0 and
c = −Sγ q̂ = 0.
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Birkhäuser Verlag, Basel, 1995.

[26] H. Haddar and R. Kress, Conformal mappings and inverse boundary value problems, Inverse
Problems, 21 (2005), pp. 935–953.

[27] H. Haddar and R. Kress, Conformal mapping and an inverse impedance boundary value
problem, J. Inverse Ill-Posed Probl., 14 (2006), pp. 785–804.

[28] H. Haddar and R. Kress, Conformal mapping and impedance tomography, Inverse Problems,
26 (2010), pp. 074002, 18.

[29] , A conformal mapping method in inverse obstacle scattering, Complex Var. Elliptic Equ.,
59 (2014), pp. 863–882.
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(a) n = 1 (b) n = 5

(c) n = 10 (d) n = 22

Figure 2: Example of reconstruction of a rectangle cavity for different values of n, the number of
atoms (the red dots represent the centers of the disks). Note that some disks are degenerate (i.e. have
zero radii).
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(a) n = 1 (b) n = 3

(c) n = 8 (d) n = 17

Figure 3: Example of reconstruction of a clover shaped cavity for different values of n.
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(a) n = 1 (b) n = 3

(c) n = 9 (d) n = 21

Figure 4: Example of reconstruction of a multiply connected cavity for different values of n.
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(a) n = 16 (b) n = 17

Figure 5: Sensitivity of the reconstruction with respect to n: appearance and disappearance of spurious
disks outside the cavity.
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