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Abstract: A wide variety of face models have been used in the recognition of full or micro facial expressions inimage se-
guences. However, the existing methods only address one family of expression at a time, as micro-expressions
are quite different from full-expressions in terms of facial movement amplitude and/or texture changes. In this
paper we address the detection of micro and full-expression with a common facial model characterizing facial
movements by means of consistent Optical Flow estimation. Optical Flow extracted from the face is generally
noisy and without speci ¢ processing it can hardly cope with expression recognition requirements especially
for micro-expressions. Direction and magnitude statistical pro les are jointly analyzed in order to lter out
noise and obtain and feed consistent Optical Flows in a face motion model framework. Experiments on CK+
and CASME?2 facial expression databases for full and micro expression recognition show the bene ts brought
by the proposed approach in the led of facial expression recognition.

1 INTRODUCTION Automatic micro-expression recognition algo-
rithms have recently received growing attention in the
d literature (Yan et al., 2014; Liu et al., 2015; Wang

Automatic facial expression analysis has attracte . ) :
great interest over the past decade in various domains €t al., 2014b; Wang et al., 2014c). Micro-expressions

Facial expression recognition has been widely studied &€ quité different from full-expression recognition.
in computer vision. Recent methodologies for static | "€y aré characterized by rapid facial movements
expression recognition have been proposed and ob-Naving low intensity. Micro-expressions typically in-
tain good results for acted expression. However, in VOIV& a fragment of the facial region. ~Therefore,
order to cope with the natural context challenges like Previous work that were suitable for full-expression
face occlusions, non-frontal poses, expression inten-recognition may not work well for micro-expressions.

sity and amplitude variations must be addressed. N other words, it seems dif cult to nd a common
Challenges like illumination variation, face occlu- _methodology for analyzing full and micro expression
sions, non-frontal poses have been addressed in elds an accurate manner.
other then expression recognition. Several research  Dynamic texture is an extension of texture char-
results were also published on this topic primarily acterization to the temporal domain. Description and
based on face alignment. Although the methodology recognition of dynamic textures in facial expression
is more mature, it is far from being fully robust. This recognition have attracted growing attention because
topic attracts still many researches and discussions. of their unknown spatial and temporal extent. Impres-
In the following we focus on challenges brought sive results have recently been achieved in dynamic
by supporting a wide range of facial movement am- texture synthesis using the framework based on a sys-
plitudes when producing a full or micro expression. tem identi cation theory which estimates the parame-
In case of full expression the underlying facial move- ters of a stable dynamic model (Wang et al., 2014b;
ment and the induced texture deformation can be Wang et al., 2014c). However, the recognition of
clearly differentiated from the noise that can appear dynamic texture is a challenging problem compared
when analyzing the face properties. However, as the with the static case @eri and Chetverikov, 2005).
amplitudes are much smaller in micro-expressions at- Indeed, for real videos the stationary dynamic tex-
tention must be paid to small changes encoding. tures must be well-segmented in space and time and it



is dif cult to de ne a metric in the space of dynamic The face is usually detected and aligned in order to
models. establish the correspondence of major facial compo-

In facial expression recognition, Optical Flow nents such as eyes, nose, mouth across different face
methods are popular as Optical Flow estimation is images and to reduce variations in scale, rotation, and
a natural way to characterize the local dynamics of position. Alignment based on eyes is the most popular
a temporal texture (Fortun et al., 2015). The use of strategy since eyes are the most reliable facial compo-
Optical Flow reduces dynamic texture analysis to the nents to be detected and suffer little changes in pres-
analysis of a sequence of instantaneous motion pat-ence of expressions. Assuming the face region is well
terns viewed as static textures. Optical Flow are re- aligned, histogram-like features are often computed
cently used to analyze full-expression (Liao et al., from equal-sized facial grids. However, apparent mis-
2013; Su et al., 2007; Lee and Chellappa, 2014) andalignment can be observed and it is primarily caused
micro-expression (Liu et al., 2015). Good perfor- by variations in face pose and facial deformation, as
mances were obtain in both cases. However, the us-well as the diversity in human face geometry. Re-
age of the Optical Flow is still questioned because cent studies use the facial landmarks to de ne a facial
the accuracy drops in the presence of motion disconti- region that increase robustness to facial deformation
nuities, large displacements or illumination changes. during expression. Jiang et al. (Jiang et al., 2014) de-
Recent Optical Flow algorithms (Revaud et al., 2015; ne a mesh over the whole face with an Active Shape
Chen and Koltun, 2016; Bailer et al., 2015) evolved to Model (ASM), and extract features from each of the
better deal with noise and motion discontinuities em- regions enclosed by the mesh. Han et al. (Han et al.,
ploying complex ltering requiring high computation  2014) use an Active Apparent Model (AAM) to trans-
time. Still, these algorithms were designed for generic form a facial grid and improve feature extraction for
Optical Flow computations and are not adapted to fa- recognizing facial Action Units (AUS).
cial morphology and physical constraints.

In this paper, we investigate the effectiveness of  Thanks to recent databases (Yan et al., 2014;
using a facial dedicated Itered dense Optical Flow Li et al., 2013), the demand for computer vision
in order to recognize the full-expressions (anger, fear, techniques to improve the performance of micro-
disgust, happiness, sadness, and surprise) and micro€XPression recognition is increasing.  Automatic
expressions (positive, negative, surprise) in near- Micro-expression recognition algorithms have re-
frontal-view recordings. In section 2, we discuss ex- Cently received attention, but there is still a consid-
isting work related to static approaches for full and €rable gap to Il forimproving the recognition accu-
micro expression recognition. In section 3, we present racy- Recent works usually used spatiotemporal lo-
our approach for extracting the coherent movement ¢@l binary pattern (LBP) for micro-expression anal-
on the face in different locations from dense Optical YSiS (Wang et al., 2014c; Wang et al., 2014b; Wang
Flow method. We lter the noise considering the fa- €t al., 2014a; Yan et al., 2014). Huang et al. (Huang
cial movement hypothesis (local coherency and prop- et @l., 2016b) proposed spatiotemporal completed lo-
agation). Next, we explore the characterization of the @l binary pattern (STCLQP) and obtained promis-
coherent Optical Flow into a facial model formulation ng performances with regard to similar state-of-the-
in section 4 and discuss several strategies for encod-a't methods. The reason may be that STCLQP pro-
ing the facial movement for full and micro expres- vides more useful information for_n_"ncrotexpress]on
sions recognition. Experimental results are discussed€cognition, as STCLQP extracts jointly information

in section 5. Finally, the conclusion and future per- characterizing magnitudes gnq orientations. Huang et
spectives are given in section 6. al. (Huang et al., 2016a) criticized the fact that state-

of-the-art spatiotemporal LBP features are extracted

from the global face regions and hence, they ignore

the discriminative information between two micro-
2 RELATED WORK expression classes. To overcome this problem, they

propose a discriminative spatiotemporal LBP based
Most of the 2D-feature-based methods are suitable foron an improved integral projection. Recently, Liu
the analysis of near frontal facial expressions in pres- et al. (Liu et al., 2015) built a feature for micro-
ence of limited head motions and intense expressions.expression recognition based on a robust Optical Flow
In order to provide the reader with an overview of ap- method and extract a Main Directional Mean Optical-
proaches challenging these limitations, we present the ow (MDMO). They showed that the magnitude is
recent facial alignment method and how the approach more discriminant than the direction when working
of facial expression recognition is adapted to the dif- with micro-expression and they achieve better perfor-
ferent intensity of expression. mance than spatiotemporal LBP approach.



Some approaches employ dense Optical Flow for 3 FACIAL RELATED FILTERING
full expression recognition and perform well in sev-
eral databases. Su et al. (Su et al., 2007) propose to  The facial characteristics (skin smoothness, skin
uniformly distribute 84 feature points over the three re ect and elasticity) involves dealing with the incon-
automatically located rectangles instead of extracting sistency and the noise induced by motion discontinu-
precise facial features (eyebrows, eyes, mouth). Theyities, as well as, illumination changes while extracting
select the facial regions which contribute more to- directly the Optical Flow on the face.
wards the discrimination of expressions. Lee et al. Instead of explicitly computing the global Opti-
(Lee and Chellappa, 2014) design sparse localized fa-cal Flow eld, the Optical Flow constraint equation is
cial motion dictionaries from dense motion ow data uysed in a speci c facial area de ned in relation with
of facial expression image sequences. The proposeche facial action coding system in order to keep only
localized dictionaries are effective for local facial mo-  the pertinent motion of the face. The pertinent motion
tion description as well as global facial motion anal- s de ned as the Optical Flow extracted from regions
ysis. Liao et al. (Liao et al., 2013) improve the exist- where the intensity of moving pixels re ects natural
ing feature extraction result by learning expression- facial movements characteristics. We consider a nat-
speci ¢ spatial weighting masks. The learned spatial yral facial movement to be uniform during motion if
weighted masks correspond to the human attention tojt js characterized by continuity over neighboring pix-
discriminate between expressive faces, and determineg|s, as well as, by continuous diminution of its in-
the importance of facial regions. The weighted masks tensity over neighboring regions. The Itering oper-
can signi cantly increase the performance of facial ation of Optical Flow is divided into several stages
expressions recognition and intensity estimation on and they are illustrated in Figure 1. The Faraek
several databases. algorithm (Farnefick, 2003) is used to compute fast

Any change made in the facial region has impor- densg Optical_ Flow (A). It is not_the_ most accurate
tant side-effects on the Optical Flow (Fortun et al., algorithm but it ensures that motion is not disaggre-
2015). So it's important that the Optical Flow is com- 9ated by smoothing and the computation time is low.
puted from the original image, even though motion Based on the Farnébk ow eld, we determine the
discontinuities and large displacements may in uence consistent facial motion from the facial regions hav-
the extraction process. Evaluation benchmarks like ing high probability of movement (RHPM) (B). Each
MPI Sintel benchmark (Butler et al., 2012) propose RHPM analyze their neighbors behavior in order to
new challenges allowing the development of Optical estimate the propagation of the motion on the whole
Flow capable to cope with the problems encountered face (C). The ltered Optical Flow eld is computed
in natural interaction situation (e.g. occlusion, large from the coherent motion in each RHPM (D).
displacements). Despite constant advances (Revaud
etal., 2015), handling these issues in a unique method
still remains an open problem and demands high com-
putational time. As generally, the robust Optical Flow
prediction approaches are based on smoothing mo-
tion propagation, when facial movement is consid-
ered, they allow to keep a consistency in the local face
area, but discriminant information may be lost.

Inspired by the success of simple dense Optical
Flow approach, we explore magnitude and direction
constraints in order to extract the relevant movement
on the face. Considering the smoothing of motion of
recent Optical Flow approach, a simple Optical Flow
combined with magnitude constraint seems adequate
for reducing the noise induced by lighting changes
and small head motions. In the next section, we pro-
pose a ltering Optical Flow method based on consis-
tent local motion propagation to keep only the perti-
nent motion during facial expression. The section 4
explores the construction of facial region which gen-
erates discriminating features used to separate the six
basic expressions effectively and micro-expressions. Figure 1: All stages of the proposed method.



Next, we present in detail our approach for ex- processed. We have kept only 5 magnitudes, since
tracting the coherent movement in different locations they are suf cient to re ect the consistency of move-
on the face from dense Optical Flow method by Iter- ment in facial motion.
ing the noise on the basis of the facial movement hy-  Afterwards, the intersection of direction for each
pothesis assuming local coherency and propagation. pair of consecutive magnitudes is computed to esti-

mate motion overlap between two consecutive mag-
3.1 RHPM local coherency nitudes (Figure 2-B). We build a feature which
represent the intersection between two magnitude his-

In order to cope with the noise and to lter the Optical 09rams by

Flow information, we start by analyzing the direction (

distribution within each local region in order to keep 1 if MK> 0andMk . > 0

only the reliable ow. The proposed method is illus- rk= 7 oy 1 (1)
trated in Figure 2. 0, otherwise

where i = 1,2,...,5 is the index of magnitudes and
k is the number of bins. The vectoris composed
only of 0 (no match is found relevant to the bin k) and
1 (histograms have a common occurrence into the bin
k). To to cope with the discretization problems where
close angles can be spread over different bins, we ex-
tend the direction distribution limits by one bin. If no
direction is found for all feature vector, the RHPM
is considered as being locally incoherent. After ex-
tracting the occurrences feature veatdor each pair
of magnitudes, the union of all vectors provide the
main directions.

y=3ar' )

.moj
—

1=

The number of occurrences for each direction
within Y range is from O (low intensity) to 4 (high in-
tensity) and characterize the importance of each direc-
tion (Figure 2-C). If no common directions between
the four feature vectar are found, the RHPM is con-
sidered as being locally incoherent.

Despite the fact that a RHPM is considered as co-
herent, the ltering of local motion has not yet been
completed. Indeed, if we consider a natural facial

Each region with a high probability of movement movement to be uniform during motion thgn the_lo-
contains local Optical Flow information for each pixel C@l facial motion should spread to other region neigh-
- a direction and a magnitude. Each RHPM is de ned POrs. The analysis of the movement propagation in
by a center(x,y) called epicenter and a local propa- the RHPM neighborhood is explained further.
gation valud which de ne the size of the area under
investigation around the epicenter. 3.2 RHPM neighborhood propagation

In order to measure the consistency of the Optical
Flow in terms of directions, we analyze the direction Facial muscles action ensures that a local motion
distribution into the RHPM for several layers of mag- spreads to neighboring regions until motion exhaus-
nitude (Figure 2-A). We assume that the motion on tion. Motion is subject to changes that could affect
the face spread progressively due to the skin elastic-direction and magnitude in any location. However,
ity. Furthermore, we have constructed 5 normalized intensity of moving facial region tends to remain con-
histograms M = ( M1; M?;:::: M®)) that represent the  stant during facial expression. Therefore, a perti-
direction distribution over 36 bins (of 1Gach) for nent motion computed in a RHPM appears, eventu-
different magnitudes ranges. The magnitude rangesally with a lower or upper intensity, in at least one
vary according to the characteristics of the data to be neighboring region.

Figure 2: The process of consistent local motion character-
ization in RHPM



Figure 3: Estimate the motion propagation in the direct
neighborhood of the speci c RHPM (red square).

Facial motion analysis consists in estimating the
motion propagation in the direct neighborhood of the
speci c RHPM. We propose a method to nd the lo-
cal facial motions that best discriminate expressions
and corresponds to the regional importance of the ex-
pressive faces. The propagation analysis is illustrated
in Figure 3. Next, we explain the process steps : how
to locate RHPM Neighbouring regions (Figure 3-1);
how to calculate the consistency between two region
(Figure 3-2) and how to estimate the global consistent
motion around the RHPM (Figure 3-3).

When an RHPM is locally coherent, we must ver-
ify that the motion has expanded into a neighbor-
ing RHPM. The propagation motion analysis is illus-
trated in Figure 3-1. The neighboring RHPM regions
(represented by blue square) are regions with a high
probability of propagation (RHPP). It is expected to
measure a consistent motion between a region and its
neighborhood. Eight RHPP are generated around the
RHPM. All these regions are at a distanDefrom
the RHPM epicenter. The bigger distance between
two epicenter, the less coherence the overlapping area
may exhibit.| is the size of the area under investiga-
tion around the epicenter. Finally,characterize the
number of direct propagation from the epicenter that
is carried out by the propagation analysis. The impact
of these three parameters on the quality of Iter will
be detailed in the section 4.

Each RHPP is analyzed in order to evaluate the
local coherency of the initial RHPM as illustrated in
Figure 3-2. As an outcome of the process, each lo-
cally consistent RHPP is characterized by a direc-
tional vectorY containing 36 bins (10° wide) of dif-
ferent magnitudes. Here the magnitudes correspond
to the number of occurrences of a given orientation at
different movement intensity scaledl{ to M®°). The
RHPM is considered to be consistent with its RHPP
if a con dence ratingw exceeds a xed percentage
thresholdg. wis computed as follow :

k
w=1 & min(Y% Y} (3)
k=1

wherew correspond to the intersection between
two neighboring region directional vect¥® andY !
and k = 1,2,...,36 is the index of the bin. Next, recur-
sively, for each inter-coherent RHPP we conduct the
same inter-region coherency measurements as long as
at least one nearly created RHPP is inter-region co-
herent with neighbor the previous one. The recursive
process ends when the valliés reached.

The motion propagation after one iteration is
given in Figure 3-3. RHPP are represented with green
borders if the motion is coherent with the RHPM.
Otherwise, RHPP are represented with blue borders.



When the motion between two neighbors region is the motions are less intense, the motion propagation

considered as coherent, a binary coherency map isis discontinued in large face areas, and that causes

updated in order to keep track of the evaluation pro- a disruption of movement between facial areas rela-

cedure and avoid cycles. However, local region that tively close. This means that the locations of RHPM

are marked as non inter-region coherent, may be re-need to placed attentively at speci ¢ location when

evaluated as coherent with an other RHPP in subse-micro-expressions are under study. The Figure 4

guent propagation. This is especially true in presence shows the similar consistent motion extracted from

of skin wrinkles or furrows because motion discon- a happy sequence computed from three different lo-

tinuities appears. This is the case for the RHPP n°8 cations (columns 1,2 and 3) further and further away

in Figure 3-3. In the rst iteration the distribution is  from the lips corner. The distribution of motion is

not consistent directly with the original RHPM (corre- computed from each epicenter (red point). Although,

sponds to the blue area into the RHPP n°8). However, in the line 1 (full expression), the location of each

in the next iteration, this direction region is consid- epicenter is different, the distributions present large

ered consistent with the RHPP n°1 (correspond to the overlaps (column 4). However, in the line 2 (micro-

red area into the RHPP n°8) which itself is consistent expression), the distribution corresponding to column

with the original RHPM. 3 is completely different. This shows the importance
Finally, each distribution vectorY() correspond-  of locating in an adequate manner the epicenter while

ing to the RHPPs that have direct or indirect connec- working with micro-expression.

tions to the original RHPM (e.g. at least once motion

is consistent between 2 neighbor regions) characterize

the global region motion. If the motion propagation

between all neighbors is inconsistent, the propagation

motion is no more explored and that means that there

are no more pertinent motions into the region. The

global region motion is extracted by applying the fol-

lowing formula

n .
h=3Y! @)
i=1
Where n is the number of consistent regions (the Figure 4: Consistent motion from a happy sequence com-
RHPM and all consistent RHPR). is a histogram puted from different locations in the same region
over 36 bins, which contains, for each bin the sum of o _ _
each intensity of coherent RHPP. The maximumvalue ~ The next step consists in nding the local facial
for each bin correspond to the number of consistent motions that accurately characterize the coherent mo-
regionsn multiplied by the high intensity of motionin  tion on the face and best discriminate expressions.
Y, thatis 4. Therefore, at this stage of the process, we This informs about the importance of each region
are able to calculate the coherent propagation motionfor the expression recognition process, and where to
de ned by an oriented histogram from a specic place the RHPM in the face to extract the consistent
location. motion for full and micro expressions.
In the next, we study the impact of RHPM loca-
tion on the face. More speci cally, we show that the
intensity of expression (full or micro) plays a key role

in the positioning of RHPM and, in the same time, it 4 EXPRESSION RECOGNITION

impacts the way to extract the consistent motion on

the face. In the following, we explore the integration of the
o coherent Optical Flow into a facial model formulation
3.3 Impact of RHMP location in face and discuss several strategies for considering discrim-

inant local regions on the face. The rst step con-
The intensity of full-expression is more accentuate sists in detecting pertinent motions which generates
and the motion propagation covers a large facial area.discriminant features to separate the six basic expres-
If one RHPM is randomly placed in this area, then sions effectively and the micro-expressions. Next, a
the motion consistency will always be respected and vector is constructed which express the relationships
retrieved. However, with micro-expression, the mo- between facial region of motion and full and micro
tion propagation covers a restricted facial area. As expressions.



4.1 Bestdiscriminant facial region important to note that the motion map corresponding
to the "other” class that is very close to others class,

To identify the location on the face with the highest which doesn't facilitate good recognition decisions.

probability of movement, many RHPM are placed at

regular intervals on the aligned face and the consis-

tent motion vector of each RHPM is computed. In

conseguence, a consistent motion mask as well as mo-

tion information is extracted for each video sequence.

Next, each consistent motion mask is normalized and

merged to form a heat map of motion for the under-

lying expression. The six consistent motion masks

for the basic expressions illustrated in Figure 5. They

are computed from the sequences available in CK+

database.

Figure 6: Pertinent motions to separate the micro-
expressions on CASME?2 database.

At this stage, the main facial regions of motion
are accurately identi ed. We now construct a vector
which express the relationships between facial region
of motion and full and micro expressions.

4.2 Facial motion descriptor

We use the facial landmarks to de ne a facial region
Figure 5: Pertinent motions to separate the six basic expres-that increase facial deformation robustness during ex-
sions effectively on CK+ database. pression. Similarly to Jiang et al. (Jiang et al., 2014),
the facial landmarks are used to de ne a mesh over

The extracted mask indicates that the pertinent the whole face, and a feature vector can be extracted
motions are located below the eyes, in the forehead,from each of the regions enclosed by the mesh. To
around the nose and mouth, as illustrated in Figure extract these facial meshes from face images, the fa-
6. Some facial motions are located in the same placecial landmarks are located with the method proposed
during elicitation for several expressions, but they are by Kazemi et al. (Kazemi and Sullivan, 2014). Next,
distinguishable by their intensity, direction and den- landmark positions and the geometrical statistics of
sity. For example, Anger and Sad motion mask are the face are used to compute a new set of points that
similar because the main motion appears around theallow to de ne a mesh over the whole face (fore-
mouth and the eyebrows. However, when a person head, cheek). Finally, the best discriminant landmarks
is angry, facial motions are convergent (e.g the mouth points are selected from original landmarks corre-
upwards and the eyebrows downwards) and facial mo- sponding to the active face regions and speci ¢ points
tions are divergent when a person is sad. The facial are computed in order to set out the mesh boundaries.
areas which are active during different facial expres- The partitioning of facial regions of interest (ROIs) is
sions are extensively studied in (Zhong et al., 2012). illustrated in the Figure 7. The partitioning of these
The results of the study match with our consistency ROIs is based on the facial motion observed in the
map. previous consistency maps extracted from both full

The same search strategy for nding the best dis- and micro-expressions. The locations of these ROIs
criminate regions for full expressions in CK+ was are uniquely determined by the landmarks points. For
used in CASMEZ2 for the micro-expressions. As illus- example, the position of the feature pofatis the av-
trated in Figure 6, the pertinent motions are located erage of positions of two feature points, f10 and f55.
near the eyebrows and the lips corner. If we com- The distance between the eyebrows and the forehead
pare that with the full expression motion maps, we see feature points {a, fg,...,fr) correspond to the size of
that the propagation distances are highly reduced. Itisthe noséistance »7.133=4 which makes it possible to



maintain the same distance for optimal adaptation to
the size of the face.

Figure 7: The partitioning of facial regions of interest.

The facial motion mask is computed from these
25 ROIs. The method used to build the feature vec-
tor from the facial motion mask is illustrated in the
Figure 8. In each framd;, we consider the Itered
Optical Flow inside each RQRX, wherei is the index
of frames ank = 1;2;:::; 25 is the index of ROIs. In-
side eackR}‘, a histogramlf) is computed as de ned
in equation 4 from the Optical Flow ltered consider-
ing the ROI as initial RHPM. Overtime, for each ROI,
the histograms are summed as de ned in equation 5,
which correspond to local facial motion of the entire
sequence of facial motion.

n
z(R9= @ hi(R ®)

i=1

Finally, all histogramsz are concatenated into

one-row vector, which is considered as the fea-
ture vector for the full and micro expressian=
(z1;2%;::::2"). An example is illustrated in the Figure
8, where all histograms corresponding to &feand
R?2 with i 2 [1;n] are summed as de ned in equation
5 in z! andz?2 respectively then added m

Figure 8: Method for building the feature vector from the
facial motion mask.

The features vector size is equal to the number of
ROI multiplied by the number of bins, making a total
of 900 features values.

5 EVALUATION

In this section, we evaluate the performance of
our proposed method on two datasets : (the ex-
tended Cohn-Kanade database (Lucey et al., 2010)
and CASME2 (Yan et al., 2014). We discuss the
choice of optimal parameters for the databases and
show that only the magnitude intervals must be
adapted to accommodate the speci cities of intensity
of facial expression. Finally, we compare our perfor-
mance against major state-of-the-art approaches.

5.1 Full-expression

CK+ contains 410 facial expression sequences from
100 participants coming from different ethnicities and
genders. In these image sequences, the expression
starts from a neutral status and ends in the apex status.
The number of samples for the following expressions,
i.e. anger, sadness, happiness, surprise, fear and dis-
gust are 42, 82, 100, 80, 64 and 45, respectively.

In the experiments, we use LIBSVM (Chang and
Lin, 2011) with the Radial Basis Function kernel and
the 10 fold cross-validation protocol. This protocol is
used by several approaches working on CK+ as it ts
better to the size and the structure of the data set. Each
expression is classi ed into one of the six classes :
anger, fear, disgust, happiness, sadness, and surprise.

The following experimental results are obtained
usingl = 15, b= 3, D= 10. Initially, we consid-
ered the following magnitude intervals in every re-
gion: M1(x)jx 2 [1;10], M2(X)jx 2 [2;10], M3(X)jx 2
[3;10], M4(X)jx 2 [4;10], M5(X)jx 2 [5;10]. Each in-
terval stops at a maximum of 10, where 10 corre-
sponds to the mean of the max of coherent magnitude
estimated from all sequences. The overlap of inter-
vals allow to ensure consistency in each histogram.
Small movements around the mouth corners and be-
tween the eyes were not always detected and we in-
cluded the magnitud&ly and delete the magnitude
Ms to retain only 5 intervals of magnitudes for the
corresponding regionls; Ryg; Roo.

We compare the performance of the different ways
to position the RHPMs on the face and various data
normalization techniques prior to coherent facial mo-
tion extraction. RHPM are applied in different local-
ization of the face: a) Block-based RHPM is imple-
mented by partitioning each frame of the video into
10x10 non-overlapping blocks then place an RHPM



in the center of each block (Grid); b) On each fa- (Mask+Geom). As highlighted in the Table 1, geo-
cial landmarks (Lands); c) On the center of our fa- metric features are not as competitive as appearance
cial mask (Mask). Experiments were conducted either features. However, the combination of the geometric
on : i) raw data (without normalization); ii) data nor- and appearance features slightly increase the recogni-
malized after applying a face alignment based on eyestion rate.

from the rst picture; iii) or data normalized by means
of facial registration based on facial landmarks.

Table 1 compares the performance of the differ-
ent approaches to position the RHPMs (Grid, Land-
marks and Mask) are explored to compute the facial
motion and classify expressions. Column 4 (Geom)
presents results obtained by considering only the geo-
metric information inferred by a mesh generated from
the landmarks positions and column 5 (Mask+Geom)
reports on results combining geometrical and motion
information.

Table 1: Performance Comparison of Different Approaches.

Table 2 compares the performance of the proposed
method with the recent state-of-the-art Optical Flow
methods on CK+. The performance of the our system
is comparable with the other systems as it achieved
an average recognition rate of 93.17% with alignment
based on eyes and coherent Optical Flow. Neverthe-
less, the highest recognition rate is obtained using fea-
tures from the Itered coherent facial motion com-
bined with geometric features.

Table 2: Performance Comparison of Different State-of-
the-Art Optical Flow Approaches on CK+ Database. The
Norma. |  Grid Lands | Mask | Geom. | Mask+Geom bold means our proposed methods.

No 87,31% | 84,14% | 92.68% | 86.58% 92.92%

Method Measure | Seq. | Exp. Acc(%)

Eyes 86,58% | 83,41% | 93.17% | 85.85% 95.34%
(Liao et al., 2013) LOSO 442 6 92,5%

Shape | 82,19% | 82,92% | 85,85% | 87.56% 88.53%
(Suetal., 2007) train/test 415 5 93,27%
A| b d b ) h b f (Lee and Chellappa, 2014) 4-fold ndef 7 86,7%
Ignment ased on eyeS obtains t e eS": per or- Coherent Flow + RHPM 10-fold 410 6 93.17%

mances in CK+ because only translation and in-plane

Coherent Flow + RHPM + Geom. 10-fold 410 6 95.34%

rotation occur. Finally, the normalization based on
shape becomes less ef cient with Optical Flow be-
cause the feature points are affected by the actions of
various expressions. Without normalization, the re-
sults are still correct due to limited head motion. This
result shows the performance of the consistent mo-
tion Iter in presence of small head motions. Mo-
tion computed around landmarks report worse per-
formance than the other methods, demonstrating the
importance of cheek, chin and forehead regions that
are not captured directly by landmarks. Assuming
the face region is well aligned, the motion calcu-
lated from equal-sized facial grids is better than land-
marks in presence of facial deformation during ex-
pression. Concerning the Mask, it shows better results
and prove that facial models are more appropriate to
recognize facial expressions.

Appearance based methods are reported to ou
perform geometry based methods (Whitehill et al.,
2008). However, as suggested in (Zhang and Ji, 2005
Kotsia et al., 2008), the combination of the geometric
and appearance features can provide additional infor-
mation to the recognition process. We computed ge-
ometric features by exploiting the size and shape of
the facial ROIs. Speci cally, features that can be ex-
tracted from the facial mask include the length and We have shown that our approach obtains good
orientation of facial ROl (Geom). A combination performances in CK+, where the expressions are
of the geometric and appearance features are com-acted and there is little or no disruptions (head mo-
puted with the improved version of the RHPM fea- tion, lightning variation). Next, we present the perfor-
tures and the geometric features from the facial ROl mance of our method to recognize micro-expressions.

Our method reported comparable recognition per-
formance with the most competitive Optical Flow ap-
proaches. Although we report the best accuracy re-
sults for 6-class expressions, Su et al. (Su etal., 2007)
achieve higher scores, but they only use 5 classes
(Neutral, Happy, Surprise, Sad, Anger). Considering
the variations observed in the number of sequences
and expression types recognized by the various meth-
ods it is dif cult to clearly identify the best one. For
our experiments we used the original CK+ collection
as introduced in (Lucey et al., 2010) and we brought
no modi cation neither to the videos nor the anno-
tations. As presented in Table 1, our approach does
not require normalized images in order to obtain good
t.performances. This is not the case for above-cited
papers. Indeed, the coherent motion accumulation
.over time allows ignoring possible disruptions caused
by small head motions and illumination variation in
some frames. The face normalization brings perfor-
mances gains in the recognition process because some
videos contain a series of disruptions, which causes
signi cant deterioration over time.



Table 3: Performance comparison with the state-of-the-art

5.2 Mlcro-expressmn methods on CASME2 database. Results in bold correspond
to our method.
The CASME2 database contains 246 spontaneous Method Measure | Class | Acc(%)
micro-expressions from 26 subjects, categorized into Baseline (Yan et al., 2014) Loo 5 | 6341%
ve classes:_ happiness (32 samples), d'SQUSI (63 sam- LBP-SIP (Wang et al., 2014c) LoO 5 | 67.21%
ples), surprise (25 samples), repression (27 samples) LSDF (Wang et al., 2014b) Loo 5 | 65.44%
and Others (99 _Samples)' . TICS (Wang et al., 2014a) LOO 5 61.76%
In the experiments, we use leave-one-subject-out MDMO (Liu etal., 2015) L0so | 2 | e737%
(LOSO) cross validation protocol because it is more STOLOP (Huang etal, 20166) | LOSO | 5 | 58.39%
strict than leave-one-out (LOO) cross valldatl(_)n and STLBP-IP (Huang etal,, 20163) | LSO R p—
matches better the structure of the data (different DISTLBPPP (Huang otal, 2016a] 10s0 | 5 | o478%
number of videos par subject). In this protocol, the
Coherent Flow + RHPM LOSO 5 65.35%

samples from one subject are used for testing, the rest
for training. We use the LIBSVM (Chang and Lin,
2011) with the Radial Basis Function and the grid
search method, where the optimal parameter is pro-
vided using ten-fold cross validation.

Table 3 shows a comparison to some other ap-
proaches for micro-expression using the recognition
rates given in each paper. It should be noted that
the results are not directly comparable due to differ-
ent experimental setups (number of expression classe
and number of sequences), but they still give an
indication of the discriminating power of each ap-

classes basis (Happy, Disgust, Surprise, Repression),
the performance is improved by 11.57%, which cor-
responds to an accuracy of 76.92%. This proves that
the Other class does not stand out clearly from oth-
ers. In (Liu et al., 2015), the repression and the other
sequences are combined in a single class, which re-
duces the chances of falsely classi cation of Happi-
Hess to Repression class. This new organization re-
ported a gain of 1.02% with our method. Moreover,

(Liu et al., 2015) reported on removing 11 samples
p(rjoa(_:h. IOurtmﬁthod outp$:orrk;15 tthe otll;er metht; in the recognition process due to mis-estimates of the
0cs In aimost afl cases. € DESL TESUls are Ob-(qia) features in the rst frame of the video.

tained using the same mask and parameters as for full-
expression recognition & 15,b= 3,D= 10) except
for the division of magnitudes de ned here as follows
© M1(X)jx 2 [0:1;5], M2(X)jx 2 [0:2;5], M3(X)jx 2
[0:3;5], M4(X)jx 2 [0:4;5], M5(X)jx 2 [0:5;5]. The
geometric information was not considered here, as
the landmarks locations are mostly stables through-
out the sequence. It should be noted that the Optical
Flow is not calculated from two consecutive frame but
on two frame intervals. Indeed, the time lapses be-
tween two frame in CASME?2 is so small (recorded
with high-speed camera (at 200 fps)) and combined
with the low expression intensity it is dif cult not  Figure 9: The confusion matrix for ve micro-expression
make a distinction between the noise and the true fa- categorizations on CASME?2 database.
cial motion. No magnitude consistency can be found
in local region with our method when consecutive In the annotations provided by CASME2, we can
frames are processed. Hence, we are considering theee that each class is characterized by speci ¢ action
entire sequence, but this is frequent in the literature units. More speci cally, if we analyze the average
as other authors summarize videos in fewer frames action units distribution of each class, we obtain the
(Wang et al., 2014c; Huang et al., 2016a; Huang et al., following division : Happy (AU6, AU12), Surprise
2016b). (AU1, AU2), Disgust (AU4, AU7, AU9), Repression

In order to better understand the limitation of our (AU15,AU17) and Others (AU4). If we are refer-
approach, we build a confusion matrix. Looking atthe ring strictly to action units instead of the provided
confusion matrix in Figure 9, Happiness is often con- expression annotations, all sequences from the Other
found with Other class. It may be explained by the category including AU4 may be considered as Dis-
fact that Other class includes some confused micro- gust sequences. In doing so, we obtain a new dis-
expressions similar to others as illustrated in Figure tribution of the 246 spontaneous micro-expressions:
6. If the recognition process is re-evaluated on a four happiness (34 samples), disgust (128 samples), sur-



prise (25 samples), repression (27 samples) and Oth-facial picture has important side-effects on the Op-
ers (32 samples). Based on the action units, the recog+ical Flow. Despite the wealth of research already
nition rate is improved by 7.09%, which corresponds conducted, no method is capable of dealing with all
to an accuracy of 72.44%. A synthesis on different issues at a time. We believe that the normalization
CASME?2 con gurations is illustrated in the Table 4.  approaches based on facial components or shape are

Table 4: Performance Comparison of Different data Seg-
mentation on CASME2

Details of segmentation classes| Seq. | Accuracy
Based on original data 5 246 65.35%
Combine Repression and Other classes 4 246 66.37%
Based on Action Units 5 246 72.44%
Delete the Other class 4 147 76.92%

The results obtained on the original CASME2 and

the reorganized variants show the good performances

for micro-expressions recognition. Our method out-
performs the other state-of-the-art methods in almost
all cases. We have discussed about issues related t
the ambiguous annotations of the Others category in
CASMEZ2, which further reduces the recognition rate

not adapted to Optical Flow as facial deformation will
impact Optical Flow computation by inducing motion
distortion. So rather than considering the normaliza-
tion in the eld of facial components, efforts should
instead be focused on the Optical Flow domain.
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